Computer Science Journal of Moldova, vol.10, no.2(29), 2002

Experimental functional realization of attribute
grammar system

I[. Attali K. Chebotar N. Meergus

Abstract

In this paper we present an experimental functional realiza-
tion of attribute grammar(AG) system for personal computers.
For AG system functioning only Turbo Prolog compiler is re-
quired.

The system functioning is based on a specially elaborated
metalanguage for AG description, universal syntactic and seman-
tic constructors. The AG system provides automatic generation
of target compiler (syntax—oriented software) using Turbo Prolog
as object language.

Keywords: context free grammar, attribute grammar, func-
tional programming, semantic attributes, compiler, metacom-
piler, syntactic LALR(SLR) constructors, lexical and syntactic
analysis, semantic evaluation.

Introduced by D.E. Knuth in 1968 [1] as formalism for specifying
semantic of programming languages attribute grammars have proved to
be a useful tool for design and implementing compiler, syntax—oriented
and graphical editors, symbolic computations, natural language pro-
cessing and more generally any syntax—oriented computation [5, 6].
The most significant application of AG are the attribute grammars sys-
tems [5] used for automatic design and realization of syntax—directed
computations. The AG systems are very useful in a fast elaboration of
programming systems (software) prototypes.

Inspired by the main results of works [3, 4] we present an exper-
imental functional realization of AG system for personal computers
with restricted resources. For AG system functioning only Turbo Pro-
log compiler is required.

(©2002 by I. Attali, K. Chebotar, N. Meergus

190

Experimental functional realization ...

1 Introduction

The system functioning is based on a specially elaborated metalanguage
for AG description, universal syntactic and semantic constructors. The
AG system provides automatic generation of target compiler (syntax—
oriented software) using Turbo Prolog as object language.

The main definitions and notations related to attribute grammars
and systems are specified in section 2.

For attribute grammars description a special nonprocedural lan-
guage (metalanguage) was elaborated (section 4). All program mod-
ules of the system (metacompiler, syntactic constructor and seman-
tic evaluators generator) were written in C*t1 programming language.
Metacompiler processes attribute grammar metadescription and gener-
ates syntactic and semantic data structures containing the whole infor-
mation about attribute grammar which will be used by other system
components. Sections 5 and 6 describe the general scheme and internal
structure of the AG system.

The attribute grammar description and semantic functions for bi-
nary numbers definition [1] language are presented in Appendixes 1,2.

2 Definitions and notations

Introduced by D.E. Knuth in 1968 [1], attribute grammars have proved
to be a useful formalism for specifying and implementing the static
(context— sensitive syntax) and dynamic semantics of programming
languages and more generally any syntax—oriented computation [2].
Attribute grammars form an extension of context—free grammar. The
information (”meaning”) is associated with programming language no-
tions by attaching attributes to the grammar symbol representing this
notation. Each attribute has a set of possible values. The seman-
tic rules associated with the productions of the context—free grammar
specify how to compute the value of certain attribute as a function
of other attributes. The attributes associated with a grammar sym-
bol are divided into two disjoint classes, the inherited and synthesized
attributes. The semantic functions associated with grammar produc-

191

I. Attali, K. Chebotar, N. Meergus

tion define the computation of the synthesized attributes of grammar
symbol on the left side and all the inherited attributes of the grammar
symbols on the right side of the production.

Geunerally speaking, a synthesized attribute attached to a grammar
symbol contains information concerning the syntactic subtree gener-
ated by this symbol. Inherited attributes are used for expressing the
dependence of the programming language notion on its left and right
contexts.

More formally, an attribute grammar is a tuple

AG= (G, T, F,Inh, Syn,a,T,Sem),
where:

(1) G = (Vn,Vp, P, Z) is the underlying context free grammar. Vi and
V1 denote finite disjoint sets of nonterminal and terminal sym-
bols, respectively; V = Vy U Vp. P is a finite set of productions
and Z € Vy is the start symbol, which does not appear on the
right side of any production. A production p € P will be denoted
as

p:X0—>X1X2...an,

where n, > 0, Xg € Vi, X; € V for 1 < j < n,. The grammar
G is assumed to be reduced in the sense that every nonterminal
symbol is accessible from the start symbol and can generate a
terminal string.

(2) T ={to,t1,...,tn, } is a finite set of types (sets).
(3) F={fo,f1,.--. fnp} is a finite set of functions;
Ji vty X tiy X ..o X i, — ti,, where n < 0 and ¢;; € T for

0<j<n.

(4) Inh and Syn — disjoint sets of inherited and synthesized attributes,
respectively. Let A = Inh U Syn.

192

Experimental functional realization ...

(5) 7 is the type distribution function, 7 : A — T.
7(a) = {t} means that the attribute a will be attached as a
variable of type t.

(6) « is the attribute distribution function, a:V — 24,
a(X) = {a1,a9,...,ar} denotes that symbol X € V has the
attributes ay, as, ..., ax. Inh(X) = InhNa(X), Syn(X) = SynN
a(X).a(X) = Inh(X) U Syn(X). A set of inherited attributes
instances IO(X;) = {a.i | a € Inh(X;)} and a set of synthesized
attributes instances SO(X;) = {a.i | a € Syn(X;)} is attached to
each symbol X; (0 <1i < n,) of syntactic rule p. Let AO(X;) =

10(X;) U SO(X), 104) = U 10(X). S0() = U SO(Xy).
AO(p) = 10(p) U SO(p). T}Z;Oinstances of afctributze:s0 In(p) =
10(Xp) U SO(X;) and Out(p) = SO(Xo) U I0(X;) we define
as inputlzind output instances for rule p, reélza(lectively.

(7) The Sem(p) for each rule p defines all attributes instances from
Out(p) semantic rules for their evaluation.

Sem(p) = {ag.i0 = f(ay1.i1, ag.19, ..., ax.if) or
ag.io == al.il or
ag.ip = constant | a;j.i; € AO(p),1 < j <k, f €F,
fi7(a1) x 7(ag) X ... x 7(ap) = 7(ap)}

The semantic rule ag.ig = a;.i; (copy rule) defines a simple value
transfer, and rule ag.7g = constant is used to assign an initial value to
attribute instance ag.%g.

Semantic rules induce on AO(p) an order of computation called lo-
cal dependency relation D(p) defined as follows: ag.igD(p)ay.i1 (ag-ig
depends on aj.i1) if and only if there is a semantic rule ag.ip = f(...,
ai.i,...) or ag.igp = ai.41 in Sem(p). The local dependency graph D,
of production p is the graph of relation D(p). Attribute grammar AG
is said to be in normal form if the condition (a;.i;) € In(p) holds for
1 < j <k for every semantic rule. It is easy to transform every eval-
uation rule to the normal form. In the sequel, we shell consider only

193

I. Attali, K. Chebotar, N. Meergus

normalized AG.

Given a derivation tree 7, attributes instances are attached to the
nodes in the following way: if node u is labelled with grammar symbol
X, then for each attribute a € a(X) an instance a.u of a is attached
to u. Let ug be a node, p the production at ug, and w1, ug, ... uy, the
sons of ug. An attribute evaluation instruction

ag-uiy = flaiui, a2y, ..., ap.u;,)

is associated with attribute instance ag.u;,, if the attribute evaluation
rule

ag.io == f(al.z'l, a2.2'2, PN ,ak.ik)

is associated with production p.

We denote by D7 the compound dependency graph obtained by
pasting together the graphs D, corresponding to each production in
the tree and by Wy the set of all attribute instances aj.u;; in the tree
T. An attribute grammar is well-formed or non—circular if and only if
for every tree T the D is cycle free.

The task of an attribute evaluator is to compute the values of all
attribute instances in Wy. In general the order of evaluation is free
with the only restriction that an attribute evaluation rule cannot be
executed before its arguments are evaluated. Initially the values are
assigned only to inherited attribute instances attached to the start
symbol and to the terminal leaves (determined by parser).

The meaning or semantic value of T are the values of all attribute
instances in Wy or of a distinguished subset of them, generally the
synthesized attribute (attributes) of the root of 7.

3 Example

To illustrate the basic definition and our attribute system functioning
we present an example initially appeared in the Knuth’s original paper
[1]. The purpose of this AG is to give a precise definition of rational
numbers written in fixed—point binary notation.

194

Experimental functional realization ...

3.1 The underlying grammar

G = (VN,Vp,P,Z), where Viy = {Z,L,B}, Vi = {"0",717,”.”}. B
represents a single bit, L represents a list of consecutive bits, and Z,
which is the start symbol, represents a whole number.

P={0:B =707, 3:L:=LB,
1:B =717, 4:7 =1,
2:L:=B, 5:Zu=L""L}.
3.2 Types

T = {real,integer}.
3.3 Functions

F = {power2, sum,inc,neg}, where
power2 : integer — integer, power2(z) = 27,
sum : real x real — real, sum(x,y) =z + vy,
inc : integer — integer, inc(x) = x + 1,
neg : integer — integer, neg(x) = —x.

3.4 Attributes

Inh = {s}, Syn = {v,l}, where inherited attribute s (”scale”) is used
to compute the value of bit ”1” as 2%, synthesized attribute / (”length”)
is used to compute the length of binary string L and synthesized at-
tribute v ("value”) represents the decimal value of the binary substring
generated by nonterminals L and Z.

3.5 Attributes type definition
7(S) = integer, 7(l) = integer, 7(v) = real
3.6 Attributes distribution
a(B) = {v, s}, a(L) = {v,l, s}, a(Z) = {v}
3.7 Semantic rules
Sem(0: B =:=70") ={v.0=0},
Sem(l: B:=:=71") = {v.0 = power2(s.0)},

195

I. Attali, K. Chebotar, N. Meergus

Sem(2 :

Sem(3 :

Sem(4 :

Sem(5 :

3.8
0.0
-DO e
v.0 (.0
D2 : []
v.1
0.0
D4 .
°
v.l [.1

s.0

s.1

s.1

n= L)

= B)

= LB)

_Dll

D32

D52

= {v.0=v0.1,
10=1,
s.1 = 5.0},
= {v.0 = sum(v.1,v.3),
10 = 1.1,
5.1 = inc(s.0),
5.3 = 5.0},
= {v.0 = 0.1,
s.1 =0},

n=L""L) = {v.0 = sum(v.1,v.3),

s.1=0,
5.3 =neg(l.3)}.

Local dependency graphs

v.0 1.0 s.0

v.l [.1 s1 0.2 s.2
o o «

v.l [.1 s1 v3 [.3 s.3

Figure 1. Local dependency graphs

196

Experimental functional realization ...

3.9 Compound dependency graph and attributes evalu-
ation

Figure 2. Labelled derivation tree for a binary number 1101.01

The figures 2,3 represent labelled derivation tree, compound depen-
dency graph with evaluated attributes instances for a binary number
1101.01, respectively.

197

I. Attali, K. Chebotar, N. Meergus

v.0=13.25

N

Figure 3.Compound dependency graph and attributes evaluation

4 Metalanguage for attribute grammars
description

To describe attribute grammars we proposed a nonprocedural high level
language that is an extension of BNF (Backus normal forms) by ad-

198

Experimental functional realization ...

dition of attributes descriptions and semantic functions. The classic
attribute grammar definition was kept as far as it was possible and
only the elements which are necessary for tie (binding) with object
language were introduced.

The rules of entering metalanguage tokens follow:

e nonterminal symbols must be written as a sequence of symbols
placed in corner brackets 7 (7 and 7)” . For instance, (sequence
of statements).

e terminal symbols which are delimiters or regular expressions con-
sist only of small Latin letters. For instance, identifier,number.

e terminal symbols which are reserved words of input language
» » »

must be written in quotation marks. For instance, “begin”, "while”.
e attributes may consist of Latin letters and underline signs. For
instance, list_of-names, value.

e the semantic functions names and constants are written in accor-
dance with the rules for functions and constants in object lan-
guage.

e the metalanguage reserved words (INHERITED, SYNTHE-
SIZED) must be written with capital letters and wholly.

In general case the language description contains three sections: the
attributes description section, the attributes distribution section and the
rule section. Below we shall adduce every section definition and illus-
trate them using examples from description of attribute grammar of
binary numbers [1]. The attributes section consists of subsections of
inherited and synthesized attributes description. Any or both (in case
of the specification of input language only) subsections may be miss-
ing. Subsections begin with keywords "INHERITED ATTRIBUTES”
or "SYNTHESIZED ATTRIBUTES”. After them follow several de-
scriptions of attribute in the following format:

199

I. Attali, K. Chebotar, N. Meergus

attributey, attributes, . .., attribute, : type;

The attributes must be defined here with the same types as they are de-
fined as arguments or results in semantic functions. All used attributes
must be described. In our example the attributes description section
may be as follows:

INHERITED ATTRIBUTES
s :integer;
SYNTHESIZED ATTRIBUTES
v : real;
[: integer;

The attributes distribution section begins with ”"SYMBOLS” key-
word. It must contain the definitions of grammar symbols (nontermi-
nals and terminals which are regular expressions) and attach attributes
in the following format:

symboly, symbolsy, . .., symbol,, : attributer, attributes, . .., attribute,;

The first symbol in the description section should be the start symbol
of the grammar. For example:

SYMBOLS
< Z >
< L>:w,l,s;
< B >:v,s;

The rule’s section begins with "RULES” keyword. It contains syn-
tax rules and corresponding rules of attributes evaluation. Syntax rules
are written in BNF:

< symboly >:=< symbol; >< symboly > ... < symbol, >

After every syntax rule follow semantic rules which define depen-
dencies and methods for attributes evaluation. The semantic rule has

200

Experimental functional realization ...

the following format:

attributey.symbol _numbery =
function(attribute;.symbol_numbery , attributes.symbol_numbers,
..., attributey.symbol_numbery,)
or
attributeg.symbol _numbery = attribute;.symbol_number,
or
attributeg.symbol_numbery = constant

The syntax and semantic parts of the rule are not separated by any
delimiters; and the whole rule finishes with full stop. In our example
this section will contain the following:

RULES

< B>:=70"
v.0 =0.

="1"

v.0 = power2(s.0).

The default rule:
Some of semantic rules may be missed if they define simple value trans-
fer of the inherited attribute of the goal of the syntax rule to the name-
sake attribute of leftmost nonterminal in the right part of the rule
which has such an attribute. By analogy, one may miss the assignment
to the synthesized attribute of the goal of the syntax rule of the value of
the namesake attribute of the rightmost nonterminal in the right part
of the rule which has such an attribute. This agreement reflects the
natural information transfer order which corresponds to transference
of the semantic information from up to bottom and from left to right.
The adopted agreement makes the attribute grammar description more
compact.

For example, in the syntax rule

<L>=

201

I. Attali, K. Chebotar, N. Meergus

may be missed semantic rules

v.0 =w0.1
s.1=s.0

Semantic rules for all the rest of synthesized attributes of the goal
and inherited attributes of symbols in the right part must be defined
explicitly.

5 General scheme and internal structure of the
system

For attribute grammar description a specially elaborated nonproce-
dural language (metalanguage) is used. All program modules of the
system (metacompiler, syntactic constructor and semantic evaluators
generator) were written in C*t1 programming language. Metacompiler
processes attribute grammar metadescription and generates syntactic
and semantic data structures containing the whole information about
attribute grammar (from attributes description, attributes distribution
and rules sections) which will be used by other system components.
Using syuntactic information generated by metacompiler the syntactic
constructor generates SLR(1) or LALR(1) parsing tables. These tables
are rewritten as Prolog facts that will be used directly during parsing.
The facts format and their meaning will be examined in details in 6.
The semantic evaluator generator using syntactic and semantic infor-
mation of the input language generates universal attributes instances
evaluation program for arbitrary parsing tree. The semantic evaluator
generator will be examined in details in 7.

5.1 Object language choice

The generation of all program modules needed for target compiler as-
sembling is made using Turbo Prolog as the object language. Its data
types and control structures are convenient for translation algorithms

202

Experimental functional realization ...

realization. The recursive process of attributes evaluation can be natu-
rally defined in Prolog thanks to its recursive ideology. The compound
attribute dependency graph may be represented as a structure of re-
cursive calls of Prolog predicates computing the values of attribute
instances. Such a representation of dependency graph and attribute’s
instances as well as the existence of Prolog variables only in the time
of proofing predicate where it is defined allows an effective space allo-
cation algorithm.

Really, in every moment of time not the whole dependency graph
and not all attribute instances are stored in memory but only the way
from root’s attribute to currently computed attribute’s instance (stack
of predicate calls). The generated Prolog program representing com-
piler’s text is assembled from two main parts: common for all gener-
ated compilers managing part and concrete part depending on input
language. The general attribute system structure is shown in figure 4.

5.2 Common managing part

The common standard compiler’s part contains universal lexical and
syntax analyzers, procedure for parsing tree building and memory space
management, procedure for attributes evaluator at lexical analysis time.
The output of analyzers are the parsing tree and list of values of at-
tributes which are regular expressions in order to parsing tree walking
from top to bottom and from left to right. These data structures are
transformed then into a set of facts, determining the production rules
that were applicated to nonterminal nodes and the attribute values at
terminal nodes. The constructed tree does not contain keywords and
delimiters which do not contain any semantic information.

The node’s address in this tree is represented by a list. The first
element of this list is ordinal number of this node as direct ancestor

203

I. Attali, K. Chebotar, N. Meergus

Attribute
grammar
(metalanguage)

METACOMPILER

()
Syntactic SLR(1) or Semantic evaluator
LALR(1) constructor (Ct1) generator (C'T1)
Scanner Parsing Functions for g "
and parser tree regular expres- fﬁmatl_l 1e
generator constructor sions recognition (Péléﬁ()Oll(s})
(PROLOG) (PROLOG) (PROLOG)

COMPILER
(PROLOG)

generation time

EXECUTABLE COMPILER

Lexical and
syntactic | X .
text . construction evaluation (semantic
analysis value)

! |
! |
! |
! |
! |
! |
: Object \ !
! Sourse Tree Attributes code l
I - > |
! |
! |
! |
! |
! |
! |
! 1
|

execution time

Figure 4.General attribute system structure

204

Experimental functional realization ...

of the father-node which is addressed with the tail of the list. Such
representation of the tree is very convenient because from any node’s
address it is very simple to form address of his father (rejecting first
element) and addresses of its direct ancestors (adding ancestor ordinal
number to the head of list). In figure 5 the tree and its nodes’ addresses
for parsing the 71101.01” sequence (the decimal point is missed) is
shown. The address of tree root is

A

L
VAN
B[2,1 L[L2] B[2,2]
L[1,1,1] B2,1,1] 11,21 B[1,1,2] 1[1,2.2]
/\
L[1,1,1,1] B[21,1,1 0[1,221] 0[1,1,2,2]

B[1,1,1,1,1] 1[1,2,1,1,1]

11,1,1,1,1,1]

Figure 5.Derivation tree and nodes’ addresses for a binary number
1101.01

5.3 Concrete part, depending on input language

The following procedures and data structures are specific for the con-
crete language:

205

I. Attali, K. Chebotar, N. Meergus

e written by user procedures for recognizing tokens which are reg-
ular expressions and for computing corresponding attributes;

e SLR(1) or LALR(1) syntactic tables;
e written by user semantic functions;
e attributes evaluator;

e formalized record of syntax rules, keywords, terminals and delim-
iters.

All predicates used for regular expressions parsing (tokens) have a
fixed argument structure. The first argument contains the input string
starting with parsed token, and the last one contains parsed token
length. The rest of arguments are values returned by predicate for the
token attributes. The predicate may be proofed if and only if there
is an expected token at the beginning of the string. For instance, the
procedure for parsing one-letter name of the variable which is termi-
nal identifier and for evaluating its single attribute which is simply the
name of this variable will be achieved by proofing the following predi-
cate:

PREDICATES
identi fier(string, char, integer)
CLAUSES

identifier(S,Ch,1) :=
frontchar(S,Ch,_),Ch >="A',Ch <=" Z".

The predicate evaluation of the semantic function’s result have to
be the namesake of this function but to have one more argument. This
additional argument must be the first in arguments list and it is used

206

Experimental functional realization ...

for returning function’s value. For example, the corresponding to se-
mantic rule v.0 = sum(v.1,v.2) semantic function sum (addition) must
be defined as follows:

PREDICATES
sum(real,real,real)
CLAUSES

sum(F,X,)Y):=F=X+Y.

The Appendix 1 contains all predicates for regular expressions pars-
ing and for evaluating semantic function for one example the integral
definition.

6 Lexical-syntactic construction

The system can process grammars from SLR(1) or LALR(1) classes.
The syntactic constructor basing on the information about grammar’s
syntax generated by metacompiler executes LR-tables for parsing.
These LR-tables are decomposed and every meaning sign (shift, reduc-
tion and transition) is written as Prolog fact. So, the Prolog program
generated by the syntactic constructor contains three types of predi-
cates:

_shift(Table, Symbol) — shift
_reduce(Table, Symbol, Rule Number) - reduction
_go(TableOld, Symbol, TableN ew) — transition

These facts are included into executable compiler text and together
with universal LR—analyzer form syntactic ones. The lexical analyzer
is assembled from three parts: written by user predicates for parsing
the terminals which are regular expressions, generated by metacompiler

207

I. Attali, K. Chebotar, N. Meergus

list of keywords (terminals) and the universal part which generates the
sequence of first two calls. The generated by metacompiler keywords
list is stored in facts as

_term(Number, K eyword)

where Number is the Keyword ordinal number in attribute grammar
description.

Using these terms and user written functions for token the parsing
lexical analyzer generates for input string a set of facts:

txz(Position, Attributey, . .., Attribute,,)

The fact name consists from prefix ”¢” and the ordinal number ” z”
of terminals in attributes distribution section. These facts keep the
information about the attribute values attached to tree leafs. The syn-
tactic analyzer generates the input string right parse which is used by
tree constructor to create the parse tree in a form of Prolog facts stored
in Prolog dynamic database. These facts look as follows:

use_rule(Position, Rule).

The Position argument contains the address of the node in the tree.
The Rule argument is the ordinal number of the grammar rule used by
parser in Position node.

7 Semantic evaluator

The attribute evaluator is the main and the most important part of the
generated compiler. The evaluator is a Prolog program which releases
the recursive procedure which computes the value of all attributes in-
stances attached to the derivation tree.

Any attribute instance in this tree can be located unambiguously
by the address of the tree node to which it belongs and by its name. For

208

Experimental functional realization ...

every attribute an individual predicate is generated. Such a predicate
receives as an argument the attribute’s position in the tree. Using ob-
tained by syntactic analyzer information about production applicated
at every tree node rule it can easy determine which semantic rule must
be used for given attribute evaluation. For the synthesized attribute the
corresponding semantic rule must be taken from the attribute gram-
mar rule which was used during parsing in the node to which attribute
it belongs. For an inherited attribute the corresponding rule must be
found in the rule used during parsing in ancestor node. The positions
of the neighbor attributes which are necessary for attribute evaluation
are determined simply from its position in parsing tree.

In the generated by the system evaluator text there exists one pred-
icate for every attribute defined in attributes description section. The
predicates names consist of prefix 7 (for inherited attributes) or s (for
synthesized ones) and an ordinal number of the attribute in the cor-
responding section of attribute types definition. For example, in the
evaluator generated for the binary numbers attribute grammar the fol-
lowing predicate computes the attribute v value:

_s1(Attribute, Position)

If at least in one grammar rule the attribute enters in the right part
of more than one semantic rule then the predicate responsible for this
attribute evaluation stores its value defined by the first call and later
uses this stored value. This value is stored as a fact in Prolog dynamic
database. For example, the inherited attribute s is used in one of the
rules for the evaluation of two neighbor attributes (in the rule < L >
= < L > < B > s.1 enters in evaluation of both s.2 and s.3). After
the first computation its result will be stored in the fact
_ils(Attribute, Position).

For attribute evaluation the corresponding predicate fulfils the follow-
ing steps:

e finds the used during parsing grammar rule at this position us-
ing facts use_rule(Position, Rule) stored in dynamic database by
syntax analyzer;

209

I. Attali, K. Chebotar, N. Meergus

e calls the predicates which return values of all attributes instances
used as arguments;

e calls the predicates which are a simply Prolog semantic function
transcription;

e stores the returned value for later calls if such one is possible.

For our example for evaluating inherited attribute s the following pro-
gram fragment will be generated:
JEXEN,
41(A, P) - _ils(A, P).
11(A,[N]|P]) - use_rule(P, R), ilc(R, A, [N|P]).
1e(2, A, [1|P]) - _il1(A, P).
1le(3, A, [1|P]) - 1(A, P),)inc(A, A1), assert(-ils(A, 1, [P])).
1e(4,0,[1]]).
211e(5, 0, [1]-]).
11e(5, A, [2|P]) -_s2(A, [2|P]), !, neg(A, Al), assert(_ils(A, [2|P])).
For the evaluation of the whole input string the semantic values
must be evaluated for all root synthesized attributes and the final user
procedure is to be executed.
For example if a1, as, a3 are the synthesized attributes of start sym-
bol the final user predicate may be
_eval(F) - _s1(AL,[]), -s2(A2,[]), -s3(A3,[]), -finish(F, Al, A2, A3).
where F' is the output file. For our example:
_eval(F) - _s1(AL,[]), -finish(F, Al).
sinish(_, X):-write(X).

8 Program executing
The integral compiler execution for the input string is presented in this

section. The whole executing process may be divided into two parts:
parsing execution and attribute evaluation.

210

Experimental functional realization ...

8.1 Parsing execution

The right parse and corresponding set of Prolog facts are generated
during parsing. For 71101.01” input string the following structures are
obtained :

Right parse: [5,3,1,2,0,3,1,3,0,3,1,2,1].

Prolog facts in dynamic database:

use_rule([], 5).

use_rule
use_rule
use_rule
use_rule
use_rule
use_rule
use_rule
use_rule
use_rule
use_rule
use_rule
use_rule

(
(
(
(
(
(
(
(
(
(
(
(

8.2 Attribute evaluation

Attribute evaluation is initiated by the predicate
—eval(F') : —_s1(AL,[]), inish(F, AL).
The attribute evaluation process begins as follows:

_s1(A,[]) -use_rule([],5), -sle(5, A, [])
sle(5,A,[]) --s1(AL,[1]),s 1(A2,[2]),!, sum(A, Al, A2).
_s1(A, [1]) -use_rule([1],3),s 1e(3, A2, [1]).

. ._:910(3, A [1]) --s(AL,[1,1]),s 1(A2,[2,1]), 1, sum(A, AL, A2).

In a more comprehensive form this process is given below. The
indents reflect descents and ascents in parsing tree:
vin[] (5 rule) =wvin [1] +v in [2]

211

I. Attali, K. Chebotar, N. Meergus

vin [1] (3 rule) =wvin [1,1] + v in [2,1]
vin[1,1] (3rule) =vin [1,1,1] + v in [2,1,1]
vin[l,1,1] (3rule) =vin[1,1,1,1] + v in [2,1,1,1]
vin[1,1,1,1] (2 rule) =wvin [1,1,1,1,1]
vin [1,1,1,1,1] (1 rule) = 20 [LLLLI)
sin[1,1,1,1,1] (2 rule) = s in [1,1,1,1]
s in [1,1,1,1] (Brule)=sin[1,1,1]+ 1
sin[1,1,1] (3rule) =sin[1,1] 41
sin[l1,1] (3rule) =sin[1]+1
sin[1] (5 rule) =0

sin[l,1] =1

sin[1,1,1] =2

sin[1,1,1,1] =3
sin[1,1,1,1,1] =3
v in [1,1,1, ,1] 8

vin[l,1,1,1] =8

vin [2,1,1,1] (1 rule) = 2(s in [2LL1)

s in [2, ,1] (3 rule) = s in [1,1,1]

sin [1,1,1] = 2 (saved in database)

1] =12
v in [2,1] (1 rule) = 20 ™ [21)
,1] (3 rule) = s in [1]
s in [1] (5 rule) =0
sin[2,1] =0
vin[2,1] =1
vin [1] =13
vin [2] (3 rule) =wvin [1,2] + v in [2, 2]
vin [1,2] (2 rule) =vin [1,1,2]
vin [1,1,2] (O rule) =0
vin [1,2] =0
vin [2,2] (1 rule) = 9(s in [2,2])

212

Experimental functional realization ...

sin [2,2] (3 rule) = s in [2]

sin [2] (5 rule) = —(I in [2])
lin [2] (3rule) =1in[1,2]+1

lin[1,2] (2rule) =1

lin [2] = 2
sin [2] = -2

sin[2,2] = -2
vin [2,2] =0.25

vin [2] = 0.25
vin [] = 13.25

References

[1]

2]

3]

[4]

[5]

[6]

Knuth D.E. Semantics of context-free languages. Math. Systems
Theory 2(1968), pp. 127-145. Correction in: Math.Systems The-
ory 5 (1971), pp. 29-34.

Deransart P., Jourdan M., Lorho B. ttribute grammars, Definition,
Systems and Bibliography. LNCS 323, Springer Verlag (1988).

Attali 1. Compilation de programmes Typol par Attributs Seman-
tiques, Doctoral thesis, University of Nice, 1989.

Attali 1., Chazarain J. Functional evaluation of strongly non circu-
lar Typol specifications. In: Attribute Grammars and their Appli-
cations. International Conference WAGA, Paris, France, Septem-
ber 1990, Proceedings.P.Deransart&M.Jourdan (eds.). LNCS 461,
pp- 157-176, Springer Verlag, 1990.

Attribute Grammars and their Applications. International Con-
ference WAGA, Paris, France, September 1990, Proceedings.
P.Deransart&M.Jourdan (eds.). LNCS 461, Springer Verlag, 1990.

Attribute Grammars, Applications and Systems. International
Summer Scool SAGA, Prague, Chechoslovakia, June, 1991, Pro-
ceedings. H.Alblas&B.Melichar (eds.). LNCS 545, Springer Verlag,
1991.

213

I. Attali, K. Chebotar, N. Meergus

[7] Marcotty M., Ledgard H.F., Bochmann G. V. A Sampler of For-
mal Definitions. Computing Surveys, v. 8, n. 2, 1976, p. 191-276.

Appendix 1. Attribute grammar for binary num-
bers definition

INHERITED ATTRIBUTES
s :integer;
SYNTHESIZED ATTRIBUTES
v : real;

l = integer;
SYMBOLS

(N): v;

(LY: v, s;

(B): v,s;

RULES

(B) —70”

v.0 =0.

(B) —71”

0.0 = power2(s.0).
(L) —(B)
1.0=1.

(L) —(L)(B)

v.0 = sum(v.1,v.2)
1.0 =inc(l.1)

5.1 = inc(s.0)

5.2 =s5.0.

(N) —(L)
s.1=0.

(N) —(L)" 7 (L)
0.0 = sum(v.1,v.3)
5.1=0

5.3 =neg(l.3).

214

Experimental functional realization ...

Appendix 2. Semantic functions for binary num-
bers definition

PREDICATES

power2(real integer)
sum(real,real,real)
inc(integer, integer)
neg(integer, integer)
_start.
_finish(string, real)

CLAUSES

_start.
_finish

—~

LX) - write(X).

power2(1,0) -
power2(Y,X) X >0,X1=X — 1, power2(Y1,X1),Y = 2% Y1.
power2(Y,X) - X1=X+1,power2(Y1,X1),Y =Y1/2.
sum(F,X,Y) =-F=X+4Y.
inc(F, X) -F=X+1.
neg(F, X) - F=-X.
I. Attali, K. Chebotar, N. Meergus Received April 2, 2002
I. Attali

INRIA Sophia Antipolis
2004 Route des Lucioles — BP93 06902
Sophia Antipolis Cedex FRANCE

K. Chebotar, N. Meergus

Institute of Mathematics and Computer Science
5 Academiei, Kishinev

MD 2028 MOLDOVA

215

