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On enhanced time-varying distributed H

systems

Sergey Verlan

Abstract

An enhanced time-varying distributed H system (ETVDH
system) is a slightly different definition of the time-varying dis-
tributed H system (TVDH system) [9] and it was proposed by
M. Margenstern and Yu. Rogozhin in [4] under the name of “ex-
tended time-varying distributed H system”. The main difference
is that the components of the ETVDH system are H systems
and therefore splicing rules may be applied more than once as it
is done in TVDH systems. This leads to difficulties in investi-
gating the behavior of such systems because they have a higher
level of parallelism. It is proved that ETVDH systems of degree
2 (i.e. with 2 components) generate all recursively enumerable
languages in a sequential way [7] and that ETVDH systems of
degree 4 generate all recursively enumerable languages in a “par-
allel” way, modelling a formal type-0 grammar [11]. In this paper
we improve the last result and we present an ETVDH system
of degree 3 which generates all recursively enumerable languages
modelling type-0 formal grammars. The problem of the existence
of ETVDH systems of degree 2 which generate all recursively enu-
merable languages in a “parallel” way is left open.

1 Introduction

Head splicing systems (H systems) were the first theoretical model of
biomolecular computing (DNA-computing) and they were introduced
by T. Head. [2, 3]. Inspired from biology this model is a mathemat-
ical formalisation of some biological processes which may be used to
perform computations.

c©2002 by S. Verlan

263



S. Verlan

The molecules from biology are replaced by words over a finite al-
phabet and the chemical reactions are replaced by a splicing operation.
An H system specifies a set of rules used to perform splicing and a set
of initial words or axioms. The computation is done by applying iter-
atively the rules to the set of words which we have until no more new
words can be generated. This corresponds to a bio-chemical experiment
where we have enzymes (splicing rules) and initial molecules (axioms)
which are put together in a tube and we wait until the reaction stops.

Unfortunately H systems are not very powerful and a lot of other
models introducing additional control elements were proposed. One of
these well-known models is time-varying distributed H system (TVDH
systems) recently introduced in [9] as another theoretical model of
biomolecular computing, based on splicing operations. This model in-
troduces components, which cannot all be used at the same time but
one after another, periodically.

This aims at giving an account of real biochemical reactions where
the work of enzymes essentially depends on the environment conditions.
In particular, at any moment, only a subset of all available rules is in
action. If the environment is periodically changed, then the active
enzymes change also periodically.

One of the important features of TVDH systems is that we ap-
ply rules of a particular component to the molecules which we have
only once and only the result of this application is passed to the next
component.

We can take off this condition and we can permit an iterative appli-
cation of rules of the same component to the molecules being already
generated in a similar way as it is done in H systems. This leads to a
higher degree of parallelism compared to TVDH systems because inside
each component the splicing rules may be iteratively applied to copies
of the molecules already generated.

The obtained model was first considered by M. Margenstern and
Yu. Rogozhin in [4]. Originally it was called “extended time-varying
distributed H systems”. This name was later changed to “enhanced
time-varying distributed H systems”.
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Now it is interesting to prove similar universality results as it is
done for the case of TVDH systems: TVDH systems of degree 1 gener-
ate all recursively enumerable languages in a sequential way modelling
Turing machines [6] and TVDH systems of degree 2 generate all re-
cursively enumerable languages in a “parallel” way, modelling type-0
formal grammars [8].

Let us clarify some points.
Recall that a sequential process is defined by the presence of a clock

and by actions which are performed in such a way that at most one
action is performed at each top of the clock. It is plain that a deter-
ministic Turing machine performs a sequential computation. In [6], the
proof consists namely in simulating such a deterministic machine and
so, it is a sequential computation, not a parallel one.

By contrast, a parallel computation is performed by several pro-
cesses which either produce actions independently of any clock or, pro-
duce them at each top of a clock: in this case, it is possible that several
processes perform an action at the same top of the clock and that
the performed actions are different from one another. When the pro-
cesses perform their actions at the tops of the same clock, we speak
of a synchronised parallel computation. According to these definitions,
a sequential computation is a very particular case of a synchronised
parallel computation.

The rules of a type-0 grammar may contain several times the same
non-terminal symbol in their right part. Accordingly, the description
of all possible computations starting from the axiom leads to a tree,
whose branches are the different possible computations. Now, it is not
needed that, when a branch is followed by some process, the clock of
this process be the same as the clock of another one which is defined
by another process. And so, we can see the simulation of any type-0
formal grammar as a good criterion for a parallel computation.

For ETVDH systems the following results are obtained: ETVDH
systems with one component may produce only regular languages [4],
ETVDH systems of degree 2 generate all recursively enumerable lan-
guages in a sequential way [7] and ETVDH systems of degree 4 generate
all recursively enumerable languages in a “parallel” way [11].
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In this paper we improve the last result and we show that ETVDH
systems of degree 3 generate all recursively enumerable languages in a
“parallel” way modelling type-0 formal grammars.

The problem of the existence of “parallel” ETVDH systems of de-
gree 2 which generate any recursively enumerable languages is left open.

This result was presented at the DNA8 conference held on June
10-13, 2002 in Sapporo, Japan, and it was published as an abstract in
the conference preproceedings [12]. Here we present the full version of
the paper.

2 Basic definitions

We recall some notions. An alphabet V is a finite, non-empty set whose
elements are called letters. A word (over some alphabet V ) is a finite
(possibly empty) concatenation of letters (from V ). The empty con-
catenations of letters is also called the empty word and is denoted by
ε. The set of all words over V is denoted by V ∗. A language (over V )
is a set of words (over V ).

A formal grammar G is a tuple G = (N,T, P, S) of an alphabet N
of so-called non-terminal letters, an alphabet T of so-called terminal
letters, with N ∩ T = ∅, an initial letter S from N , and a finite set P
of rules of the form u → v with u, v ∈ (N ∪T )∗ and u contains at least
one letter from N . Any rule u → v ∈ P is a substitution rule allowing
to substitute any occurrence of u in some word w by v.

Formally, we write w ⇒G w′ if there is a rule u → v in P and words
w1, w2 ∈ (N ∪ T )∗ with w = w1uw2 and w′ = w1vw2. We denote by
⇒∗

G the reflexive and transitive closure of ⇒. I.e., w ⇒∗
G w′ means

that there is an integer n and words w1, . . . , wn with w = w1, w
′ = wn

and wi ⇒G wi+1 for all i, 1 ≤ i < n.
The sequence w1 ⇒ w2 ⇒ · · · ⇒ wn is also called a computation

(from w1 to wn of length n− 1). A terminal word is a word in T ∗; all
terminal words computable from the initial letter S form the language
L(G) generated by G. More formally, L(G) def= {w ∈ T ∗; S ⇒∗ w}.

An (abstract) molecule is simply a word over some alphabet. A
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splicing rule (over alphabet V ), is a quadruple (u1, u2, u
′
1, u

′
2) of words

u1, u2, u
′
1, u

′
2 ∈ V ∗, which is often written in a two dimensional way as

follows:
u1 u2

u′1 u′2
.

A splicing rule r = (u1, u2, u
′
1, u

′
2) is applicable to two molecules

m1, m2 if there are words w1, w2, w
′
1, w

′
2 ∈ V ∗ with m1 = w1u1u2w2

and m2 = w′1u
′
1u
′
2w

′
2, and produces two new molecules m′

1 = w1u1u
′
2w

′
2

and m′
2 = w′1u

′
1u2w2. In this case, we also write (m1,m2) `r (m′

1,m
′
2).

A pair h = (V, R), where V is an alphabet and R is a finite set of
splicing rules, is called an splicing scheme or an H scheme.

For an H scheme h = (V, R) and a language L ⊆ V ∗ we define:
σh(L) = σ(V,R)(L) def= {w, w′ ∈ V ∗|∃w1, w2 ∈ L : ∃r ∈ R : (w1, w2) `r

(w, w′)}.
A Head-splicing-system [2, 3], or H system, is a construct:
H = (h,A) = ((V, R), A) of an alphabet V , a set A ⊆ V ∗ of initial

molecules over V , the axioms, and a set R ⊆ V ∗ × V ∗ × V ∗ × V ∗ of
splicing rules. H is called finite if A and R are finite sets. For any H
scheme h and language L ∈ V ∗ we define:

σ0
h(L) = L,

σi+1
h (L) = σi

h(L) ∪ σh(σi
h(L)),

σ∗h(L) = ∪i≥0σ
i
h(L).

The language generated by H system H is:
L(H) def= σ∗h(A).
Thus, the language generated by H system H is the set of all

molecules that can be generated in H starting with A as initial mole-
cules by iteratively applying splicing rules to copies of the molecules
already generated.

We define the operation σ̃h(L) as follows [4]:

σ̃h(L) = σ̃h(L′ ∪ L′′) def= σ∗h(L′), where
L′ = {w1 ∈ L|∃w2 ∈ L : ∃w,w′ ∈ V ∗ : ∃r ∈ R : (w1, w2) `r (w, w′)

or (w2, w1) `r (w,w′)}, L′′ = L \ L′, and h = (V,R).
(We note that every language L ⊆ V ∗ for every H scheme h can be

split recursively into two subsets L′ and L′′).
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So, in order to obtain σ̃h(L) we take the molecules from L which
may enter a splicing rule from h (L′) and after that we apply σ∗h to this
set and we obtain all possible iterated splicings of these molecules as
well as the original molecules (from L′) as a result.

Enhanced time-varying distributed H system [4] (of degree n, n ≥ 1),
(ETVDH system) is a construct:

E = (V, T, A, R1, R2, . . . , Rn),

where V is an alphabet, T ⊆ V is the terminal alphabet, A ⊆ V ∗ is the
finite set of axioms, Ri are components, i.e. finite sets of splicing rules
over V, 1 ≤ i ≤ n.

At each moment k = n · j + i, for j ≥ 0, 1 ≤ i ≤ n, only component
Ri is used for splicing the currently available strings.

L1 = A,
Lk+1 = σ̃hi(Lk), for i ≡ k(mod n), k ≥ 1, 1 ≤ i ≤ n, hi = (V, Ri).

So the components Ri, 1 ≤ i ≤ n, of a ETVDH system of degree n
first apply a filter to their contents, i.e. eliminate the molecules which
can not enter a splicing rule, and after that they work as corresponding
H systems.

We say that a component Ri of a ETVDH system rejects the word
w if w cannot enter any splicing rule from Ri. In this case we write
w ↑Ri . We may omit Ri if the context allows us to do so.

The language generated by E is:

L(E) = (∪k≥1Lk) ∩ T ∗.

3 ETVDH systems of degree 3

Theorem For any type-0 formal grammar G = (N, T, P, S) there
is an ETVDH system EG = (V, T, A,R1, R2, R3) of degree 3 which
simulates G, i.e. L(G) = L(EG).

In order to prove the theorem we shall prove the following inclusions:
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(i) L(G) ⊆ L(EG) and
(ii) L(G) ⊇ L(EG).

It seems that (i) is the most difficult part of the demonstration and
we will focus our attention on it.

We define EG = (V, T,A, R1, R2, R3) as follows.
Let N ∪ T ∪ {B} = {a1, a2, . . . , an} (B = an).
In what follows we will assume the following:

1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, 2 ≤ l ≤ n, 1 ≤ k ≤ 5,a ∈ N ∪ T ∪ {B}.
Alphabet: V = N ∪T ∪{B}∪{X,Y, Xi, Yi, X

′
i, Y

′
i , X ′′

j , Y ′′
j , X ′, Y ′,

X ′′, Y ′′, X ′′′, Y ′′′, Y IV , Z, ZE , C, C1, C2, D, D1, D2, Z
k
E}

The terminal alphabet T is the same as for the formal grammar G.
Axioms: A = {XSBY, X ′

iZ
3
E , Z4

EY ′
i , ZYi, X

′′Z,ZY IV ,
XiaiZ, ZY ′′

j , X ′Z, ZY ′, XjZ,ZY, ZY ′′′, XZ, X ′′
j Z,ZY ′′, X ′′′Z,ZY,

CZk
E , CZE , Zk

ED,ZED, C2Z
′′, D2, Z

′C1, D1} ∪ {ZvY : ∃u → v ∈ P}
Component R1:

1.1 :
ε uY
Z vY

, ∃u → v ∈ P ; 1.2 :
ε aiY
Z Yi

; 1.3 :
Xi a
X ′

i ZE
;

1.4 :
a Y ′′

j

Z Yj
; 1.5 :

X ′ a
X ′′ Z

; 1.6 :
a Y ′′′

Z Y IV ;

1.7 :
X ′

i ZE

C Z1
E

; 1.8 :
X ′

i Z3
E

C Z4
E

; 1.9 :
Z1

E Y ′
i

Z2
E D

;

1.10 :
Z4

E Y ′
i

Z5
E D

; 1.11 :
Z ′ C1

D1 ε
;

Component R2:

2.1 :
X a

Xiai Z
; 2.2 :

a Y ′
l

Z Y ′′
l−1

; 2.3 :
X ′

1 a
X ′ Z

; 2.4 :
a Y ′

1

Z Y ′ ;

2.5 :
X ′′

j a
Xj Z

; 2.6 :
a Y ′′

Z Y ′′′ ; 2.7 :
a BY ′′

Z ′ ε
; 2.8 :

X ′′′ a
X Z

;

2.9 :
X ′

i Z1
E

C Z2
E

; 2.10 :
X ′

i Z4
E

C Z5
E

;

2.11 :
Z2

E Y ′
i

Z3
E D

; 2.12 :
Z5

E Y ′
i

ZE D
; 2.13 :

C2 Z ′′

ε D2
;
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Component R3:

3.1 :
a Yi

ZE Y ′
i

; 3.2 :
X ′

l a
X ′′

l−1 Z
; 3.3 :

a Y ′

Z Y ′′ ; 3.4 :
X ′′ a
X ′′′ Z

;

3.5 :
X ′′ a
ε Z ′′

; 3.6 :
a Y IV

Z Y
;

3.7 :
X ′

i Z2
E

C Z3
E

; 3.8 :
X ′

i Z5
E

C ZE
; 3.9 :

ZE Y ′
i

Z1
E D

; 3.10 :
Z3

E Y ′
i

Z4
E D

;

Note

Each component contains also rules
α ε

α ε
for all axioms α except

XSBY , XiZ
3
E and Z4

EYi.

Proof of (i)

Notations

We shall use the following notation:
w1 w2

w′1 w′2
`r

w1w
′
2
∗

w′1w2
, w1w2

where ∗ indicates a possible occurrence of ↑. In the left part an appli-
cation of the rule r on w1w2 and w′1w

′
2 is indicated and the right part

contains the resulting two molecules w1w
′
2 and w′1w2. We will use also

the following convention: the upper part on both sides will contain the
molecules we are interested in and the lower part will contain either an
axiom or a molecule containing Z and which does not alter the further
computation. The ↑ indicates the rejection of the considered molecule
by the next component as defined above. The optional term of the right
side in the formula, w1w2, is omitted if that molecule, which in princi-
ple enters the next component, is rejected by the next component. In
the other case it is written.

“Rotate-and-simulate” method

The system uses the method of words rotation [1, 10]. Let us recall
them briefly. For any word w = w′w′′ ∈ (N ∪T )∗ of a formal grammar
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G the word Xw′′Bw′Y (X, Y,B /∈ N ∪ T ) of the ETVDH system EG,
is called a “rotation version” of the word w. The system EG models
the formal grammar G as follows. It rotates the word Xw1uw2BY into

Xw2Bw1uY and applies a splicing rule
ε uY

Z vY
. So we model the

application of a rule u → v of formal grammar G by a single scheme-
rule. EG rotates the word XwaiY (ai ∈ (N ∪ T ∪ {B}) “symbol by
symbol”, i.e., the word XaiwY will be obtained after some steps of
working of the system EG.

The rotation technique is as follows [4, 10]. We start with the word
XwaiY in component R1. Component R2 receives the word XwYi from
component R1. Component R3 receives words XjajwYi (1 ≤ j ≤ n)
from component R2. After that point the system works in a cycle where
indexes i and j decrease. If j 6= i, then the words with these indexes
are eliminated. When i = j we get the word X1aiwY1 after some steps.
After this we obtain the word XaiwY (so we rotated the word XwaiY )
and the word aiw

′ (if aiw = aiw
′B) as possible result.

The system is made in a such way that molecules X ′
iZE appear in

the first component only during an even step of computation. This
means that if we have these molecules in the first component then
the next time that we will be in this component (in 3 steps) these
molecules (X ′

iZE) will no more exist. This is a very important feature
of the system and it permits a correct simulation to be performed. A
similar thing happens for molecules ZEY ′

i . They appear in the third
component only if we are in the odd step.

The molecule Z ′ is produced in the first component and it appears
only in the second component and the molecule Z ′′ is produced in the
second component and it appears only in the third.

Computation

The computation follows the flow-chart shown in the figure 1. The
vertices of the flow-chart show a configuration of molecules during the
computation. We enumerate all configurations and their numbers are in
the upper right corner. In configurations, w is treated as a variable, and
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it may have different values in different configurations. For example, if
in configuration 14 w is equal to w′ai then in configuration 15 w may
be w′. We will show that the computation follows the flow-chart i.e. all
molecules produced from one configuration will be eliminated except
molecules from the next configuration.

Because the length of both cycles is an even number we have the
same parity of the computation step for all molecules in a particular
configuration. Additionally it is easy to check that molecules from a
configuration always arrive into the component with the same number.
So we can say that each configuration has a component number and a
parity of the step number associated with it.

X ′′′wY IV

²²

12

X ′′′wY ′′′oo
11

X ′′wY ′′′oo
10

w

XwY IV

²²

13

X ′′wY ′′

OO

9

// X ′′w

OO

Start +3 XwY

²²

14

X ′′′wY
±±

ss

X ′wY ′′

OO

8

XwYi

²²

15

X ′wY ′

OO

7

XjwYi

1

// XjwY ′
i

2

// X ′
jwY ′

i

OO

²²

3

X ′′
j−1wYi−1

OO

6

X ′′
j−1wY ′′

i−1
oo

5

X ′
jwY ′′

i−1
oo

4

Figure 1:The flow-chart of the computation

Because we deal with an ETVDH system, there are two types of
molecules which pass to the next step: the generated molecules and the
molecules which generated them. We will show that the last ones will
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be generally eliminated during the next step (including other molecules
that may be produced from them during this next step) and we will
discuss in detail other cases in order to show that we perform a correct
simulation.

We will show several steps of the computation and after that we
will discuss each configuration in detail.

We start with the word XwY = Xw′aiY, 1 ≤ i ≤ n.
Xw′ aiY

Z Yi
`1.2

Xw′Yi

ZaiY
, Xw′aiY

So Xw′aiY and Xw′Yi go to the next component.
We consider the evolution of Xw′aiY :

X w′aiY

Xkak Z
`2.1

Xkakw
′aiY ↑

XZ
, k ∈ {1, . . . , n}

So it does not produce any new molecules. For Xw′Yi we have:
X w′Yi

Xkak Z
`2.1

Xkakw
′Yi

XZ
, Xw′Yi , k ∈ {1, . . . , n}

So Xw′Yi and Xkakw
′Yi go to the next component.

We are on an odd step. So ZEY ′
i exist and we may apply the

following rule:
Xw′ Yi

ZE Y ′
i

`3.1
Xw′Y ′

i ↑
ZEYi

So, there is no further evolution of Xw′Yi. For Xkakw
′Yi we get:

Xkakw
′ Yi

ZE Y ′
i

`3.1
Xkakw

′Y ′
i

ZEYi

So Xkakw
′Yi and Xkakw

′Y ′
i go to the next component.

And so on. . .
Now we will discuss each configuration and we will group configu-

rations which have the same behavior.

Group 1 Configurations 4, 5, 6, 7, 11, 13, 15 (plain).
We will discuss in detail configuration 5.

X ′′
j−1w Y ′′

i−1

Z Yi−1
`1.4

X ′′
j−1wYi−1

ZY ′′
i−1

, X ′′
j−1wY ′′

i−1 , 2 ≤ i, j ≤ n

The molecule X ′′
j−1wYi−1 is in configuration 6.

The molecule X ′′
j−1wY ′′

i−1 will be eliminated during the next step.
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X ′′
j−1 wY ′′

i−1

Xj−1 Z
`2.5

Xj−1wY ′′
i−1 ↑

X ′′
j−1Z

Group 2 Configuration 14 (u → v).
We may perform computations which are similar to the group 1.

We may also apply the rule 1.1 thus we model the application of the
rule u → v of G.

Group 3 Configurations 8 and 10 (Z ′, Z ′′).
We may perform computations which are similar to the group 1. We

may also apply the rule 2.7 (3.5 respectively) but this leads to nothing.
The detailed computation of this application for configuration 10 is:

X ′′ wY ′′′

ε Z ′′
`3.5

wY ′′′

X ′′Z ′′
, X ′′wY ′′′

X ′′w Y ′′′

Z Y IV `1.6
X ′′wY IV ↑

ZY ′′′

w Y ′′′

Z Y IV `1.6
wY IV ↑
ZY ′′′

Group 4 Configuration 9 (branch to result).
We may perform computations which are similar to the group 3.

We may also apply rules 2.7 and 3.5 consecutively. Thus we may obtain
the result w if w ∈ T ∗.

X ′′w′′ BY ′′

Z ′ ε
`2.7

X ′′w′′

Z ′BY ′′ , X ′′w′′BY ′′

X ′′ w

ε Z ′′
`3.5

w ↑
X ′′Z ′′

Group 5 Configurations 1 and 2 (junk).
We may perform computations which are similar to the group 1.

We may also have the following computation (for configuration 1):
X1w Yi

ZE Y ′
i

`3.1
X1wY ′

i

ZEYi
, X1wYi , 1 ≤ i ≤ n
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The molecule X1wY ′
i is in configuration 2.

X1 wYi

X ′
1 ZE

`1.3
X ′

1wYi

X1ZE

This is one of the cases when the generating molecule produce a
molecule which is not eliminated immediately.

X ′
1 wYi

X ′ Z
`2.3

X ′wYi ↑
X ′

1Z

The molecules X ′
1wYi and X ′wYi are rejected by the next compo-

nent because we can not apply the rule 3.1 as the next step is an even
step and the molecules ZEY ′

i do not exist.
And for configuration 2:

Xk wY ′
1

X ′
k ZE

`1.3
X ′

kwY ′
1

XkZE
, XkwY ′

1 , 1 ≤ k ≤ n

The molecule X ′
kwY ′

1 is in configuration 3.
Xkw Y ′

1

Z Y ′ `2.4
XkwY ′

ZY ′
1

Xkw Y ′

Z Y ′′ `3.3
XkwY ′′ ↑

ZY ′

The molecules XkwY ′ and XkwY ′′ are rejected by the next compo-
nent because we can not apply the rule 1.3 as the next step is an odd
step and the molecules X ′

iZE do not exist.

Group 6 Configuration 3 (choice).
There are 4 cases depending on the value of i and j with respect to 1:

a) X ′
jwY ′

1 , b) X ′
1wY ′

i , c) X ′
1wY ′

1 , d) X ′
jwY ′

i , 2 ≤ i, j ≤ n

a) X′
jwY′

1 case.

X ′
jw Y ′

1

Z Y ′ `2.4
X ′

jwY ′

ZY ′
1

, X ′
jwY ′

1

X ′
j wY ′

1

X ′′
j−1 Z

`3.2
X ′′

j−1wY ′
1 ↑

X ′
jZ
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For the molecule X ′
jwY ′ we may apply two rules, namely 3.2 and

3.3. We get the following:
X ′

jw Y ′

Z Y ′′ `3.3
X ′

jwY ′′ ↑
ZY ′′

X ′
j wY ′

X ′′
j−1 Z

`3.2
X ′′

j−1wY ′ ↑
X ′

jZ
We may apply one more time the rules 3.3 and 3.2 to the molecules

from the previous two lines and we get the following:
X ′′

j−1w Y ′

Z Y ′′ `3.3
X ′′

j−1wY ′′ ↑
ZY ′

So this computation does not lead to new results.
b) X′

1wY′
i case.

For the molecule X ′
1wY ′

i we may apply two rules, namely 2.2 and
2.3. We get the following:

X ′
1w Y ′

i

Z Y ′′
i−1

`2.2
X ′

1wY ′′
i−1 ↑

ZY ′
i

X ′
1 wY ′

i

X ′ Z
`2.3

X ′wY ′
i ↑

X ′
1Z

We may apply one more time the rules 2.3 and 2.2 to the molecules
from the previous two lines and we get the following:

X ′w Y ′
i

Z Y ′′
i−1

`2.2
X ′wY ′′

i−1 ↑
ZY ′

i
So this computation does not lead to new results.
c) X′

1wY′
1 case.

For the molecule X ′
1wY ′

1 we may apply two rules, namely 2.4 and
2.3. We get the following:

X ′
1w Y ′

1

Z Y ′ `2.4
X ′

1wY ′

ZY ′
1

X ′
1 wY ′

1

X ′ Z
`2.3

X ′wY ′
1 ↑

X ′
1Z

We may apply one more time the rules 2.3 and 2.4 to the molecules
from the previous two lines and we get the following:

X ′
1 wY ′

X ′ Z
`2.3

X′wY′

X ′
1Z

, X ′
1wY ′

The molecule X ′wY ′ is in configuration 7.
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X ′
1w Y ′

Z Y ′′ `3.3
X ′

1wY ′′ ↑
ZY ′

d) X′
jwY′

i, i, j > 1 case.
X ′

kw Y ′
i

Z Y ′′
i−1

`2.2
X′

kwY′′
i−1

ZY ′
i

, X ′
kwY ′

i

The molecule X ′
kwY ′′

i−1 is in configuration 4.
X ′

k wY ′
i

X ′′
k−1 Z

`3.2
X ′′

k−1wY ′
i ↑

X ′
kZ

Group 7 Configuration 12 (parallel branch).
X ′′′ wY IV

X Z
`2.8

XwY IV

X ′′′Z
, X ′′′wY IV

The molecule XwY IV is in configuration 13.
X ′′′w Y IV

Z Y
`3.6

X ′′′wY

ZY IV

X ′′′w′ aiY

Z Yi
`1.2

X ′′′w′Yi

ZaiY
, X ′′′w′aiY , 1 ≤ i ≤ n

X ′′′ wY

X Z
`2.8

XwY

X ′′′Z
X ′′′ w′Yi

X Z
`2.8

Xw′Yi

X ′′′Z
The molecules obtained XwY and Xw′Yi are the same to those

obtained following the flow-chart. So they already exist during this
step.

X ′′′w′ Yi

ZE Y ′
i

`3.1
X ′′′w′Y ′

i ↑
ZEYi

Proof of (ii)

The proof follows directly from the construction of the system. We can
see that EG correctly simulates the rule u → v ∈ P using rotation and
the rule 1.1 as described before. The letters X, Y and B are removed
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only when we have B at the end of the word. This means that we
use the right “rotational variant” of the word in order to obtain the
corresponding terminal string. So, if w ∈ L(EG) then w ∈ L(G). ¤
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