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Numerical measure of strong stability and

strong quasistability in the vector problem

of integer linear programming ∗

V.A. Emelichev Y.V. Nikulin

Abstract

In this paper we consider a vector integer programming prob-
lem with the linear partial criteria. Numerical evaluations of two
types of stability of the Pareto set have been found.

Usually the stability (quasistability) of a vector optimization prob-
lem (see [1-10]) is understood as the property of nonappearance of new
optimal solutions (preservation of initial) under small perturbations of
the problem’s parameters. When we relax these demands we get the
concepts of the strong stability and strong quasistability accordingly
(see definitions below), that were introduced first by V.K. Leontev for
mono-criterion trajectorial problem in [11]. Later lower and upper
bounds (in some cases formulas) for evaluation of radii of the strong
stability and strong quasistability in the vector trajectorial problem of
lexicographic optimization were obtained in [12].

In this paper we consider a vector integer programming problem
with the linear partial criteria. Lower bound of radius of the strong
stability and formula for evaluation of radius of the strong quasistability
have been found for the case where Chebyshev norm was defined in the
space of vector criterion parameters.
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1 Base definitions and properties

Let = [cij ]n×m ∈ Rn×m, n ≥ 1, m ≥ 2. We assign the linear vector
criterion Cx on a bounded set X ⊂ Zm, |X| > 1. Without loss of
generality, suppose that the partial criteria are minimized:

Cix → min
X

, i ∈ Nn = {1, 2, . . . , n}.

Here and henceforth the subscript i at a matrix points to the cor-
responding string of the matrix.

We consider the problem of finding the Pareto set (the set of efficient
solutions) [13]:

P (X, C) = {x ∈ X : π(x, C) = ∅},

π(x,C) = {x′ ∈ X : C(x− x′) ≥ 0, C(x− x′) 6= 0},
0 = (0, 0, . . . , 0) ∈ Rn.

We call this problem the vector problem of integer linear program-
ming and write Zn(X,C).

For n = 1, our problem is the scalar problem of integer linear
programming and P (X, C) is the set of optimal solutions (C is m-
vector).

For any k ∈ N we assign the norm

‖ z ‖= max{|zi| : i ∈ Nk}

in the k-dimensional space Rk and the norm

‖ z ‖∗=
∑

i∈Nk

|zi|

in the space conjugate to Rk.
Let ε > 0. As usually [1-12, 14-18], we will perturb the matrix

C ∈ Rn×m adding it with perturbing matrices of the set

<(ε) = {B ∈ Rn×m : ‖ B ‖< ε}.
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Let B ∈ <(ε). The problem Zn(X,C +B) obtained from the initial
problem Zn(X,C) by addition of matrices C and B is called perturbed,
and the matrix B is called perturbing.

Henceforth we will use the notification

P̄ (X, C) = X\P (X, C).

It is easy to see that the following properties are true.

Property 1 For any solution x ∈ P̄ (X,C) and x′ ∈ P (X, C) there
exists the subscript i ∈ Nn such that the inequality Ci(x − x′) > 0
holds.

Property 2 Let x, x′ ∈ X. Let the inequalities

Ci(x− x′) > 0

hold for any subscript i ∈ Nn. Then x ∈ P̄ (X,C).

Property 3 Let ε > 0, x′ ∈ P (X, C) and the formula

∀ x ∈ P̄ (X,C) ∃ i ∈ Nn ∀ B ∈ <(ε) ((Ci + Bi)(x− x′) > 0)

be true. Then the equality

π(x′, C + B) ∩ P̄ (X, C) = ∅
holds for any perturbing matrix B ∈ <(ε).

Lemma 1 Let i ∈ Nn, x, x′ ∈ X be vectors such that the inequality

Ci(x− x′) > 0

holds. Than the inequality

(Ci + b)(x− x′) > 0

is true for a vector b ∈ Rm satisfying the inequality

Ci(x− x′) >‖ b ‖ ‖ x− x′ ‖∗.
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The proof is easy: using the evident inequality

b(x− x′) ≥ − ‖ b ‖ ‖ x− x′ ‖∗

we obtain

(Ci+b)(x−x′) = Ci(x−x′)+b(x−x′) ≥ Ci(x−x′)− ‖ b ‖ ‖ x− x′ ‖∗ > 0.

2 Strong stability

The stability of optimization problem is usually understood as the prop-
erty of upper and lower semicontinity by Hauzdorf of the optimal map-
ping, i.e. the many-valued mapping that defines the choice function. If
the set of admissible solutions is finite then the property of upper semi-
continity can be replaced by an equivalent property of nonappearance
of new optimal solutions under small perturbations of the problem’s
parameters [1-3,8,10]. The limit of such perturbations is called the
stability radius. When we relax the demand of nonappearance of new
optimal solutions we obtain the notion of radius of the strong stability.

According to [11] the number

ρn(X,C) =
{

supΩ1(X,C), Ω1(X, C) 6= ∅,
0 otherwise,

where

Ω1(X,C) = {ε > 0 : P (X, C + B) ∩ P (X,C) 6= ∅ ∀B ∈ <(ε)},

is called the radius of the strong stability of the vector problen
Zn(X, C).

It is clear that
ρn
0 (X,C) ≤ ρn(X, C), (2.1)

where ρn
0 (X, C) is the stability radius of the problem Zn(X, C) [see 10].

The strong stability radius is infinite in the case P (X, C) = X.
So we exclude this case from the consideration. If the set P̄ (X, C) is
non-empty, then we say that the problem Zn(X, C) is non-trivial.
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By definition, put

φn(X, C) = max
x′∈P (X,C)

min
x∈P̄ (X,C)

max
i∈Nn

Ci(x− x′)
‖ x− x′ ‖∗ ,

κn(X,C) = min
x∈P̄ (X,C)

max
x′∈P (X,C)

max
i∈Nn

Ci(x− x′)
‖ x− x′ ‖∗ .

Theorem 1 Let the problem Zn(X,C), n ≥ 1, be non-trivial. Then
the strong stability radius ρn(X, C) has the following lower bound

ρn(X,C) ≥ φn(X, C) > 0.

If the problem is Boolean (X ⊆ {0, 1}m), then

κn(X,C) ≥ ρn(X, C) ≥ φn(X, C).

Proof. The inequality φ := φn(X,C) > 0 follows from property 1.
Further let us prove that ρn(X, C) ≥ φ. According to definition of

the number φ we get

∃ x′ ∈ P (X, C) ∀ x ∈ P̄ (X, C) ∃ p ∈ Nn
Cp(x− x′)
‖ x− x′ ‖∗ ≥ φ.

So for any perturbing matrix B ∈ <(φ) we have

Cp(x− x′) >‖ Bp ‖ ‖ x− x′ ‖∗ ≥ 0.

Using the lemma, we obtain

(Cp + Bp)(x− x′) > 0 ∀B ∈ <(φ).

Then, according to property 3, we obtain

π(x′, C + B) ∩ P̄ (X, C) = ∅ ∀B ∈ <(φ),

and
P (X, C + B) ∩ P (X,C) 6= ∅ ∀B ∈ <(φ).
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Hence, ρn(X, C) ≥ φn(X,C).
Now let us prove that ρn(X, C) ≤ κ := κn(X,C) under the assump-

tion (X ⊆ {0, 1}m).
Let ε > κ. By definition of the number κ, we obtain

∃ x ∈ P̄ (X, C) ∀ x′ ∈ P (X,C) ∀ i ∈ Nn ε > κ ≥ Ci(x− x′)
‖ x− x′ ‖∗ .

Consider a perturbing matrix B = {bij}n×m ∈ <(ε), obtained by
setting for any subscripts i ∈ Nn, j ∈ Nm

bij =
{

β, if xj = 0,
− β, if xj = 1 ,

where ε > β > κ. Then we obtain

∀i ∈ Nn (Ci + Bi)(x− x′) = Ci(x− x′)− β‖ x− x′ ‖∗ < 0.

Hence π(x, C + B) ∩ P (X, C) = ∅.
Thus, for any ε > κ there exists a perturbating matrix B ∈ <(ε)

such that P (X,C + B) ∩ P (X, C) = ∅, i.e. ρn(X,C) ≤ κn(X,C).
Theorem 1 has been proved.

We say that problem Zn(X, C) is strongly stable, if there exists a
number ε > 0 such that the inequalities

P (X,C + B) ∩ P (X,C) 6= ∅ ∀B ∈ <(ε)

are true, and if ρn(X, C) > 0.
The next corollary follows from theorem 1.

Corollary 1 Any problem Zn(X, C), n ≥ 1, is strongly stable.

From the corollary it follows (see [11]) that any mono-criterion (n =
1) linear trajectorial optimization problem is strongly stable.

The next well-known result [11] follows from theorem 1, theorem 1
from [10] and inequality (2.1).
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Corollary 2 The equality

ρ1
0(X, C) = ρ1(X, C)

holds for any scalar Boolean problem Z1(X, C).

Consider an example that illustrates the attainability of the lower
bound of the strong stability radius.

Example 1. Let n = 2, m = 2, X = {x′ = (1, 2), x′′ =
(2, 1), x′′′ = (2, 3), xIV = (3, 2)},

C =

(
1 2
2 1

)
.

Then P (X,C) = {x′, x′′}, φ2(X,C) = 3
2 .

If 3
2 < β < ε, then P (X, C + B) = {x′′′, xIV }, where

B =

(
−β −β
−β −β

)
.

Hence, we have

∀ ε >
3
2
∃ B ∈ <(ε) (P (X,C + B) ∩ P (X, C) = ∅).

By theorem 1 we obtain ρ2(X,C) = φ2(X,C) = 3
2 .

The following example illustrates that the strong stability radius
ρn(X,C) may be greater than the number φn(X, C).

Example 2. Let n = 2, m = 2, X = {x′ = (2, 4), x′′ =
(4, 2), x′′′ = (2, 5), xIV = (5, 2)},

C =

(
1 1
1 1

)
.

Then P (X,C) = {x′, x′′}, φ2(X,C) = 1
5 .

It is easy to show that ρ2(X, C) = 1.
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3 Strong quasistability

Under the radius of quasistability θn
0 (X, C) of the vector optimization

problem Zn(X, C) (see [3-6, 10]) we understand the limit of indepen-
dent perturbations of the parameters of vector criterion such that all
the optimal solutions of the initial problem preserves their optimality in
a pertubed problem. When we relax the demand of preservation of all
the Pareto optimal solutions, we obtain the notion of radius θn(X,C)
of the strong quasistability of the vector problem Zn(X,C).

Thus,

θn(X,C) =
{

supΩ2(X, C), Ω2(X, C) 6= ∅,
0 otherwise,

where

Ω2(X, C) = {ε > 0 : ∃ x ∈ P (X,C) ∀B ∈ <(ε) (x ∈ P (X, C + B))}.

This type of stability means existing of a stable solution.
It is clear that

θn
0 (X,C) ≤ θn(X, C).

Theorem 2 The strong quasistability radius of the problem Zn(X, C),
n ≥ 1, is expressed by the formula

θn(X,C) = max
x′∈P (X,C)

min
x∈X\{x′}

max
i∈Nn

Ci(x− x′)
‖ x− x′ ‖∗ . (3.1)

Proof. Let ψ denote the right part of equality (3.1). First let us prove
the inequality θn(X, C) ≥ ψ.

For ψ = 0, there is nothing to prove.
Let ψ > 0 and B ∈ <(ψ). Then

∃ x′ ∈ P (X, C) ∀ x ∈ X\{x′} ∃ i ∈ Nn
Ci(x− x′)
‖ x− x′ ‖∗ ≥ ψ >‖ Bi ‖ .
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Hence, using the lemma we have (Ci + Bi)(x − x′) > 0. Thus,
it follows that the solution x′ is Pareto optimal in any perturbated
problem Zn(X, C +B), B ∈ <(ψ). Hence, the inequality θn(X, C) ≥ ψ
is true.

Further let us prove that θn(X,C) ≤ ψ. To make this, it is enough
to prove that

∀ε > ψ ∀x′ ∈ P (X,C) ∃B ∈ <(ε) (x′ ∈ P̄ (X,C + B)). (3.2)

Let ε > ψ, x′ ∈ P (X,C). By definition of the number ψ, there
exists a solution x ∈ X\{x′} such that for any subscript i ∈ Nn the
inequalities

ε > ψ ≥ Ci(x− x′)
‖ x− x′ ‖∗

are true.
Consider a perturbing matrix B = {bij}n×m ∈ <(ε), obtained by

setting for any subscripts i ∈ Nn, j ∈ Nm

bij =
{

β, if xj ≤ x′j ,
− β, if xj > x′j ,

where ε > β > ψ. Then we obtain

(Ci + Bi)(x− x′) = Ci(x− x′)− β‖ x− x′ ‖∗ < 0 ∀i ∈ Nn.

Hence, according to property 2, we get x′ ∈ P̄ (X, C +B). It follows
that formula (3.2) is true, i.e. θn(X,C) ≤ ψ.

Combining it with the inequality θn(X, C) ≥ ψ we obtain the equal-
ity θn(X, C) = ψ.

Theorem 2 has been proved.

It follows from theorem 2 that the strong quasistability radius of
the vector problem Zn(X,C) is always finite.

So in terms of the work [19], the number θn(X,C) is the radius of
stability Kernel of the problem. Formula (see [19]) for evaluation of
this radius follows from theorem 2.

The problem Zn(X, C) is called strongly quasistable, if θn(X,C) >
0.
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Consider the Smale set (i.e. the set of strictly efficient solutions )
[13]:

S(X, C) = {x ∈ X : σ(x,C) = ∅},
where

σ(x,C) = {x′ ∈ X\{x} : C(x− x′) ≥ 0}.
From theorem 2, we obtain

Corollary 3 The vector problem Zn(X, C), n ≥ 1, is strongly qua-
sistable, iff the Smale set S(X, C) is not empty.

In particular, we have

Corollary 4 [11] Monocriterion linear trajectorial problem is strongly
quasistable iff it has a unique optimal solution.

Besides that, from theorem 1 and theorem 2, we obtain

Corollary 5 ρn(X, C) ≥ θn(X, C), i.e. it follows that any strongly
quasistable problem Zn(X, C) is strongly stable.

From theorems 1–2, theorems 1-2 [10] and Corollary 2 we get the
next well-known result

Corollary 6 [11] The formulas

ρ1
0(X,C) = ρ1(X,C) = θ1

0(X, C) = θ1(X,C) > 0

hold for any scalar Boolean problem Z1(X,C) with a unique optimal
solution.
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