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Abstract

We first give a general result about P systems with symbol-
objects, which says that systems with membrane creation with
only one initial membrane can simulate usual systems without
using additional membranes (and this implies as a direct con-
sequence a recent result of Mutyam and Krithivasan), then we
extend the membrane creation feature to P systems with string-
objects and we prove the computational universality of such sys-
tems.

Keywords: Molecular computing, membrane computing, re-
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1 Introduction

P systems [6] are the computability models which abstract from the
way the living cells process chemicals in the compartmental structure
defined by their membranes. Several variants were proved to be com-
putationally complete (see details and references in [7]), many variants
were considered which are able to solve NP-complete problems in poly-
nomial (even linear) time (see, e.g., [3], [5], [7]). One variant having
both these features (when some other ingredients are present, such
as the possibility of controlling the membrane permeability, hence the
communication among compartments) is that which has the possibil-
ity of producing new membranes: recently, in [4], a way to solve the
Hamiltonian Path Problem was given, and a characterization of Tur-
ing computable numbers was found, by P systems with only one initial
membrane and using in total only four membranes.
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We give here a general result, which shows that systems with
symbol-objects without membrane creation, using at most n mem-
branes, can be simulated by systems with membrane creation which
start from one unique membrane and use in total at most n mem-
branes. In this way, the universality result from [4] can be obtained by
combining our result and the result from [1]. Because such a general
result cannot be obtained also for systems with string-objects (unless
we also use string replication), we settle this case in a direct way, by
proving a universality result with a reduced number of membranes.
(This result corresponds to similar results from [8], [1], but instead
of controlling the membrane permeability we use here the membrane
creation.)

2 P Systems: A Short Introduction

We informally introduce here the basic ideas of computing with mem-
branes. For further details the reader is referred to the survey paper [7].
An up-to-date bibliography of the area as well as several downloadable
papers can be found at the web address http://bioinformatics.bio.
disco.unimib.it/psystems.

A P system consists of a membrane structure (usually, represented
graphically by an Euler-Venn diagram and mathematically by a string
of labeled parentheses, indicating the membranes and their relative
position), in the regions of which we have objects; the objects can be
symbols from a given alphabet or strings over a given alphabet. The
objects evolve according to evolution rules, which are also associated
with regions. The objects can also pass through membranes (this op-
eration is called a communication), the membranes can be dissolved or
they can get thicker; in the former case, the objects of the dissolved
membrane are left free in the membrane surrounding it, in the latter
case the communication through the membrane is not allowed (but
the membrane can become permeable at a later step). The evolution
rules are used in the maximally parallel manner, choosing nondeter-
ministically the rules and the objects to which they are applied. In
this way, we get transitions from a configuration of the system to the
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next configuration; a sequence of transitions forms a computation and
with a halting computation we can associate an output, by taking into
consideration the objects (irrespective whether they are symbols or
strings) which leave the system during the computation. Several fur-
ther ingredients can be considered, for instance, concerning the control
of communication, the way of handling membranes, etc, but we refer
to the literature for details.

3 Membrane Creation for P Systems with
Symbol-Objects

We start by a more formal definition of a symbol-object P system. Such
a device (of degree m ≥ 1) is a construct

Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm),

where V is the alphabet of the system, T ⊆ V is the terminal alpha-
bet, µ is a membrane structure with m membranes, injectively labeled
by 1, 2, . . . ,m, and represented by a string of matching parentheses,
w1, . . . , wm are strings over V , representing the multisets of objects ini-
tially present in the regions 1, 2, . . . , m of the system, and R1, . . . , Rm

are finite sets of evolution rules over V associated with the regions
1, 2, . . . , m of µ.

The general form of rules is a → v, where a ∈ V and v is a string of
symbols of the forms (b, here), (b, out), (b, in), with b ∈ V ; the meaning
is that after replacing a with the objects specified by v, these latter ob-
jects remain in the same region, go out of the region, or go to any of the
immediately inner membranes (if any exists, and if they are permeable
at that moment, but we do not enter here into such details), depending
on the associated indication here, out, in, respectively. By using these
rules in the maximally parallel manner (all objects which can evolve
should evolve), we get transitions between system configurations, hence
computations. Because we deal with multisets of objects, the result of a
computation is a number (or a vector of natural numbers). We denote
by N(Π) the set of all numbers computed by Π.
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Besides rules as above, we can also consider rules with catalysts,
that is, of the form ca → cv, where c ∈ V is a catalyst (it is never
changed by using a rule), or for membrane creation. Such a rule is of
the form a → [ iv] i, with a ∈ V, v ∈ V ∗, and i a number from a given
list; the idea is that the object a creates a new membrane, having inside
the objects indicated by v, and with the label i. The label is one from
a given list, so that we know which are the evolution rules associated
with the new membrane.

For a usual system, the important parameter about the membrane
structure is the number of membranes (the degree of the system), while
for systems with membrane creation we have to consider three param-
eters: the number of initial membranes (n1), the maximal number of
membranes simultaneously present in the system (n2) during any suc-
cessful (i.e., halting) computation, and the number of all possible types
of membranes (n3). We say that (n1, n2, n3) is the profile of the system.

The following result, although intuitively easy to prove, has inter-
esting consequences for the study of P systems with membrane creation,
as it makes non-necessary the direct study of the power of such systems.

Theorem 1. Given a P system of degree m, without membrane
creation, one can construct an equivalent P system with membrane cre-
ation, with the profile (1,m, m).

Proof. The idea is that given a system Π =
(V, T, µ, w1, . . . , wm, R1, . . . , Rm), with the membrane structure µ
of height h (there are h levels of membranes, counting both the
external membrane and the elementary membranes), we can construct
an equivalent system Π′, with only one initial membrane, which in the
first phase of a computation constructs the membrane structure µ and
the multisets w1, . . . , wm, by making use of the membrane creation.
This phase takes 2h steps. After completing it, the obtained system is
exactly Π, hence the equivalence is obvious.

Here are a few details of this construction. The initial configura-
tion of Π′ is [1d

(0)
1 ]1 (note that 1 is assumed the label of the external

membrane of Π and that the membranes of Π are assumed labeled in
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a one-to-one manner). To each set Ri, 1 ≤ i ≤ m, we add the following
rules:

d
(j)
i → c

(j+1)
k1

. . . c
(j+1)
ki

e
(j+1)
i , 0 ≤ j ≤ 2h− 1,

e
(j)
i → e

(j+1)
i , 1 ≤ j ≤ 2h− 1,

e
(2h−1)
i → wi,

where k1, . . . , ki are the labels of membranes placed in membrane with
label i (if there is no such a membrane, then the rule becomes d

(j)
i →

e
(j+1)
i ). Moreover, if up(i) is the membrane placed immediately above

membrane i, then in Rup(i) we also add the rules

c
(j)
i → [ id

(j+1)
i ] i, 1 ≤ j ≤ 2h− 1.

The objects d introduce the membrane creating objects c and the coun-
ters e; all these symbols have superscripts indicating the step of the
computation, so that the process lasts exactly as needed, 2h steps,
while both the branching and the creation of membranes is accom-
plished – in the last step one also introduces the multisets wi, . . . , wm

in the corresponding membranes.
The reader can easily see that the obtained system is equivalent to

the initial one, and this is true independently of any other ingredients
used by Π, as the initial sets of rules R1, . . . , Rm were just augmented
with the above mentioned rules. ¤

By combining this result with one of the results from [1], we obtain
the fact that P systems with membrane creation using catalysts and
the membrane permeability control, with one initial membrane and at
most 4 membranes (more precisely, of profile (1, 4, 4)) can generate all
Turing computable sets of vectors of natural numbers, a result which
is proven directly in [4]; actually, also a slight improvement of the
result from [4] is obtained, as weaker target indications are used in
communication (only here, out, in, without commands inj , as used
in [4], which also specify the label of the lower membrane where the
objects are sent).
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4 The Case of String-Objects

So far, the membrane creation feature was not considered for P systems
with string-objects, but it can be introduced in a natural way: consider
rules of the form a → [ iv] i; when rewriting a string w1aw2 by such a
rule we get [ iw1vw2] i, that is, a new membrane with label i containing
the string w1vw2.

In such a framework, the proof of Theorem 1 cannot be extended
to the case of string-objects, because we cannot enforce the creation of
several membranes at the same level (unless if we use more powerful
rules than of the form a → [ iv] i, for instance, for creating two or more
membranes at the same time, or for replicating strings). Because we
want to remain here in the “classic” framework of rewriting P systems,
we leave as an open problem the question of obtaining a general result
as that in Theorem 1 also for this case, and we will directly prove a
universality result for rewriting P systems with membrane creation.

The systems we consider are of the form Π =
(V, T, µ, L1, . . . , Ln, R1, . . . , Rm), where V is the alphabet, T ⊆ V
is the terminal alphabet, µ is the initial membrane structure, of
degree n, L1, . . . , Ln are finite languages over V (strings present in
the initial configuration of the system), and R1, . . . , Rm are finite sets
of context-free rewriting rules over V (the rules associated with the
possible membranes, of types 1, 2, . . . , m; each membrane is identified
with its label, which in this way also identifies the corresponding
rules). The rules are of two basic forms, string evolution rules, and
membrane creation rules: a → v(tar) and a → [ iv] i, respectively,
where a ∈ V, v ∈ V ∗, 1 ≤ i ≤ m, and tar ∈{here, out, in}. The
meaning is that if a string w1aw2 is rewritten, then the string w1vw2

will be placed into the membrane indicated by tar, or to the new
membrane [ i ] i, respectively.

Each string which can be rewritten must be rewritten, but this is
done by only one rule (if there are several strings in a membrane, then
they are processed in parallel (simultaneously), but each of them is
rewritten sequentially, in a context-free manner). The strings which
are sent out of the system during a computation form the language
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L(Π) generated by Π.
In what follows we also allow rules for dissolving a membrane, and

they are of the form a → vδ: after using this rule in a membrane i, the
membrane is dissolved, all its strings (and inner membranes) remain
free in the enclosing membrane; the external membrane of the system
is never dissolved.

We denote by CRP (n1, n2, n3) the family of languages generated
by rewriting P systems with membrane creation, using the communi-
cation commands here, out, in (the indication here is always omitted),
the membrane dissolving action, and of profiles componentwise smaller
than (n1, n2, n3). By RE we denote the family of recursively enumer-
able languages.

Theorem 2. RE = CRP (1, 2, 4).

Proof. We only have to prove the inclusion ⊆, the other one can be
obtained by a straightforward (but long) construction.

We start from the fact that each language in RE can be generated
by a matrix grammar with appearance checking in the strong binary
normal form [2]. Such a grammar is a construct G = (N, T, S, M, F ),
where N, T are disjoint alphabets (the nonterminal and the terminal
alphabet, respectively), N = N1 ∪ N2 ∪ {S, #}, with these three sets
mutually disjoint (S is the axiom of the grammar), F is a set of oc-
currences of rules from M , and M is a finite set of sequences (they are
called matrices) of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,

2. (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,
3. (X → Y, A → #), with X, Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists exactly of
all rules A → # appearing in matrices of type 3; # is a trap-symbol,
because once introduced, it is never removed. A matrix of type 4 is
used only once, in the last step of a derivation.

The derivation starts from S and proceeds by using the matrices
from M ; when using a two-rule matrix, both the two rules should be
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used, possibly skipping the rules from F if their left hand symbols are
not present in the current string (that is why one says that they are
used in the appearance checking mode).

As proved in [2], each recursively enumerable language can be gen-
erated by a matrix grammar as above, with only two symbols A used
in rules of the form A → #.

Take such a grammar G, let B(1), B(2) be the two symbols in N2

for which we have rules of the form B(j) → #, let us assume that
we have k matrices of the form mi : (X → α, A → x), X ∈ N1, α ∈
N1 ∪ {λ}, A ∈ N2, and x ∈ (N2 ∪ T )∗, 1 ≤ i ≤ k (that is, without
rules to be used in the appearance checking manner). The matrices
of the form (X → Y, B(j) → #), X, Y ∈ N1 (that is, with rules used
in the appearance checking manner), are labeled by mi, with i ∈ labj ,
for j = 1, 2, such that lab1, lab2 and lab0 = {1, 2, . . . , k} are mutually
disjoint sets.

We construct the system Π = (V, T, [1 ]1, L1, R1, R2, R3, R4), where

V = N1 ∪N2 ∪ T ∪ {Xi,j | X ∈ N1, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {Ai,j | A ∈ N2, 1 ≤ i, j ≤ k} ∪ {C, f, Z},

L1 = {XA,C}, for (S → XA) being the initial matrix of G,

and with the following sets of rules:

R1: X → [2Xi,i]2, for mi : (X → α, A → x) ∈ M, 1 ≤ i ≤ k,
C → C(in),
Ai,j → Z, for 1 ≤ i, j ≤ k,
Ai,j → Ai,j−1(in), for 1 ≤ i ≤ k, 2 ≤ j ≤ k,
Ai,1 → [4x]4, for mi : (X → α, A → x) ∈ M, 1 ≤ i ≤ k,
f → λ(out),
X → [2+jY ]2+j , for mi : (X → Y, B(j) → #) ∈ M, i ∈ labj , j =
1, 2;

R2: A → [3Ai,i]3, for 1 ≤ i ≤ k,
C → Cδ;

R3: Xi,j → Xi,j−1(out), for 1 ≤ i ≤ k, 2 ≤ j ≤ k,
Xi,1 → Xi,0δ, for 1 ≤ i ≤ k,
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B(1) → Z,
C → C,
C → Cδ;

R4: B(2) → Z,
C → Cδ,
Xi,0 → α, for mi : (X → α,A → x) ∈ M, 1 ≤ i ≤ k,
Xi,j → Z, for 1 ≤ i, j ≤ k.

This system works as follows. Initially, we have two strings, XA
and C, in the unique initial membrane, with label 1. If we start by
using a rule X → [2Xi,i]2, then we will simulate a matrix mi : (X →
α, A → x) ∈ M, 1 ≤ i ≤ k, in the following way. The membrane with
label 2 is created; simultaneously, the rule C → C(in) sends the symbol
C into this membrane. At the next step, in membrane 2 we create a
membrane with label 3, containing a string of the form Xi,iw1Aj,jw2,
and the rule C → Cδ dissolves membrane 2. The symbol C returns to
the external membrane.

In membrane 3 we decrease the second component of the subscript
of X and the string is sent to membrane 1; simultaneously, C is sent
to the inner membrane. In membrane 3 we can use the rule C → C an
arbitrary number of times, or the rule C → Cδ, which dissolves this
membrane. If we dissolve membrane 3 while the string from membrane
1 contains a symbol Aj,k with k ≥ 2, then the only rule which can be
applied here is Aj,k → Z, and the trap-symbol Z is introduced, which
can never be removed, hence no terminal string is obtained. Therefore,
we have not to use the rule C → Cδ, or to use it at the right time, as
specified below.

Assume that membrane 3 exists (we use the rule C → C inside
it), hence in membrane 1 we can use the rule Aj,k → Aj,k−1(in). The
string is sent to membrane 3, where again the second component of the
subscript of X is decreased by one, and the string is sent out. This
process is iterated, thus alternately decreasing the second components
of the subscripts of X and A.

We distinguish three cases:
Case 1: If i < j, hence the rule Xi,1 → Xi,0δ is used in membrane
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3 while the string contains a symbol Aj,k with k ≥ 2, then the rule
Aj,k → Z must be used in membrane 1, hence no terminal string is
obtained.

Case 2: If i > j, hence we use the rule Aj,1 → [4x]4 in membrane
1, having a string of the form Xi,kw1xw2 with k ≥ 1 in membrane 4,
then the only rule from this membrane which can be applied to this
string is Xj,k → Z, and again no terminal string will be obtained.

Case 3: If i = j, then when dissolving membrane 3, in membrane
1 we have a string of the form Xi,0w1Ai,1w2. We use the rule Ai,1 →
[4x]4, and the string Xi,0w1xw2 is introduced in membrane 4. At the
same time, the string-symbol C arrives in membrane 4. In the next step
we use the rules Xi,0 → α and C → Cδ, hence we return to membrane 1
the strings αw1xw2 and C, the first one being the string obtained by a
correct simulation of the matrix mi : (X → α, A → x) ∈ M, 1 ≤ i ≤ k.

If α ∈ N1, then the process can be continued, if α = f , then the
rule f → λ(out) can be used and the string is sent out of the system.
If the string is terminal, then it is accepted in L(Π), otherwise it is
“lost”. (The auxiliary string C remains in the system and cannot be
rewritten, because no inner membrane exists.)

Assume now that we start in the unique membrane 1 by using a rule
X → [2+jY ]2+j , for some j = 1, 2 and mi : (X → Y, B(j) → #), i ∈
labj . This produces a new membrane, containing a string Y w; at the
same time, the string C is sent to the newly generated membrane. In
membrane 2 + j we check whether B(j) is present in the string (in the
positive case the trap-symbol Z is introduced). If no occurrence of
B(j) appears in the string Y w, then it cannot be rewritten, and waits
unchanged. In membrane 3 we can use for a while the rule C → C,
but eventually the rule C → Cδ must be used, otherwise we get no
output. In membrane 4 we have to use the rule C → Cδ immediately.
In both cases, the membranes are dissolved, hence the string Y w is
returned to membrane 1. In this way, the correct use of the matrix mi

was simulated, with its second rule used in the appearance checking
mode.

The process can continue. It is clear that in this way all derivations
in G can be simulated in Π, and that if a terminal string is sent out of
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the system Π, then it can also be generated by the grammar G. That
is, L(G) = L(Π). Because we start from a unique initial membrane, at
each step (of a correct computation) we have at most two membranes
in the system, out of four possible membranes, the profile of Π is
(1, 2, 4), hence the proof is complete. ¤

Note that in the previous result we have not used the membrane
thickness control (as done in [8] and [1]); it remains as an open problem
to see whether by using such a feature one can decrease the profile of the
used system (we conjecture that this is not possible). It also remains
to be investigated the case of P systems with string-objects processed
by other operations than rewriting, for instance, by DNA-like splicing
(splicing P systems can be found in several papers).

We conclude with the remarks that the possibility of creating mem-
branes is not only biochemically motivated, but also interesting from
mathematical points of view; also, it is worth remembering its com-
putational usefulness in solving hard problems in a tractable time, as
shown in [4].
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Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucureşti, Romania
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