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An algorithm for solving the transport problem
on network with concave cost functions of flow
on edges
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Abstract

We study the transport problem on network with concave
cost function of flow on edges. An heuristic algorithm for solv-
ing this problem is proposed, and an implementation for solving
allocation problem is given.

1 Introduction

In this paper we study the transport problem on network with concave
cost functions depending on edges flow. This problem has an impor-
tant implementation for solving the synthesis network problems and
allocation problem. We propose an heuristic algorithm for solving the
problem with concave cost functions on edges of the network which is
based on results from [1]. This algorithm can be used for solving classic
allocation problems.

2 Problem formulation and main results

Let us consider the transport network [2] which has a structure of
directed graph G = (V, E), with vertex set V, |V| = n, and edge set E,
|E| = m. On V a bounded supply and demand functions ¢ : V. — R
are defined. To each edge e from set E a concave function ¢e(z(e)) is
associated which depends on flow z(e) on edge. In addition to each
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arc e € E a communication capacity d(e) and the transportation cost
¢e(z(e)) of flow are given. By [3,4] we have the following definition:

Definition 1: The flow in G = (V, E) is a real function z : £ — R
which satisfies the condition:

> ozle)— D z(e) = q(v), YveV
ecE~(v) ecET(v) (1)
z(e) > 0,YeeE

where E* (v) = {(u,v) | (u,v) € E}, B~ (v) = {(v,u) | (v,u) € E}.
The transport problem on network G with given supply and demand

function ¢ : V. — R and the cost functions ¢.(z(e)) of flow on the

arcs e € IY consists in finding the flow «* which minimizes the function

F(x) =) ¢ela(e)) , (2)

eckE
1.e.

F (") = minf (2) . (3)

Here X represents the set of solutions of the system (1), i.e. X is
a set of admissible flows in G.
In addition to the classical transport model the following constraints

z(e) < d(e),Ve € E (4)

are given, which reflect the admissible capabilities of arcs, where d(e),
Ve € E — the real given numbers. It is known [5] that the problem (1)-
(4) on network G with linear functions ¢¢(z(€)), Ve € E can be reduced
to the problems of the type (1)—(3) for another network G/, which
contains m x n vertexes and 2m arcs [4]. Such method of reducing of
the problem can be used in general case with bounded arcs capabilities.
That is why we shall study the transport problem on network of the
type (1)-(4).

For an arbitrary flow z in G we denote by G, = (V,, E,) the
subgraph of G generated by edges e € E for z(e) > 0, ie. E, =
{e€ E | z(e) > 0}.
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Theorem 1 Let (G, q,®) be an arbitrary network for which a flow
x exists and the following conditions are satisfied:

a. ¢e(x) is a concave function, Ve € E,

b. for any oriented cycle C' with the set of arcs E¢ , the function

e (0) > pelac+0)

eck
s nondecreasing one for every a. > 0; e € E |

Then there exists the optimal flow x* such that the graph G
doesn’t contain directed cycles.

The proof of the theorem is given in [1].

Corollary 1. If ¢(z(e)), Ye € E are strictly concave functions
and the condition a) is satisfied then any optimal flow =* has the prop-
erty that respective graph Gz~ doesn’t contain the cycles.

Corollary 2. If ¢.(z(e)), Ve € E are non-decreasing and concave
functions then there exists the flow x*, for which graph Gg- doesn’t
contain the cycles.

Corollary 3. If |XT| =1, XT = {z € X | q(z) > 0} then for
the concave and increasing functions ¢.(x(e)), Ve € E, there ezists the
flow z* for which graph Gg- has a structure of directed tree with root
To € XT.

Theorem 2 The transport problem on network with concave func-
tion ¢c(x(e)), Ye € E is NP-hard problem.

Proof: Let us assume that for any given a, > 0, ¢ € E, the
functions

, >0
z=0 (5)

a

weta) = { %

are concave and nondecreasing omes. If |[Xt| =1, XT =
{z € X | qg(z) > 0}, then the optimal solution has the property that
the corresponding graph G, has a structure of directed tree with

bl
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Therefore, the transport problem on network in this case be-

came the Steiner tree problem in weighted directed graph, which is
NP—-complete.[]

Here we propose an approximative algorithm for solving the prob-

lem with concave cost function on edges of the networks.

3 Algorithm for solving the nonlinear trans-

and find the optimal solution z

port problem

1. In G we find an admissible flow. For finding of such a flow we
can use the algorithm from [1]. This means that we find values
1%(e), Ve € E which satisfy the conditions:

e€E- e€cE+ (6)
z(e) > 0

{ T )= X %) = qv),YweV

. We find the values F (2°) = > ¢e(2%(e)).
eck

For this we find the values ¢.(z’(e)) and the coefficients C, =
= %?e()e)), Ve € B, z(e) > 0. If 2°(e) = 0 then we set C, =
= F1(0).

. We solve the linear transport problem min — z(z) = ) Cex

ecl
which satisfies the conditions
> ale) = X 2%e) = q(v)
eCk— ecE+ (7)
z(e) > 0

b= (at(er), 2t (e2), 2! (em))-

4. We compare the values z(z') and F(z"). If z(z') < F(z) we
substitute 2 with 2! and pass to point 3. If z(z') > F(2°) then
we consider z¥ the solution of the problem.
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Remark: The algorithm for solving the transport problem can be
used also in the case when the capacities of edges are bounded. In this
case we add the conditions C(e) > z (e) > d(e), Ve € E to (5) and (6).

4 Example

We give an example based on this algorithm. In the figure we have a
graph which represents a transport problem on network with concave
cost functions on the edges.

e

E1 E4

Ea

E2 E5

Figure 1

The costs on edges are described by the functions:

ba={ 7 1 I5]

, x>1
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defined on the edges e, e3,e5 and

2¢ , <2
¢e2(x)={ 2, z>2

defined on the edges es, e4.
We take ¢(1) = —4, q(2) = 0, ¢(3) = 0, ¢(4) = 4 and the flow
19 (e) = (2,2,0,2,2).
First of all we find the values:
be, (2) =1, ¢, (2) =4, ¢63 (2) =0, ¢e, (2) =4, ¢€5 (2) =1=
( 0) _¢61( )+¢62( )+¢63( )+¢64( )+¢65( )_10'
We find the coefficients C? = de(27(c) . CU de (@(e)) _ %, Co =

z0(e) 900(6)0 €2
¢eza:(0(ege)) =2, Cgs =0, C34 = ¢e§:((’(e()6)) =2, Cgs = ¢65$(Oaze§e)) = %7 then

= (5:2,0.2,3)
We solve the linear transport problem min — z(z) = Y. C% =

% T1 + 229 + 2x4 + a:5 which satisfies the conditions (6) and obtain
z! (e) = (4,0,0,4,0) and respectively z(z!) = 10.

Since z(z!) = F(2°) then z° is the solution. Then we pass to
point 2.

We find the values:
¢61 (4) =1, ¢62 (0) =0, ¢63 (0) =0, ¢64 (4) =1, ¢65 (0) =0=
F(2') = ¢ey (4) + bey (0) + ey (0) + ey (4) + ey (0) = 2.

We find the coefficients C} = ¢6i1(())) Ccl = ¢elx(1( g N =1 CL =

FLO0) =2, CL = FLy(0) =1, €L = Pl — 1 ol = L (0) =2,
then ¢! = (1,2,1,1,2)
We solve the linear transport problem min — z(z) = Y. Cla =
eck

1214 229+ 23+ 124 + 225 which satisfies the conditions (6) and obtain
22 (e) = (0,4,0,0,4) and respectively z(z?) = 16.

Since z(z?) > F(x!) then we consider z! as optimal solution of the
problem. [
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