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A sensitivity measure of the Pareto set in a

vector l∞-extreme combinatorial problem

V.A. Emelichev, A.M. Leonovich

Abstract

We consider a vector minimization problem on system of sub-
sets of finite set with Chebyshev norm in a space of perturbing
parameters. The behavior of the Pareto set as a function of
parameters of partial criteria of the kind MINMAX of absolute
value is investigated.

1. Base definitions and lemma

The traditional [1 – 11] statement of vector (n-criteria) trajectorial
problem is following. A system of nonempty subsets T ⊆ 2E\∅, | T |> 1
of the set E = {e1, e2, ..., em} is given. A vector criterion

f(t, A) = (f1(t, A1), f2(t, A2), ..., fn(t, An)) → min
t∈T

is defined, where n ≥ 1, m ≥ 2, Ai is the row of a matrix A =
[aij ]n×m ∈ Rnm. The elements of set T are called trajectories.

We consider the case, where partial criteria are given by

fi(t, Ai) = max
j∈N(t)

| aij |, i ∈ Nn,

where Nn = {1, 2, ..., n}, N(t) = {j ∈ Nm : ej ∈ t}. By that, the value
fi(t, Ai) is Chebyshev norm l∞ of vector, formed by those elements of
matrix A, which correspond to the trajectory t.

We define the Pareto set (the set of efficient trajectories) by tradi-
tional way [12,13]:

Pn(A) = {t ∈ T : π(t, A) = ∅},
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where

π(t, A) = {t′ ∈ T : q(t, t′, A) ≥ 0(n), q(t, t′, A) 6= 0(n)},

q(t, t′, A) = (q1, q2, ..., qn),

qi = qi(t, t′, Ai) = fi(t, Ai)− fi(t′, Ai), i ∈ Nn,

0(n) = (0, 0, ..., 0) ∈ Rn.

It is natural to call the problem of finding the set Pn(A) the vector
l∞-extreme trajectorial problem. If E and T are fixed, we denote the
problem by Zn(A). Let us assign the norm l∞ for any natural number
k ∈ N in the space Rk :

‖ z ‖= max{| zi |: i ∈ Nk}, z = (z1, z2, ..., zk) ∈ Rk.

Under the norm of a matrix we understand the norm of the vector,
formed by all its elements. For any number ε > 0, let us define the set
of perturbing matrices

B(ε) = {B ∈ Rnm : ‖ B ‖< ε}.

By analogy with [1,2,9,14 – 19], we call the problem Zn(A) stable
(on vector criterion), if

∃ε > 0 ∀B ∈ B(ε) (Pn(A) ⊇ Pn(A + B)).

It is easy to see that the property of stability of the problem Zn(A)
is a discrete analogue of upper semicontinuity property by Hauzdorf in
a point A ∈ Rnm of the optimal mapping (see., for example, [15])

Pn : Rnm → 2E .

This point-set (many-valued) mapping assign the Pareto set to any set
of parameters (any matrix A).

As usual [1,2,16,20], we say that the value

ρn
1 (A) =

{
supΩ1(A), if Ω1(A) 6= ∅,
0 otherwise,
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where Ω1(A) = {ε > 0 : ∀B ∈ B(ε) (Pn(A) ⊇ Pn(A + B))}, is the
stability radius of the problem Zn(A).

In other words, the stability radius is the limit level (in Chebyshev
norm) of independent perturbations of matrix A elements, where new
efficient trajectories do not appear.

It is natural to say that ρn
1 (A) = ∞ in the case Ω1(A) = R+.

Evidently, the problem Zn(A) is stable and its stability radius is infinite
when equality Pn(A) = T holds.

The problem Zn(A), is called nontrivial, if P
n(A) = T\Pn(A) 6= ∅.

As in [2,3,5,6,16,17,8,21], we call the problem Zn(A) quasistable, if
the formula

∃ε > 0 ∀B ∈ B(ε) (Pn(A) ⊆ Pn(A + B))

is valid.
Note, that the property of quasistability of the problem Zn(A) is

a discrete analogue of lower semicontinuity property (by Hauzdorf) of
the many-valued mapping, that assign the Pareto set Pn(A) to any
matrix A ∈ Rnm.

The value

ρn
2 (A) =

{
supΩ2(A), if Ω2(A) 6= ∅,
0 otherwise,

where Ω2(A) = {ε > 0 : ∀B ∈ B(ε) (P (A) ⊆ P (A + B))}, is called the
quasistability radius of the problem Zn(A), n ≥ 1.

By that, the quasistability radius defines the limit of independent
perturbations, that retain all the efficient trajectories of initial problem
and allow the appearance of new trajectories.

Let t = {ej1 , ej2 , ..., ejs} ∈ T, s =| t |, j1 < j2 < ... < js. If we put

t[Ai] = (aij1 , aij2 , ..., aijs)

for any index i ∈ Nn, then we obtain

fi(t, Ai) =‖ t[Ai] ‖≤‖ Ai ‖≤‖ A ‖ . (1)
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Consequently, the next inequalities are correct:

fi(t, Ai)− fi(t, Bi) ≤ fi(t, Ai + Bi) ≤ fi(t, Ai) + fi(t, Bi). (2)

Really, the right inequality is the axiom (triangle inequality)

‖ a + b ‖≤‖ a ‖ + ‖ b ‖, a, b ∈ Rn,

true for any norm. Setting a = a′ − b′, b = b′, we get

‖ a′ ‖ − ‖ b′ ‖≤‖ a′ − b′ ‖, a′, b′ ∈ Rn,

which proves the left inequality of (2).

Lemma 1 If trajectories t and t′ and a matrix B ∈ Rnm are such
that the inequality

qi(t, t′, Ai) > 2 ‖ B ‖ (3)

holds for some index i ∈ Nn, then the inequality

qi(t, t′, Ai + Bi) > 0

is true.

Really, taking into account (1) and (2) combining them with (3),
we easily obtain

qi(t, t′, Ai + Bi) = fi(t, Ai + Bi)− f(t′, Ai + Bi) ≥

≥ fi(t, Ai)− f(t, Bi)− (fi(t′, Ai) + fi(t′, Bi)) ≥
≥ qi(t, t′, Ai)− 2 ‖ B́i ‖≥ qi(t, t′, Ai)− 2 ‖ B ‖> 0.

2. Stability

Denote
ϕn

1 (A) =
1
2

min
t∈P

n
(A)

max
t′∈T\{t}

min
i∈Nn)

qi(t, t′, Ai).
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Theorem 1 For the stability radius ρn
1 (A) of vector nontrivial l∞-

extreme problem Zn(A), n ≥ 1, the estimates

ϕn
1 (A) ≤ ρn

1 (A) ≤ 1
2
‖ A ‖ (4)

are valid.

Proof. It is clear that ϕ := ϕn
1 (A) ≥ 0. We prove the left inequality

of (4) at first. If ϕ = 0, then inequality ρn
1 (A) ≥ ϕ is evident.

Let ϕ > 0, B ∈ B(ϕ). Then, by definition of the number ϕ, for any
trajectory t ∈ P

n(A) (the existence of such a trajectory is guaranteed
by nontriviality of our problem), there exists a trajectory t 6= t′, such
that the inequalities

qi(t, t′, Ai) ≥ 2ϕ > 2 ‖ B ‖

are valid for any index i ∈ Nn.

Therefore using the lemma we obtain, that inequality

qi(t, t′, Ai + Bi) > 0

holds for any index i ∈ Nn, i.e. t′ ∈ π(t, A + B). Consequently t ∈
P

n(A + B). Thus we have

∀B ∈ B(ϕ) (Pn(A) ⊇ Pn(A + B)).

Hence, ρn
1 (A) ≥ ϕn

1 (A).
Now we prove that the right inequality of (4) is valid. If we take

the matrix B∗ = [bij ]n×m with elements

bij =

{
1
2 ‖ A ‖ −aij , if aij ≥ 0,
−1

2 ‖ A ‖ −aij , if aij < 0,

as perturbing, then it is easy to see, that

∀i ∈ Nn ∀t ∈ T (fi(t, Ai + B∗
i ) =

1
2
‖ A ‖).
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Consequently, taking into account the nontriviality of our problem, we
obtain

Pn(A + B∗) = T 6⊆ Pn(A).

This implies that the upper estimate

ρn
1 (A) ≤ 1

2
‖ A ‖

is valid.
Theorem 1 has been proved.

Corollary 1 Stability radius of any nontrivial problem Zn(A), n ≥
1, is finite.

The following two examples show, that lower and upper bounds of
stability radius, stated by theorem 1, are accessible.

Example 1. Let n = m = 2,

A =

[
1 −2
−2 −3

]
, T = {t1, t2}, t1 = {e1}, t2 = {e2}.

Then f(t1, A) = (1, 2), f(t2, A) = (2, 3), P 2(A) = {t1}, ϕ2
1(A) = 1

2 ,
‖ A ‖= 3. If 1

2 < β < ε, then P 2(A + B∗) = {t2}, where

B∗ =

[
β β
−β β

]
.

Therefore we have

∀ε >
1
2
∃B∗ ∈ B(ε) (P 2(A + B∗) 6⊆ P 2(A)).

Consequently ρ2
1(A) ≤ 1

2 .
Hence, taking into account theorem 1 we get ρ2

1(A) = ϕ2
1(A) = 1

2 .
Example 2. Let n = m = 2,

A =

[
2 0 0
0 −2 0

]
, T = {t1, t2}, t1 = {e1, e2}, t2 = {e2, e3}.
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Then we obtain f(t1, A) = (2, 2), f(t2, A) = (0, 2), P 2(A) = {t2},
ϕ2

1(A) = 0, ‖ A ‖= 2.
It is easy to see that

q1(t1, t2, A1 + B1) > 0, q2(t1, t2, A2 + B2) = 0

for any matrix B ∈ B(1), i.e. ρ2
1(A) ≥ 1. Taking into account (4), we

have ρ2
1(A) = 1 = 1

2 ‖ A ‖ .
Let us also show, that the value of stability radius can differ from

the upper and lower bounds from (4).
Example 3. Let n = m = 2,

A =

[
−2 0 1
0 −2 0

]
, T = {t1, t2}, t1 = {e1, e2}, t2 = {e2, e3}.

In this case, f(t1, A) = (2, 2), f(t2, A) = (1, 2), P 2(A) = {t2}, ϕ2
1(A) =

0, ‖ A ‖= 2 and, by theorem 1, we get 0 ≤ ρ2
1(A) ≤ 1. Let us show,

that the stability radius of the problem is equal to 1
2 .

For any ε > 1
2 , there exists a matrix B∗ ∈ B(ε), such that t2 6∈

P 2(A + B∗). For example

B∗ =

[
β 0 β
0 0 0

]
,

where 1
2 < β < ε. Hence, ρ2

1(A) ≤ 1
2 .

On the other hand, for any matrix B ∈ B(1
2) we have

q1(t1, t2, A1 + B1) > 0, q2(t1, t2, A2, B2) = 0.

Hence, {t2} ⊆ P 2(A + B) ∀B ∈ B(1
2), i.e. ρ2

1(A) ≥ 1
2 .

Thus, ρ2
1(A) = 1

2 .
Let us assign for our problem Zn(A) the traditional Slater set (the

set of weakly efficient trajectories) [12,13]:

Sn
1 (A) = {t ∈ T : σ1(t, A) 6= ∅},

where
σ1(t, A) = {t′ ∈ T : qi(t, t′, Ai) > 0, i ∈ Nn}.

It is obvious, that Pn(A) ⊆ Sn
1 (A).

From theorem 1 we easily derive
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Corollary 2 If Pn(A) = Sn
1 (A), then nontrivial problem Zn(A),

n ≥ 1, is stable.

Let us illustrate that the equality Pn(A) = Sn(A) is not a necessary
condition for stability of a nontrivial problem Zn(A).

Example 4. Let n = 2, m = 3, T = {t1, t2, t3}, t1 = {e1}, t2 =
{e2}, t3 = {e3},

A =

[
−1 2 −3
−2 2 4

]
.

Then f(t1, A) = (1, 2), f(t2, A) = (2, 2), f(t3, A) = (3, 4), P 2(A) =
{t1}, S2

1(A) = {t1, t2}, i.e. P 2(A) 6= S2
1(A). But nontrivial problem

Z2(A) is stable, because ρ2
1(A) ≥ ϕ2

1(A) = 1
2 .

3. Quasistability

Suppose

ϕn
2 (A) =

1
2

min
t′∈P n(A)

min
t∈T\{t′}

max
i∈Nn

qi(t, t′, Ai).

It is easy to see, that ϕn
2 (A) ≥ 0 for any matrix A ∈ Rnm.

Theorem 2 For the quasistability radius ρn
2 (A) of vector l∞-

extreme problem Zn(A), n ≥ 1, the estimate

ρn
2 (A) ≥ ϕn

2 (A) (5)

is valid.

Proof. Let ϕ := ϕn
2 (A) > 0 (inequality (5) is trivial in the

other case). Then, by definition of the number ϕ, for any trajec-
tory t′ ∈ Pn(A) and any trajectory t 6= t′ there exists a number
p ∈ arg max{qi(t, t′, Ai) : i ∈ Nn}, such that

∀B ∈ B(ϕ) (qp(t, t′, Ap) ≥ 2ϕ > 2 ‖ B ‖).
Thus, by the lemma, we get

∀B ∈ B(ϕ) (qp(t, t′, Ap + Bp) > 0).
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Therefore t′ ∈ P (A+B) for any matrix B ∈ B(ϕ). Thereby we have

∀B ∈ B(ϕ) (Pn(A) ⊆ Pn(A + B)).

Hence, ρn
2 (A) ≥ ϕn

2 (A).
Theorem 2 has been proved.
Next example shows that the lower bound of quasistability radius,

stated by theorem 2, is accessible.
Example 5. Let n = m = 2, T = {t1, t2}, t1 = {e1}, t2 = {e2},

A =

[
−1 2
3 −4

]
.

Then we easily obtain

f(t1, A) = (1, 3), f(t2, A) = (2, 4), P 2(A) = {t1}, ϕ2
2(A) =

1
2
.

If the perturbing matrix is of the kind

B∗ =

[
−β −β
β β

]
,

where 1
2 < β < ε, then P 2(A + B∗) = {t2}, i.e. P 2(A) 6⊆ P 2(A + B∗)

for some perturbing matrix B∗ ∈ B(ε). Hence, ρ2
2(A) = ϕ2

2(A) = 1
2 .

Let us show that the quasistability radius can be greater then lower
bound, stated by theorem 2.

Example 6. Let n = 2, m = 3,

A =

[
0 1 −3
0 −1 3

]
,

T = {t1, t2, t3}, t1 = {e1, e2}, t2 = {e2}, t3 = {e3}. In this case
we have ‖ A ‖= 3, f(t1, A) = f(t2, A) = (1, 1), f(t3, A) = (3, 3),
P 2(A) = {t1, t2}. It is easy to see that, for any matrix B ∈ B(1

2),

qi(t1, t2, Ai + Bi) = 0, qi(t1, t3, Ai + Bi) < 0, qi(t2, t3, Ai + Bi) < 0,

i ∈ N2.
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Hence, {t1, t2} ⊆ P 2(A + B). Thus the problem Z2(A) is quasistable,
i.e. ρ2

2(A) > 0. On the other hand q(t1, t2, A) = (0, 0), and therefore
ϕ2

2(A) = 0.

For the problem Zn(A) we assign also the Smale set (or the set of
strictly efficient trajectories) [12,13]:

Sn
2 (A) = {t ∈ T : σ2(t, A) = ∅},

where
σ2(t, A) = {t′ ∈ T : f(t, A) ≥ f(t, A)}.

It is clear, that Sn
2 (A) ⊆ Pn(A), and the Pareto set is always not

empty, but the Smale set can be empty.
From theorem 2 we obtain

Corollary 3 If equality Sn
2 (A) = Pn(A) holds, then the problem

Zn(A), n ≥ 1, is stable.

Let us show, that the inequality Pn(A) = Sn
2 (A) is not a necessary

condition of quasistability of the problem Zn(A).
Example 7. Let n = 2, m = 4, T = {t1, t2, t3, t4}, ti = {ei}, i ∈

N4,

A =

[
−1 −2 2 2
−2 −1 −1 3

]
.

Then f(t1, A) = (1, 2), f(t2, A) = (2, 1), f(t3, A) = (2, 1), f(t4, A) =
(2, 3), P 2(A) = {t1, t2, t3}, S2

2(A) = {t1}, i.e. P 2(A) 6= S2
2(A). But,

ρ2
2(A) ≥ ϕ2

2(A) = 1
2 > 0, i.e. the problem Z2(A) is quasistable.

Remark 1. It is easy to see, that all essentials, illustrated by
examples 1–7, can be shown for any number of criteria (n > 2).

Theorem 3 For stability and quasistability radii of the vector l∞-
extreme problem Zn(A), n ≥ 1, the next estimate is true:

ρn
s (A) ≥ 1

2
min
i∈Nn

min
1≤j<k≤m

|| aij | − | aik ||, s = 1, 2. (6)
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Proof. Let us consider the nontrivial case, i.e. where the right part
of (6) is a positive number. Then, evidently, in any row of the matrix
A, absolute values of elements are different in pairs. Therefore, taking
into account partial the criteria definition, for any trajectories t 6= t′

and index i ∈ Nn we obtain

qi(t, t′, Ai) = 0 =⇒ ∀B ∈ B(ϕi) (qi(t, t′, Ai + Bi) = 0),

qi(t, t′, Ai) > 0 =⇒ ∀B ∈ B(ϕi) (qi(t, t′, Ai + Bi) > 0),

where
ϕi =

1
2

min
1≤j<k≤m

|| aij | − | aik || .

Thereby, for any matrix B ∈ B(ϕi)

sign qi(t, t′, Ai + Bi) = const.

Consequently, setting

ϕ = min{ϕi : i ∈ Nn},

by definition of the Pareto set we get

∀B ∈ B(ϕ) (Pn(A) = Pn(A + B)).

Hence, inequalities (6) are valid.
Theorem 3 has been proved.
Examples 1 and 5 indicate that lower bound, stated by theorem 3,

is accessible.
Theorem 3 implies

Corollary 4 If, in any row of a matrix A, absolute values of ele-
ments are different in pairs, then the problem Zn(A), n ≥ 1, is stable
and quasistable.

Remark 2. Evidently, that relations (1) and (2) are true for any
norm lk, k ∈ N (not only for l∞). Therefore it is easy to see, that
theorems 1 and 2 hold for a vector lk-extreme trajectorial problem
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with any index k ∈ N, i.e. for any n−criteria problem with partial
criteria

‖ t[Ai] ‖k→ min
t∈T

, i ∈ Nn.

The norms must be the same, i.e. in the space of matrices Rnm it is
also needed to use the norm lk. In partial case, where k = 1, the partial
criteria take the form

∑

j∈N(t)

| aij |→ min
t∈T

, i ∈ Nn,

and in the space of perturbing parameters Rnm we have to assign the
norm l1 :

‖ A ‖1=
n∑

i=1

m∑

j=1

| aij | .
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