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On scalarization of vector discrete problems of
majority choice®

V.A. Emelichev, A.V. Pashkevich

Abstract

A relationship between the set of majority efficient solutions
of a multicriteria problem which has a finite set of vector es-
timators, and solutions of a scalar problem with the objective
being the linear convolution of criteria ore transformed criteria,
is investigated.

1 Introduction

Scalarization of a vector problem is one of the central methods in vec-
tor (multicriteria) optimization. The essence of scalarization consists
in reduction of a vector problem to a scalar one with an aggregated
(generalized) objective which is a convolution of criteria. It is known
that, using the linear convolution of criteria (LCC), one is able to find
the whole Pareto set (the set of efficient solutions) in the multicriteria
problems of linear and convex programming (theorems due to Koop-
mans [1] and Karlin [2]). For the Slater set (the set of weakly efficient
solutions), an analogous result was obtained by Hurwicz [3], Yu [4] and
others; for the properly efficient solutions, it was established by Ge-
offrion [5], Hartley [6], and others. The mentioned results and also a
series of other assertions concerning the conditions of effectiveness and
solvability of the multicriteria problems by the LCC algorithm can be
found in [7-26].
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Note that the linear convolution of transformed criteria and, in
particular, the linear convolution of criteria in degrees [27-30] are used
also to find the Pareto set of vector discrete problems.

The interest to the problem of scalarization is explained by the fact
that reduction of a vector optimization problem to a scalar problem
or a family of scalar optimization problems reveals possibilities to use
scalar optimization methods well developed in vector optimization.

A natural question arises: can all the majority efficient solutions
of a vector discrete problem be found by the LCC method? Such
possibility is investigated in this paper. A necessary and sufficient
condition, under which this problem is solvable by the LCC algorithm,
is indicated. A series of sufficient conditions of a similar solvability is
proposed.

2 Basic concepts

The mathematical formulation of a vector optimization problem as-
sumes that a vector criterion

Yy = (yl(x)qu(x)7 7yn($)) X = an n 22,

on a set of alternatives X is given. Its components, (partial) criteria,
are considered to be minimized without loss of generality
yi(z) = min, i € N,, = {1,2,...,n}.
zeX

We denote by Y the set of vector estimations, i.e. the image of the
set X in the criterial space R"

Y={y=y(z): z€ X} CR".

In this paper, we assume Y to be a finite set containing |Y| > 2
elements. We will consider vector optimization problems out of depen-
dence on the peculiarity of the vector criterion y. Therefore, we will
consider a vector problem

— min
Y e
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which, taking into account the assumption of the finiteness of the set
Y, is natural to call discrete.
The set of efficient solutions (the Pareto set) is defined [7-12] by
the equality
P Y)={yeY: n(y) =0},

where
(y)={y eY:y>y &y#£y}

The set of majority efficient solutions [31-36] is given by the equality
M*(Y)={y €Y : u(y) =0},

where

n
ply) ={y €Y : > sign(y; —y;) > 0},
i=1
and, as usual,
1if z >0,
signz = 0if z =0,
—1ifz <.

It is easy seen that M"(Y) C P"(Y) for any n > 2, moreover,
M?*(Y) = P*(Y). (1)

Note that the Pareto set is always nonempty since the set Y is finite.
However, it does not guarantee the non-emptiness of the set M™(Y)
(see, e.g., [32-36]).

If the set u(y) is written in the form

py)={y' €Y : y=y'},
where the binary relation > in R" is defined by the rule
n
y =1y = Zsign(yi —yi) >0,
i=1

then the possible emptiness of the set M"(Y) can be explained by
the fact that this binary relation is not always transitive for n > 3.
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The famous voting paradox of J.C.Borda [37] and M.Condorcet [38]
is connected with this fact. This paradox concerns XVIII century.
An analysis of the collective choice and individual value proposed in
1952 by K.J.Arrow (see [31]) have become the foundation of a new
axiomatic approach to understanding and investigation of the voting
problem and the mechanism of taking social decisions. Note that the
history of collective choice theory as the science is expounded in [39]
(see also [35]) in detail.

It is evident that the majority relation introduced characterizes the
procedure of making decisions by the majority of voices: a vector y is
“preferred” to a vector y/, if y surpasses 3’ in more components than
y' surpasses y.

From now on we assume that M™(Y) # (.

Following [36], we denote for any vector z = (21, 22, ..., 2p) € R"

k¥ (2) =| Ny (2) |,

k™ (z) =| N, (2) |,
N, (z) ={i € Ny : 2z >0},
N, (z) ={t € N, : z <0},
N2(z) ={i € N, : z =0}.

Therefore, N,F(z) UN,, () UN2(2) = N,.
In this terms, it is easy to give the following equivalent definition
of the majority efficient solutions

MMNY)={yeY: WeY (k (y—y)2kT(y-y)} (2
Here, as usual, a vector difference y — ' denotes the vector (y; —
Y1 Y2 = Y25 Yn = Un)-
Any vector problem (not necessary discrete) is widely known to
satisfy the inclusion [9,10]
AM(Y) € PM(Y), (3)
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where
AMY) = [ AMY ),
AEA,

n
AN (Y, ) = arg min{z ANivi: Yy €Y},
=1

Ap={NeR": Y A\=1,X>0,i€N,}.
=1

The existence of vector discrete problems, for which the inclusion
(3) is strict (see for instance [13-19,21,22]), is established. In that
case, the vector problem of finding the Pareto set is said not solvable
by the LCC algorithm. If A"(Y) = P"(Y), then this problem is called
solvable by the LCC algorithm. The problem of finding the set M™(Y')
is naturally to call solvable by the LCC if M"(Y) C A"(Y). Note that
the relation A™(Y') # () is always valid for the vector discrete problems.

3 Solvability criterion

Let
C"Y)={yeY: {(y) =0},

where
Ey) ={y €convY : y>y' &y #y'},

convY is the convex hull of the set Y in R™. Then the following lemma
is valid.

Lemma 1 [19,20]. C™"(Y) = A™(Y).

Using this lemma, it is easy to prove the next criterion of solvability
by the LCC algorithm of the problem of finding the set M"(Y).

Theorem 1 . M"(Y) C A(Y) < Vy € M"(Y) (£(y) = 0).
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The next example indicates that for n > 3 there exist problems
such that M™(Y) € A™(Y). For these problems there exists a solution
y € M™(Y) such that &(y) # 0.

Example 1. Let Y = {y() 4?) 4GV c R, n > 3,

G ) 2 ifi=1,
YT 8 ifie{2,3,....n)

@ | 7 ifie{l,2},
YioTN 8 ifie{3,4,...n},

(3) _ 2 if1=2,
YT 8 itie{1,3,4,..,n).

It is easy to check that M™"(Y) =Y.
Counsider a vector ¢ with the elements

{5 ifie{1,2},
Y7 8 ifie{3.4,...n).

Since § = %(y(l) + 43), we have § € convY. By the obvious
relations § < y® and § # y®, we obtain § € £(y@), i.e. £(y@) £ 0.
Consequently, by theorem 1, we conclude that M"(Y) ¢ A"(Y) for
n > 3.

Since equality (1) holds in the case of two criteria (n=2), in view
of the result of the work [40], there exist bicriteria discrete problems
such that

MA(Y) € A%(Y).
It is clear that a unique efficient solution (|P™(Y)| = 1) can be
found by the linear convolution, i.e., this solution belongs to the set
A™(Y') that has only one element.

The next example shows that a unique majority efficient solution
(|]M™(Y)| = 1) does not always belong to the set A”(Y).

Example 2. Let n =3, Y = {y(1), 42 4 W1 M = (1,8,8),
Y@ = (8,1.8), y® = (8,8,1), y¥ = (777)
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It is easy to check that M3(Y) = {y}, P3(Y) =Y.

Let § = (%, 13—7, 1?7) Since § = %(y(l) + 9@ + y3)), we see that
§ € convY. Therefore, by the inequalities § < y¥ and § # y¥, we
have § € £(y®). So, £(y®) # 0, and in view of theorem 1, we obtain
y ¢ A3(Y). Consequently, the solution y*) can not be found by the
LCC.

4 Sufficient condition of solvability
As usual, we use the notation
R ={z€R": % >0, i € N,}.
Theorem 2 . Let Y C RY}. If
Vy,y' €Y Vi€ Ny (yi > yi = yi > 2y;), (4)
then M™(Y) C A"(Y).

Proof. Let § = (41,92, -, Un) € M™(Y). Consider a vector A\ with
the components

)\’i: ) IiENna (5)

where

n 7
>z
ZG

1=
' v if i & N (9),
vy=min{y;: y€Y, i€ N (y)} (6)

The existence of the value 7 is guaranteed by the conditions |Y| > 2
and Y C R’}. It is obvious that A € A,,.

We will show that § € A"(Y,A). To do this, let us divide the set Y
into two disjoint subsets

Vi={yeY: N, (§—y)UNJ(§—y) =N},
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Yo={y€Y: Ny(§—y)UNJG—y) # Ny}

It is easy to see that the equation

Db <Y Aii (7)
i=1 i=1

holds for any solution y € Y;.
Let y € Y. It is clear that N,f (§ —y) # 0. The set N, (§ —y) # 0
since §y € M™(Y). Therefore,

n

-y =Y, N@i—w)+ D, N@-—w)  (8)

=1 iENT (9—) JENL (I—y)

Let us evaluate the terms in the right part of this equality.
Taking into account (5), we obtain

>oooXN@i—v) <> Ngi=LkT(g—y). (9)
€N (5-y) €Ny (§~y)
Then let us evaluate the second term of the right part of (8).
Let 5 € N, (§ —y). Then either j € N,f () or 5 & N, (9).
If j € N, (g), then the inequality §; — y; < —g; holds due to
condition (4). Therefore, we get by (5)

Nj(95 —yj) < =Ny = — L.
If j & N,F (7)), then j € N2(). Therefore, in view of (5), we have

X Y,
Ni(05 — i) = =Ny = —Lﬁ- (10)

Since j € N, (¢ —y), it follows that y; > 7; = 0. Consequently,
according to (6), the inequality y; > «y is true. Therefore, the inequality

Aj(95 —y;) < —L

follows from (10) and the obvious inequality L > 0.
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Thus the inequality
Aj(95 —y;) < —L
holds for any index j € N, (y — y). From this, we deduce that

S N —yy) £ Lk (5 —y).
JENT (4—y)

As a result, taking into account (8) and (9), we have

n

D il —yi) <LK (G —y) =k (5 —v)-
i=1

From this, in view of (2) and L > 0, we had checked the correctness
of inequality (7) for y € Y5.

Summarizing what has already been proved, we see that inequal-
ity (7) holds for any solution y € ¥ = Yy UYs, ie. § € A"(Y,)\).
Consequently, M"(Y) C A™(Y).

Theorem 2 is proved.

Taking into account (3), we obtain the next corollary directly from
theorem 2.

Corollary 1 . Let Y C R. If M™(Y) = P"(Y),then condition
(4) is sufficient for the equality M"™(Y') = A"(Y) to be true.

We show that formula (4) is not necessary for the inclusion
M"™(Y) C A™(Y) to be true.

Example 3. Let n = 3, Y = {y1) y@ O 4O = (8 2,8),
y® = (8,8,2), y® = (7,3,3).

That M3(Y) = {y®}, y® € A3(Y, ) where A = (%, %, %) Thus
M3(Y) C A3(Y), but condition (4) is not valid.

Let us show that not any element of a set A" (Y') is majority efficient,
i.e. the including M™(Y) C A™(Y) can be strict.

Example 4. Let Y = {y(1), 4@ 43} c R3, () = (1,1,8), 4@ =
(2,2,2), y® =(8,1,1).
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It is clear that P3(Y) =Y, M3(Y) = {yM,5®}. The inclusion
M3(Y) C A3(Y) follows from theorem 2.
111

Let A = (3, 5, 3)- Then by the obvious inequalities

3 3 3
> AiyZ@) <> Aiyﬁ” => Aiy,(?’),
i—1 i—1 i—1

we conclude that y® € A3(Y,\) C A®(Y). Therefore, y® €
NYN\MP(Y).

Let us show that, in general, theorem 2 does not true for an arbi-
trary set Y C R"™.

Example 5. Let n = 3, Y = {yM) y®@ O y®y 40 =
(—9,—2,—2), 9(2) = (_27_97_2)a y(g) = (_2’_2’_9)7 y(4) =
(—3,-3,-3).

It is easy to check that M3(Y) = {y}, P3(Y) =Y and the set Y
satisfies formula (4).

Let § = (-1, -1, 1) Since j = %(y(l) + 4@ +yB)), we have
§ € convY. Therefore, according to the inequalities § < y®* and
§ #yW, we see that § € &(y¥). Thus £(y™*) # 0. Due to theorem 1,
we conclude that M3(Y) € A3(Y).

The next example indicates that condition (4) of theorem 2, gen-
erally speaking, is not sufficient for any efficient solution to belong to
the set A"(Y').

Example 6. Let n =3, Y = {y(1), 5@,y W} 41 = (1,1,8),
y? = (1,8,1), y® = (8,1,1), y) = (4,4,4).

It is easy to see that P3(Y) =Y and the set Y satisfies the condi-
tions of theorem 2. But, since the vector

- 10 10 10 1
Y= (?7 3 ?) = g(y(l) +y@ +yB)
satisfies the inequalities
§<y® and g #y,
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we obtain § € &(y®), ie., £(y®) # 0. From this, by lemma 1, it
follows that ¥ & A3(Y), but 34 € P3(Y).

Only tightening of the demands to sufficient condition (4) leads to
the aim. Namely, the next theorem holds.

Theorem 3 [28]. Let Y C R%,. For P*(Y) = A™(Y), it is suffi-
cient for the formula

Vy,y' €Y Vi€ Ny (yi > y; = yi > ny;)
to be true.

From theorem 2 and theorem 1 [19], we obtain the following corol-
lary.

Corollary 2 . Under the conditions of theorem 2, the inclusion
M"™(Y) C P(convY)NY
holds.

5 Linear convolution of transformed criteria

As we have established above, some vector discrete problems have ma-
jority efficient solutions that can not be found by the linear convo-
lution of criteria. So it is necessary to use the linear convolution of
transformed criteria, as it was done in [28] for finding Pareto optima.

Let @« > 0, y = (y1,92,..-,Yn). We will consider expressions y[a]
and Y|[a] as the corresponding notations for the vector (y§{,vys, ..., y%)
and the set {z € R": z=yla], ye Y}.

It is clear that Y[a] C R} for Y C RY.

Since the equations

KMy —§) = k¥ (yle] — jla)),
k= (y —9) = k™ (yla] — glal),

hold for any y,§ € Y C R}, according to definition (2), the following
lemma is obvious.
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Lemma 2 . IfY C R, then for any number oo > 0 a solution y
belongs to the set M"™(Y') if and only if y|a] € M"™(Y[a]).

Theorem 4 . Let Y C R'}. If there exists a number
a*:log2/logmin{% >1: y,g€Y, i € Ny}, (11)
Yi

then for any solution g € M™(Y) and any number a > o there exists
a vector X € A\, such that

n n
Z Ayt = min{z ANyt yeYh (12)
i=1 i=1

Thereby, this theorem states that the problem of finding the set
M"™(Y) is solvable by the linear convolution of criteria under the men-
tioned conditions, i.e. M™(Y) C A™(Y). At the same time, this theo-
rem (as the theorem 6 stated below) can be interpreted as a necessary
condition of majority efficiency of a solution in the indicated class of
vector problems.

Proof. Directly from formula (11) we easily obtain

Vo > o Vi € Ny, Vylol, gla] € Yo] (4 > 3" = yi" > 247).
From this, by theorem 2, we obtain
M (Y[a)) € A(V]a]). (13)
Let y € M™(Y). Then, in view of lemma 2, we have z = y[a] €

M"™(Y[a]), i.e., by (13), it follows that z € A"(Y[«]). This mean that
there exists a vector A € A,, such that

n n
Z NiZi = min{z Nizi 1 Z € Y[a]}
i=1 i=1

This equality is equal to (12).
Theorem 4 is proved.
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Remark 1 . Consider the set Y defined in example 4. Then, by

(11), we obtain o =1. Under A= (3,3,3) and o > 1, the relations

are obvious. Therefore, y?) € A3(Y)\M3(Y). Thus the conditions of
theorem 4 are not sufficient for the majority efficiency of a solution.

A necessary addition to this theorem is following.

Theorem 5 . Let Y C R'. If there does not erist number o*
satisfying equation (11), then the problem of finding the set M™(Y) is
solvable by the linear convolution of criteria.

Actually, the number o* does not exists only if
Vy €Y Vie N, (yZ € {Oaa’i})a

where a; > 0,7 € N,. But then the conditions of theorem 2 are hold
for the set Y, and, consequently, M"(Y) C A"(Y).

Note that the results analogous to theorem 4 were obtained in
[27,28] for the vector problems of boolean and discrete programming
respectively, which counsist in finding the Pareto set.

For any number 8 > 0 and any solution y = (y1,¥2,...,yn) € Y, we
put

y(B) = (87, 6%, .., ),

Y{f)={zeR": z=y(B), ye Y}

It is clear that Y (3) C R’} for Y C R}.
It is obvious that the equalities

KMy —§) = k¥ (y(B8) — (B)),
k= (y —9) = k= (y(B) — 5(B))
hold for any solutions y,y € Y. Thus the next lemma is valid.

202



On scalarization of vector discrete ...

Lemma 3 . IfY C R}, then for any number 3> 0 a solution y
belongs to the set M™(Y') if and only if y(B) € M"™ (Y (B)).

Theorem 6 . Let Y C R,
B = 2%, (14)

where
vy=min{y; —9; >0: y,g €Y, i € Np}.

If g € M™(Y), then for any number 3 > B* there exists a vector \ € A,
such that

i A3V = min{i AifYis yeYh (15)
i=1 i=1

Proof. We first note that all the conditions mentioned above (Y C
R’ ,1 < |Y] < o0) are sufficient for the existence of the number vy and
hence for the existence of the number §*.

Further, using formula (14), it is easy to deduce the statement

VB = B Vi€ Ny Vy(B),y(B) € Y(B)
(B > ﬁyl = [Yi > Qﬁyl)
From it, by theorem 2, it follows that
M™(Y(B)) € A"(Y(B)). (16)

Let g € M™(Y). Then, in view of lemma 3, the vector z = g(g) €
M"™(Y(B)). Hence, by (16), we have z € A"(Y(3)). Therefore, there
exists a vector A € A,, such that

i NiZi = min{i ANizj: z € Y(,@)}
=1 =1

This equality is equal to (15).
Theorem 6 is proved.
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Remark 2 . Consider the set Y defined in example 4. Then by
(14) we obtain * = 2. Under the conditions \ = (%, %, %) and 8 > 2,
the relations , 5

3
Z )\Zﬂyg?) < Z )\Zﬂygl) — Z )\Zﬂyg?’)
i=1 1 1=1

1

are obvious. Consequently, y? € A3(Y)\M?(Y), i.c., the conditions
of theorem 6 are not sufficient for the majority efficiency of a solution.

Note that a result that is analogous to theorem 6 was obtained in
[28] for the vector discrete problem of finding the Pareto set.

In conclusion, we note that for the bicriteria discrete problem (n=2)
the next theorem is followed from (1) and corollary 1 [40].

Theorem 7 . The equality M*(Y) = A%(Y) holds if and only if

Vye M*(Y)Vy Y €Y <(y'1 <y <y)&(yy <y2 <yp) =

=
Yl — Y1 Yy — Y

YLy Y2 — Y ‘ >0>_
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