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Abstract

We consider security of some flexible ciphers against differen-
tial fault analysis (DFA). We present a description of the fault-
based attack on two kinds of the flexible ciphers. The first kind
is represented by the fast software-oriented cipher based on data-
dependent subkey selection (DDSS), in which flexibility corre-
sponds to the use of key-dependent operations. The second kind
is represented by a DES-like cryptosystem GOST with secrete
S-boxes. In general, the use of some secrete operations and pro-
cedures contributes to the security of the cryptosystem, however
degree of this contribution depends significantly on the struc-
ture of the encryption mechanism. It is shown how to attack
the DDSS-based flexible cipher using DFA though this cipher
is secure against standard variants of the differential and linear
cryptanalysis. We also give an outline of ciphers RC5 and GOST
showing that they are also insecure against DFA-based attack.
We suggest also a modification of the DDSS mechanism and a
variant of the advanced DDSS-based flexible cipher that is se-
cure against attacks based on random hardware faults.

KEY WORDS: Flexible cipher, block cipher, differential fault
analysis.

1 Introduction

There are a lot of block ciphers known as strong enough against brute
force attack by total exhaustion of keys and against more sophisticated
attacks. First of all these are DES, IDEA, RC5 and GOST [1]. Recently
a number of fast software encryption algorithms have been proposed,

(©2002 by V.I.Korjik, A.Mukherjii, M.A.Eremeev, N.A.Moldovyan

223



V.1.Korjik, A.Mukherjii, M.A.Eremeev, N.A.Moldovyan

for example, Blowfish [1] and CIKS-1 [2]. An important design criterion
for an encryption algorithm is its performance. Designers search for
round functions that allow to reduce the number of rounds and to
simplify a block processing on each round. The cryptosystem RC5 can
be seen as attempt along this line. The main idea is to produce the key
scheduling which expands the initial secret key to a long enough one. In
ciphers with extended key it is attractive to use data-dependent subkey
selection (DDSS) as basic cryptographic primitive. In particular it is
attractive to combine DDSS with key-dependent operations. Several
variants of the DDSS-based ciphers are presented in [3] and it is shown
that they are secure against known plaintext attack and against chosen
plaintext attack. A new crucial type of attack based on differential fault
analysis (DFA) has been proposed by D.Boneh et. al. to break RSA
[4] and by A.Shamir and E.Biham to break symmetric ciphers [5]. This
type of analysis can be applied to the case when an adversary has a
physical access to the encryption devices to induce faults.

In section 3 we consider fault-based cryptanalysis of the DDSS-
based cipher called DDSS-1. We show that it can be broken if a ma-
licious adversary may cause and collect hardware faults corresponding
to the different stages of the encryption. In contrast to fault-based
cryptanalysis of DES we need many pairs of plaintexts/ciphertexts to
break DDSS-1 but it requires significantly less operations than the total
exhaustion of 256-bit key.

In Section 4 we consider briefly the block ciphers RC5 with data-
dependent rotation operations and GOST with secrete S-boxes. It is
shown that they are also insecure against DFA-based attack.

In Section 5 we consider advanced version of the DDSS-based block
ciphers with key-dependent operations. Some peculiarities of the mod-

ified DDSS mechanism provide security against DFA.

In section 6 we summarize the main results and propose some modi-
fication of DDSS-1 to be more secure against DFA-based cryptanalysis.
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2 Description of DDSS-1

DDSS-1 is a R-round iterated cipher with block size of 64 bits and
secret key size of 256 bits. First, the secret key is expanded into 256
subblocks providing that each of them consists of 32 bits according
to a scheduling scheme (see [3] for details). Since this scheme is very
complicated it is reasonable to consider the expanded key as the real
key in the attack.

Fig. 1 shows the structure of one round of DDSS-1. Here "> ¢; >”
denotes right circularly shift by number of digits ¢; depending on 7. 7 ;"
is one of the three algebraic operations: XOR, addition modulo 232 or
subtraction modulo 22 depending on the secret key. The abbreviation
SS stands for the function ”Selection of subblock”. The output of
this function is the 32-bit expanded key subblock (); which number
4 coincides with the input of this function. The operations 7> ¢; >”
and ”x;” depend not only on the indices 7 and j but on the secret key
as well. This is the reason to define this cipher as an operation key
dependent one. We can also see that a selection of the expanded key
subblock is determined not deterministically (by the number of step)
but by intermediate states of transformed data blocks (X’ and Y7)
depending on the initial plaintext P. In figure 1 a single line denotes
a transmission of a subblock with the size of 8 bits whereas a double
line means a transmission of 32 bits except the single lines close to
operations "> ¢y9 >” and "> ¢;; >”, where they correspond to a
transmission of subblocks with the total size of 16 bits.

To decrypt the ciphertext C' given the secret key we have to produce
all steps in reverse order changing all the operations to reverse ones.
(It is easy to verify (see Fig. 1) that the pass of this scheme from the
bottom to the top can recover a plaintext P from a ciphertext C given
the secret key which uniquely determines the expanded key subblocks
and all operations.) In case of multi-round (R > 1) algorithm we repeat
one round scheme R times , where the operations depend in addition
on the number of the current round.
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3 Fault-based attack on DDSS-1

Let us consider a case when an adversary can induce faults. For ex-
ample a bit stored in a register might randomly flip or a certain gate
may spontaneously produce an incorrect value. We assume that the
probability of such fault is small enough so that as a rule a single error
takes place in different intermediate subblocks X*, Y7 of the encryption
scheme. It is very hard (rather impossibly) to induce a fault in some
prescribed block but we can control our scheme and expect a fortunate
case to be so. This approach makes us to repeat such attempts many
times but in any case it requires much less computations than for brute
force attack.

At first, we encrypt some given plaintext P; and obtain the cipher-
text C'9. Then we induce fault and encrypt the same word P; many
times to pick up errors in the subblock z} only. As an indicator to be
so we can take the situation when subblocks (x5, 27, 27) are error free
and at the same time subblock z] contains errors. It is easy to per-
form because all these subblocks form the ciphertext. Let us denote by
C11,Ch9, ..., C1y the ciphertext blocks corresponding to the first plain-
text P providing that there are errors in subblock ] for each of these
ciphertexts and only in such subblock of X7. Then we can compute
the differences of the expanded key subblocks

where z} is a subblock without error and Z] are subblocks con-

taining errors (subblocks Z] are parts of the erroneous ciphertexts
Ci1,C12, ..., C1p, whereas z is a part of ciphertext Cjg) and ¥g is a
group operation inverse to *g. In line with our strategy all subblocks
x} and Z] correspond to the same plaintext P;.

To simplify the further outline let us denote the differences by d;;,
where i = z] and j = Z]. If 4 is fixed, then the total number of these
differences is equal to n = 255. There is no point in expectation of all
possible j given 4, since we let a very small probability of fault (other-
wise it would be incredible to obtain no errors in subblocks (%, 3, z7)

of ciphertext).
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Because of this we will take other plaintexts P, P, ..., P, to ob-
serve corresponding ciphertexts Cop, Csg, ..., Cpo. It is reasonable to
suggest that our encryption algorithm is a ”good” hash function which
maps a plaintext to subblock z] of ciphertext. Hence we should take
256(1+%+%+...+ﬁ) ~ 1618 plaintexts on the average to obtain all 256
possible subblocks z] of ciphertext. Now plaintexts Py, Py, ..., Pys¢ can
be considered as blocks corresponding to different subblocks z} without
the loss of generality. Then we induce fault and encrypt n times each
of plaintexts P, P, ..., Pasg to obtain a batch of corresponding cipher-
texts Cj1, Cla,y ..., Cp, 1 = 2.3, ..., 256 providing that there are errors in
subblocks ] for each of these ciphertexts and only in such subblocks
of X7.

In the same manner as before we can compute the differences of the

expanded key subblocks QIZ *g Q:Z:Zv where z} are error free subblocks

corresponding to Ps, P, ..., Pasg and iz are subblocks containing errors.
Unfortunately this set of differences can be insufficient to obtain a full
set of 256 differences ¢;; for the same 7. To solve this problem we can use
a group property of any operation ”"xg” used in encryption algorithm.
In fact, the following equality will be true

0ij = Ok *8 Op;j- (2)

It is easy to see that the use of relation (2) in combine with full set of
subblocks z] allow us to find some 7y which has a full set of differences
0ioj> 7 = 0,1,2,...,255.

This leads to an opportunity to recover all the subblocks of the
expanded key if we guess the key subblock @);,. There are 232 such sub-
blocks only and we could try all of them in a reasonable time. But we do
not know yet which operations "%1”...7x3” and 7> ¢; >" ...7> ¢19 >7
were used in encryption algorithm because they are known as some
deterministic function of the secret key but not of the expanded one.
To solve this problem we remark that the following generic property
of operations "*g” and 7> c¢j9 >” is true: if we guess these operations
correctly, then the differences d;; do not depend on the plaintext but de-
pend on (7, 7) only. In the case of a false guess this property can be true
with a small enough probability. Then we can find a pair of different
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plaintexts corresponding to the same z] (may be it has taken several

attempts to encrypt different plaintexts) and induce faults to obtain
at least two identical subblocks i} corresponding to these plaintexts.
When corresponding differences d;; coincide it shows that operations
7xg” and "> c¢19 >” have been taken correctly with significant proba-
bility. Since we have only 93 possible combinations of operations ”*g”
and ”> c¢12 >7, this test does not require much time.

After recognition of the operations 7*g” and 7> c19 >” we can
pass on to the selection of the correct expanded key. Let us take
one of 232 possible expanded key subblocks Q;,. It results at once
in a knowledge of the whole expanded key (Qq, @1, ..., @255) (may be
incorrectly) because we already had the complete set of differences
digjs J = 0,1,2,...,255. Since expanded key and operations ”*g” and
7> ¢19 >7 are known, we can compute Y4 (also the subblock yf{) for
any given plaintext P and consequently compute the expanded key sub-

block ng. Then we induce a fault and recompute Y* for the observed

modified ciphertext (X7|Y%). Single errors in block Y* are more likely
to occur than multiple ones if our guess about subblock ();, is correct.
Otherwise we will have multiple errors rather than single ones. This is
a criterion to select the correct expanded key.

With the knowledge of the correct expanded key we can pass on to
the specification of the operation ”*7;”. To perform it let us induce a
fault in y} given error free subblocks (y3,v3,y]) (we select such event
because the block Y* can be recomputed given block Y% which is a
part of the ciphertext). If we guess the operation 7”7 correctly then
the input X recomputed for known X” and ng remains the same for
both the absence of errors and the presence of them given the same
plaintext P. This is a criterion to recognize the real operation ”x7”.
Similarly we can specify the operations 7#g”, ”*5” and so on up to the
top of the scheme shown in Fig. 1. Remark that we do not have to
induce more errors when the all operations are determined. In fact one
can store the ciphertexts obtained in the stage of the expanded key
computation and use them for selection of faults which took place at
previous encryptions.

If the encryption algorithm has several rounds we should begin with
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the bottom of the last round and go to the beginning of the algorithm
passing all rounds one by one. It is easy to see that the most time
consuming stage of this fault-based attack is the procedure of selection
one of 232 expanded key subblock Q;,. It requires ~ 232 - [ operations,
where [ is the number of attempts to be necessary on the average to
obtain errors in the prescribed subblock (register) of the encryption
scheme. The complexity of the proposed attack seems to be quite
significant but much less than the complexity of a brute force attack
which requires the total exhaustion of 2256 secret keys.

4 Fault-based attack on RC5 and GOST

4.1 RC5 against DFA

Cipher RC5 includes procedures expressed by the following pseudocode

A=A+ Sy (mod 2"), (3)
B:= B+ S; (mod 2"), (4)
for 1 =1 to R do:
A:=(A® B)<P< + Sy (mod 2*), (5)
B:=[(B® A)<*<] 4+ Syii1 (mod 27), (6)

where A and B are the left and the right half of the input message,
respectively (for details see [7]).

Let us assume the attacker can induce one random fault on the
average while encrypting one data block. After a number of attempts
one can induce a fault in given register at given step of data transfor-
mation, for example in the register containing data subblock A after
execution of the transformation according to formula (5) in the round
1 = R. Such faults are easily recognized observing ciphertexts produced
from the same plaintext block 7" without faults (C = A|B) and with
faults (C = A|B).
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From (6) it is easy to derive the expression
A® A= (B - Sopi1)” @ (B~ Spe1)” " (mod 2%).  (7)

In (7) only Sggr+1 is unknown. With high probability one can obtain
A mod 2° = A mod 2°. In this case equation (7) is transformed to

(A@ A)<4< = (B — Sapi1) ® (B — Sapy1) (mod 27).  (8)

Using last equation it is easy to calculate a part of subkey Sopii.
Inducing different faults one can determine the value of subkey Sopy1.
After the subkey Sog+1 is found one can compute the subkey Sag. To do
this we can use faults which occurred in data subblock B in the round
i = R —1 after the transformation given by formula (6). Using subkey
Sor+1, such an event can be easily recognized by recovering the value
of subblock B after (R — 1)-th round. After several attempts one can
determine the subkey Sogp_1. In a similar way it is easy to determine
Sor_2, ...,5). For R = 10 — 30 the work effort to compute the all
subkeys does not exceed 10® operations. Model of this attack against
RC5 has been elaborated and tested experimentally. A simulation of
given above attack confirmed our estimation of the complexity of RC5
against DFA.

4.2 GOST against DFA

Russian encryption standard GOST [1] is an example of the practically
used ciphers security of which is based on the both the secrete key
and the secrete S-boxes. GOST is a DES-like 32-round cryptosystem
with the 256-bit secrete key and eight secrete S-boxes having 4x4 size.
While attacking one round of GOST with DFA technique one should
calculate one 32-bit round subkey and to determine the secrete set of
eight S-boxes from (16!)® possible sets. We have applied DFA based
on random hardware faults to this cipher. Our results have confirmed
the possibility to reconstruct the complete specification of the DES-like
unknown ciphers [5]. The weaknesses of the GOST encryption round
consist in (1) the use of the modulo 2%? addition operation between the
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left data subblock and the round subkey and (2) small size of S-boxes.
Our variant of the DFA attack against GOST is based on the use of the
avalanche caused by carry bits. To perform such attack it is sufficient
to have two output texts (one text with errors and one free of them)
resulted from the same source text with the size about 10° byte. The
work effort of this attack is < 102 operations. The model of the DFA-
based attack on GOST has been elaborated. This model has confirmed
our estimation of the security of GOST against DFA based on random
faults.

5 Cipher based on the advanced DDSS

Below we present another fast software-oriented cipher from the family
of the DDSS-based cryptosystems. It has encryption speed about 70
Mbit/s for PentiumlII-266. It uses 2051-byte expanded key presented
as a sequence {g;}, j = 0,1,2,...,2051, one-byte words. This expanded
key is formed following a scheduling scheme from the secret key of 256
bit. We believe that this scheme is also very complicated and hence it
is reasonable to consider the expanded key as the real key in the attack.

A plaintext has to be divided into blocks consisting of 128 subblocks
and each of them is a 32-bit subblock. These 32-bit subblocks are
transformed one by one into the blocks of ciphertext using different
key-dependent operations and ”accumulating” variables V, U, and Y
obtained as a function of both the expanded key and the plaintext. A
typical number of rounds is 4. An algorithm suitable to the use as disk
encryption system (about problem of the disk sector encryption see
[8]) is presented below, where * € {®,+ (mod 2%?), — (mod 2%?)} and
"> ¢ >" denotes right circularly shift by ¢ digits in line with notations
for previous cipher.

Disk sector encryption algorithm

INPUT: 512-byte plaintext is represented as a sequence of 32-bit
words P, h =0,1,2,...,127.

1. Set r =1, R =4 and define: Ly = P, h =0,1,...,127.
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2. Set counter 1 = 1 and compute initial values of the variables U,
V,Y,G,and n: U < Q(1) ,V «+ Q(2),Y < Q13), G+ Q4) ,
n <+ Q(5) mod 2'', where expanded key subblocks Q(i) are taken
according to the formula Q(i) = gi+3|gi+2|gi+1]¢-

3. Perform computations:

n <+ {[n @ (G mod 2'")] — U} mod 2",

Vi (V+G)'Y x,_6 Qn),
n < n *7,_5 (V mod 21),
U [U *7r-4 Q(n))7er 27 — (G7%7),
n ¢+ n+ U mod 2!,
Y <Y 7,3 Q(n)+ Gmod 2%,

4. Compute the index of the current input word: h = 128 — 1, if
r=24o0orh=1—1ifr=1,3.
5. Perform the current encryption step:

Ch <+ [(Ln *7r—2 V)9S wq_g Y797 xq, UL

6. Save the value C},.
7. If 1 < 128, then increase ¢ and go to step 3.
8. If r < R, then increase r, update Ly < Cy, h =0,1,...,127, and
go to the step 2.
Otherwise — STOP.
OUTPUT: 512-byte ciphertext {Cp}, h =0,1,2,...,127.

We have no intention to describe a fault-based attack on this kind of
cipher in details. We note only that the cipher described above has the
following features which probably make it secure against this attack:

1. The key indices are never presented as some observed binary
blocks.

2. The expanded key subblocks are not used directly as inputs
of some operations. They are saved only to form the intermediate
7virtual” keys.
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3. This algorithm prevents a possibility of separate consideration
for different possible combinations of operations used in the same en-
cryption round.

These properties result in the implication that it is very hard to
compute the differences of the expanded key subblocks. Indeed, in
order to change the number of subkey at some DDSS step of the last
round we should induce an error into n, however this changing cannot
be recognized exactly given ciphertext only.

6 Conclusion

We have described an application of the DFA attack based on random
faults to break the cryptosystems DDSS-1, RC5, and GOST. These
ciphers can be modified to be more resistant to such an attack. For ex-
ample we can build into the algorithm DDSS-1 a key-dependent 32x32
substitutions just after the operation ”> ¢j2 >” and also before the
operations 7> ¢4 >7, "> ¢3 >", "> ¢9 >, and "> ¢; >” (because an
attacker may also induce fault into initial blocks and use the known
decryption algorithm to break this cryptosystem). The availability of
key-dependent substitutions will make a computation of differences d;;
very hard because the number of possible operations (including substi-
tutions) is very large. On the other hand such modification will result
in a decreased speed of encryption. (That is why substitutions are not
used in DDSS-1.)

We have also presented another version of the fast DDSS-based
ciphers. In the proposed cipher selected subkeys are not combined di-
rectly with transformed data subblocks. Some sets of subkeys are mixed
together forming some accumulating key variables combined with data.
Such advanced DDSS mechanism contributes significantly against DFA
attack based on random hardware faults.

Comparing results of four different ciphers against DFA one can
conclude that the use of secrete algorithm is not sufficient to provide
high security against DFA. It is more important to design the round
structure contributing efficiently to the security against DFA. Secrecy
of the algorithm is effective against DFA only if the general encryp-
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tion scheme is properly composed. For example, one can use advanced
DDSS-based cryptoschemes to develop flexible ciphers like that de-
scribed in section 5.
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