Computer Science Journal of Moldova, vol.1, no.3(3), 1993

An Invitation to GAP

M.Schonert

1 Introduction

GAP is a system for computational discrete algebra, which we have
developed with particular emphasis on computational group theory,
but which has already proved useful also in other areas. The name GAP
is an acronym for Groups, Algorithms, and Programming. This
document announces the availability of GAP version 3 release 2, GAP
3.2 for short. It is an advertisement for GAP, but not a commercial,
since we give GAP away for free.

This document begins with the section “Analyzing Rubik’s Cube with
GAP”, which contains an extensive example. This example is fol-
lowed by a general discussion of GAP’s capabilities in the section “An
Overview of GAP”. The section “Copyright” states the terms under
which you can copy GAP. The next section “How to get GAP” de-
scribes how you can get GAP. Then we tell you about our plans for the
future in the section “The Future of GAP”. The final section “The GAP
Forum” introduces the GAP forum, where interested users can discuss
GAP related topics by e-mail messages.

GAP has been developed at the Lehrstuhl D fiir Mathematik since 1986.
Many people, mostly students of our institute have contributed to it:

Alice Niemeyer, Werner Nickel, Martin Schonert, Johannes Meier, Alex
Wegner, Thomas Bischops, Frank Celler, Jurgen Mnich, Udo Polis,
Thomas Breuer, Gotz Pfeiffer, Hans U. Besche, Volkmar Felsch, Heiko
Theissen, Alexander Hulpke, Ansgar Kaup, Akos Seress.

(©1993 by M.Schénert

83

M.Schonert

2 Analyzing Rubiks Cube with GAP

Ideal Toy Company stated on the package of

the original Rubik cube that there were more than
three billion possible states the cube could attain.
It’s analogous to Mac Donald’s proudly announcing
that they’ve sold more than 120 hamburgers.

(J. A. Paulos, Innumeracy)

To show you what GAP can do a short example is probably best. If you
are not interested in this example skip to the section “An Overview of
GAP”.

For the example we consider the group of transformations of Rubik’s
magic cube. If we number the faces of this cube as follows

Fmmm— +
1 2 3!
' 4 U 5!
' 6 7 8!
Fom Fom Fommm Fom +

! 9 10 11 v 17 18 19 ' 26 26 27 ! 33 34 35!
'12 L 13'20 F 21 !'28 R 29! 36 B 37!
'14 15 16 ' 22 23 24 ! 30 31 32! 38 39 40!

Fom Fom Fommm Fom +
I 41 42 43!
! 44 D 45!
! 46 47 48 !
Fmmmm +

then the group is generated by the following generators, corresponding
to the six faces of the cube (the two semicolons tell GAP not to print
the result, which is identical to the input here).

84

An Invitation to GAP

gap> cube := Group(
(1, 3,8,6)(2,5,7, 4(9,33,25,17)
(10,34,26,18)(11,35,27,19),
(9,11,16,14)(10,13,15,12)(1,17,41,40)
(4,20,44,37)(6,22,46,35),
(17,19,24,22) (18,21,23,20) (6,25,43,16)
(7,28,42,13)(8,30,41,11),
(25,27,32,30) (26,29,31,28) (3,38,43,19)
(5,36,45,21)(8,33,48,24),
(33,35,40,38) (34,37,39,36) (3, 9,46,32)
(2,12,47,29)(1,14,48,27),
(41,43,48,46) (42,45,47,44) (14,22,30,38)
(15,23,31,39) (16,24,32,40)

VVVVVVVVVVYVVYV
w

)3
First we want to know the size of this group.

gap> Size(cube);
43252003274489856000

Since this is a little bit unhandy, let us factorize this number.

gap> Collected(Factors(last));
(02,271, [03,141, 5,31, [7,21, [11,1]]

(The result tells us that the size is 227311537211.)

Next let us investigate the operation of the group on the 48 points.

gap> orbits := Orbits(cube, [1..48]);

(fC1, 3, 17, 14, 8, 38, 9, 41, 19, 48, 22, 6, 30, 33,
43, 11, 46, 40, 24, 27, 25, 35, 16, 32 1,

[2, 5, 12, 7, 36, 10, 47, 4, 28, 45, 34, 13, 29, 44,

20, 42, 26, 21, 37, 15, 31, 18, 23, 39] 1]

The first orbit contains the points at the corners, the second those at

the edges; clearly the group cannot move a point at a corner onto a
point at an edge.

So to investigate the cube group we first investigate the operation on
the corner points. Note that the constructed group that describes

85

M.Schonert

this operation will operate on the set [1..24], not on the original set
[1,3,17,14,8,38,9,41,19,48,22.,6,30,33,43,11,46,40,24,27,25,35,16,32].

gap> cubel := Operation(cube, orbits[1]);

Group((1, 2, 5,12)(3, 7,14,21)(9,16,22,20),
(1, 3, 8,18)(4, 7,16,23)(11,17,22,12),
(3, 9,19,11)(5,13, 8,16)(12,21,15,23),
(2, 6,15, 9)(5,14,10,19) (13,21,20,24),
(1, 4,10,20)0(2, 7,17,24)(6,14,22,18),
(4,11,13, 6)(8,15,10,17)(18,23,19,24))

gap> Size(cubel);

88179840

Now this group obviously operates transitively, but let us test whether
it is also primitive.

gap> corners := Blocks(cubel, [1..24]);

L1, 7,221, [2, 14, 201, [3, 12, 16],
[4, 17, 18], [5, 9, 211, [6, 10, 24 1],
(8, 11, 231, [13, 15, 19]]

Those eight blocks correspond to the eight corners of the cube; on the
one hand the group permutes those and on the other hand it permutes
the three points at each corner cyclically.

So the obvious thing to do is to investigate the operation of the group
on the eight corners.

gap> cubelb := Operation(cubel, corners, OnSets);
Group((1,2,5,3), (1,3,7,4), (3,5,8,7),
(2,6,8,5), (1,4,6,2), (4,7,8,6))
gap> Size(cubelb);
40320

Now a permutation group of degree 8 that has order 40320 must be
the full symmetric group S(8) on eight points.

The next thing then is to investigate the kernel of this operation on
blocks, i.e., the subgroup of cubel of those elements that fix the blocks
setwise.

86

An Invitation to GAP

gap> blockhoml := OperationHomomorphism(cubel, cubelb);;
gap> Factors(Size(Kernel(blockhoml)));

[3, 3, 3,3,3,3,3]

gap> IsElementaryAbelian(Kernel(blockhoml));

true

We can show that the product of this elementary abelian group 37
with the S(8) is semidirect by finding a complement, i.e., a subgroup
that has trivial intersection with the kernel and that generates cubel
together with the kernel.

gap> cmpll:=Stabilizer(cubel,[1,2,3,4,5,6,8,13],0nSets);;
gap> Size(cmpll);

40320

gap> Size(Intersection(cmpll, Kernel(blockhoml)));
1

gap> Closure(cmpll, Kernel(blockhoml)) = cubel;

true

There is even a more elegant way to show that cmpl1 is a complement.

gap> IsIsomorphism(OperationHomomorphism(cmpll,cubelb));
true

Of course, theoretically it is clear that cmpll must indeed be a com-
plement.

In fact we know that cubel is a subgroup of index 3 in the wreath
product of a cyclic 3 with S(8). This missing index 3 tells us that we
do not have total freedom in turning the corners. The following tests
show that whenever we turn one corner clockwise we must turn another
corner counterclockwise.

gap> (1,7,22) in cubel;

false

gap> (1,7,22)(2,20,14) in cubel;
true

87

M.Schonert

More or less the same things happen when we consider the operation
of the cube group on the edges.

gap> cube2 := Operation(cube, orbits[2]);;

gap> Size(cube2);

980995276800

gap> edges := Blocks(cube2, [1..24]);

L, 121, 02,171, [3,191, [4, 221, [5, 1317,
Le,81, [7,241, [9, 181, [10, 21], [12, 151,
[14, 20 1, [16, 231]

gap> cube2b := Operation(cube2, edges, OnSets);;

gap> Size(cube2b);

479001600

gap> blockhom2 := OperationHomomorphism(cube2, cube2b);;

gap> Factors(Size(Kernel(blockhom2)));

[2,2,2,2,2,2,2,2,2,2,2]

gap> IsElementaryAbelian(Kernel(blockhom2));

true

gap> cmpl2 := Stabilizer(cube2,

> [1,2,3,4,5,6,7,9,10,12,14,16], OnSets);;

gap> IsIsomorphism(OperationHomomorphism(cmpl2,cube2b));

true

This time we get a semidirect product of a 2! with an S(12), namely a
subgroup of index 2 of the wreath product of a cyclic 2 with S(12). Here
the missing index 2 tells us again that we do not have total freedom in
turning the edges. The following tests show that whenever we flip one
edge we must also flip another edge.

gap> (1,11) in cube2;

false

gap> (1,11)(2,17) in cube2;
true

88

An Invitation to GAP

Since cubel and cube2 are the groups describing the actions on the
two orbits of cube, it is clear that cube is a subdirect product of those
groups, i.e., a subgroup of the direct product. Comparing the sizes of
cubel, cube2, and cube we see that cube must be a subgroup of index
2 in the direct product of those two groups.

gap> Size(cube);
43252003274489856000

gap> Size(cubel) * Size(cube2);
86504006548979712000

This final missing index 2 tells us that we cannot operate on corners and
edges totally independently. The following tests show that whenever
we exchange a pair of corners we must also exchange a pair of edges
(and vice versa).

gap> (17,19) (11,8)(6,25) in cube;

false

gap> (7,28)(18,21) in cube;

false

gap> (17,19)(11,8)(6,25)(7,28)(18,21) in cube;
true

Finally let us compute the centre of the cube group, i.e., the subgroup
of those operations that can be performed either before or after any
other operation with the same result.

gap> Centre(cube);
Subgroup(cube, [(2,34)(4,10)(5,26)(7,18)(12,37)
(13,20) (15,44) (21,28) (23,42) (29,36) (31,45) (39,47) 1)

We see that the centre contains one nontrivial element, namely the
operation that flips all 12 edges simultaneously.

This concludes our example. Of course, GAP can do much more, and
the next section gives an overview of its capabilities, but demonstrating
them all would take too much room.

89

M.Schonert

3 An Overview of GAP

Though this be madness,
yet there is method in’t.
(W. Shakespeare, Hamlet)

GAP consists of several parts: the kernel, the library of functions, the
library of groups and related data, and the documentation.

The kernel implements an automatic memory management, a PAS-
CAL like programming language, also called GAP, with datatypes for
computations in group theory, and an interactive programming envi-
ronment to run programs written in the GAP programming language.

The automatic memory management allows programmers to con-
centrate on implementing the algorithm without needing to care about
allocation and deallocation of memory. It includes a garbage collection
that automatically throws away objects that are no longer accessible.

The GAP programming language supports a number of datatypes for
elements of fields. Integers can be arbitrarily large, and are imple-
mented in such a way that operations with small integers are reasonably
fast. Building on this large-integer arithmetic GAP supports rationals
and elements from cyclotomic fields. Also GAP allows one to work
with elements from finite fields of size (at present) at most 216.

The special datatypes of group elements are permutations, matri-
ces over the rationals, cyclotomic fields, and finite fields, words in
abstract generators, and words in solvable groups.

GAP also contains a very flexible list datatype. A list is simply a
collection of objects that allows you to access the components using an
integer position. Lists grow automatically when you add new elements
to them. Lists are used to represent sets, vectors, and matrices. A set
is represented by a sorted list without duplicates. A list whose elements
all lie in a common field is a vector. A list of vectors of the same length
over a common field is a matrix. Since sets, vectors, and matrices are
lists, all list operations and functions are applicable. You can, for

90

An Invitation to GAP

example, find a certain element in a vector with the general function
Position. There are also ranges, i.e., lists of consecutive integers,
and boolean lists, i.e., lists containing only true and false. Vectors,
ranges, and boolean lists have special internal representations to ensure
efficient operations and memory usage. For example, a boolean list
requires only one bit per element.

Records in GAP are similar to lists, except that accessing the compo-
nents of a record is done using a name instead of an index. Records are
used to collect objects of different types, while lists usually only contain
elements of one type. Records are for example used to represent groups
and other domains; there is no group datatype in the GAP language .
Because of this all information that GAP knows about a group is also
accessible to you by simply investigating the record.

The control structures of GAP are PASCAL-like. GAP has if state-
ments, while, repeat, and for loops. The for loop is a little bit un-
common in that it always loops over the elements of a list. The usual
semantics can be obtained by looping over the elements of a range.
Using those building blocks you can write functions. Functions can
be recursive, and are first class objects in the sense that you can collect
functions in lists, pass them as arguments to other functions and also
return them.

It is important to note that GAP has dynamic typing instead of static
typing. That means that the datatype is a property of the object, not
of the variable. This allows you to write general functions. For example
the generic function that computes an orbit can be used to compute
the orbit of an integer under a permutation group, the orbit of a vector
under a matrix group, the conjugacy class of a group element, and
many more.

The kernel also implements an interactive environment that allows
you to use GAP. This environment supports debugging; in case of an
error a break loop is entered in which you can investigate the problem,
and maybe correct it and continue. You also have online access to the
manual, though sections that contain larger formulas do not look nice
on the screen.

91

M.Schonert

The library of functions, simply called library in the following, con-
tains implementations of various group theoretical algorithms written
in the GAP language. Because all the group theoretical functions are in
this library it is easy for you to look at them to find out how they work,
and change them if they do almost, but not quite, what you waunt.

The whole library is centered around the concept of domains and cate-
gories. A domain is a structured set, e.g., a group is a domain as is the
ring of Gaussian integers. Each domain in GAP belongs to one or more
categories, which are simply sets of domains, e.g., the set of all groups
forms a category. The categories in which a domain lies determine the
functions that are applicable to this domain and its elements.

To each domain belongs a set of functions, in a so called operations
record, that are called by dispatchers like Size. For example, for a
permutation group G, G .operations.Size is a function implementing
the Schreier Sims algorithm. Thus if you have any domain D, simply
calling Size(D) will return the size of the domain D, computed by
an appropriate function. Domains inherit such functions from their
category, unless they redefine them. For example, for a permutation
group G, the derived subgroup will be computed by the generic group
function, which computes the normal closure of the subgroup generated
by the commutators of the generators.

Of course the most important category is the category of groups.
There are about 100 functions applicable to groups. These include
general functions such as Centralizer and SylowSubgroup, functions
that compute series of subgroups such as LowerCentralSeries, a func-
tion that computes the whole lattice of subgroups, functions that test
predicates such as IsSimple, functions that are related to the opera-
tions of groups such as Stabilizer, and many more. Most of these
functions are applicable to all groups, e.g., permutation groups, finite
polycyclic groups, factor groups, direct products of arbitrary groups,
and even new types of groups that you create by simply specifying how
the elements are multiplied and inverted (actually it is not quite so
simple, but you can do it).

Where the general functions that are applicable to all groups are not

92

An Invitation to GAP

efficient enough, we have tried to overlay them by more efficient func-
tions for special types of groups. The prime example is the category of
permutation groups, which overlays Size, Elements, Centralizer,
Normalizer, SylowSubgroup, and a few more functions by functions
that employ stabilizer chains and backtracking algorithms. Also many
of the functions that deal with operations of groups are overlayed for
permutation groups for the operation of a permutation group on inte-
gers or lists of integers.

Special functions for finitely presented groups include functions to
find the index of a subgroup via a Todd-Coxeter coset enumeration,
to compute the abelian invariants of the commutator factor group, to
intersect two subgroups, to find the normalizer of a subgroup, to find
all subgroups of small index, and to compute and simplify presenta-
tions for subgroups. Of course it is possible to go to a permutation
group operating on the cosets of a subgroup and then to work with
this permutation group.

For finite polycyclic groups a special kind of presentation corre-
sponding to a composition series is used. Such a presentation im-
plies a canonical form for the elements and thus allows efficient op-
erations with the elements of such a group. This presentation is used
to make functions such as Centralizer, Normalizer, Intersection,
and ConjugacyClasses very efficient. GAP’s capabilities for finite poly-
cyclic groups exceed those of the computer system SOGOS (which was
developed at Lehrstuhl D fiir Mathematik for the last decade).

There is also support for mappings and homomorphisms. Since
they play such a ubiquitous role in mathematics, it is only natural that
they should also play an important role in a system like GAP. Map-
pings and homomorphisms are objects in their own right in GAP. You
can apply a mapping to an element of its source, multiply mappings
(provided that the range of the first is a subset of the source of the
second), invert mappings (even if what you get is a multi-valued map-
ping), and perform a few more operations. Important examples are the
NaturalHomomorphism onto a factor group, OperationsHomomorphism
mapping a group that operates on a set of n elements into the symmet-

93

M.Schonert

ric group on [1..n], Embeddings into products of groups, Projections
from products of groups onto the components, and the very general
GroupHomomorphismByImages for which you only specify the images of
a set of generators.

The library contains a package for handling character tables of finite
groups. This includes almost all possibilities of the computer system
CAS (which was developed at Lehrstuhl D fur Mathematik in the last
decade), and many new functions. You can compute character tables
of groups, or construct character tables using other tables, or do some
calculations within known character tables. You can, for example, com-
pute a list of candidates for permutation characters. Of course there
are many character tables (at the moment more than 650 ordinary ta-
bles) in the data library, including all those in the ATLAS of finite
groups.

For large integers we now also have a package for elementary number
theory. There are functions in this package to test primality, factor
integers of reasonable size, compute the size phi(n) of the prime residue
group modulo an integer n, compute roots modulo an integer n, etc.
Also based on this there is a package to do calculations in the ring of
Gaussian integers.

The library also includes a package for combinatorics. This contains
functions to find all selections of various flavours of the elements of a set,
e.g., Combinations and Tuples, or the number of such selections, e.g.,
Binomial. Other functions are related to partitions of sets or integers,
e.g., PartitionsSet and RestrictedPartitions, or the number of
such, e.g., NrPartitions and Bell. It also contains some miscellaneous
functions such as Fibonacci and Bernoulli.

The data library at present contains the primitive permutation groups
of degree up to 50 from C. Sims, the 2-groups of size dividing 256 from
E. O’Brien and M. F. Newman, the 3-groups of size dividing 729 from
E. O’Brien and C. Rhodes, the solvable groups of size up to 100 from
M. Hall, J. K. Senior, R. Laue, and J. Neubiiser, a library of character
tables including all of the ATLAS, and a library of tables of marks for

94

An Invitation to GAP

various groups. We plan to extend the data library with more data in
the future.

Together with GAP 3.2 we now distribute several share library pack-
ages. Such packages have been contributed by other authors, but the
copyright remains with the author. Currently (May 1993) there are
three packages in the share library. The ANU PQ package, written
by E. O’Brien, consists of a C program implementing a p-quotient and
a p-group generation algorithm and functions to interface this program
with GAP (or Cayley). The NQ package, written by W. Nickel, con-
sists of a C program implementing an algorithm to compute nilpotent
quotients of finitely presented groups and a function to call this pro-
gram from GAP. The Weyl package, written by M. Geck, contains
functions to compute with finite Weyl groups, associated (Iwahori-)
Hecke algebras, and their representations.

4 Copyright

Ceterum censeo:

Nobody has ever paid a licence fee

for using a proof

that shows Sylow’s subgroups to exist.
Nobody should ever pay a licence fee
for using a program

that computes Sylow’s subgroups.

(J. Neubiiser)

GAP is
Copyright (© 1992 by Lehrstuhl D fiir Mathematik
RWTH, Templergraben 64, D 5100 Aachen, Germany

GAP can be copied and distributed freely for any non-commercial pur-
pose.

GAP is not in the public domain, however. In particular you are not
allowed to incorporate GAP or parts thereof into a commercial product.

95

M.Schonert

If you copy GAP for somebody else, you may ask this person for refund
of your expenses. This should cover cost of media, copying and ship-
ping. You are not allowed to ask for more than this. In any case you
must give a copy of this copyright notice along with the program.

If you publish a mathematical result that was partly obtained using
GAP, please cite GAP, just as you would cite another paper that you
used. Also we would appreciate it if you could inform us about such a

paper.
You are permitted to modify and redistribute GAP, but you are not
allowed to restrict further redistribution. That is to say proprietary

modifications will not be allowed. We want all versions of GAP to
remain free.

If you modify any part of GAP and redistribute it, you must supply a
README document. This should specify what modifications you made
in which files. We do not want to take credit or be blamed for your
modifications.

GAP is distributed by us without any warranty, to the extent permitted
by applicable state law. We distribute GAP as is without warranty of
any kind, either expressed or implied, including, but not limited to,
the implied warranties of merchantability and fitness for a particular
purpose.

The entire risk as to the quality and performance of the program is with
you. Should GAP prove defective, you assume the cost of all necessary
servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other
party who may modify and redistribute GAP as permitted above, be
liable to you for damages, including lost profits, lost monies or other
special, incidental or consequential damages arising out of the use or
inability to use GAP.

The system dependent part of GAP for the 386 (sysdos.c) was writ-

ten by Steve Linton (111 Ross St., Cambridge, CB1 3BS, UK, +44
223 411661, s125@cus.cam.ac.uk). He assignes the copyright to the

96

An Invitation to GAP

Lehrstuhl D fuer Mathematik. Many thanks to Steve Linton for his
work.

GAP for the 386 was compiled with DJ Delorie’s port of the Free Soft-
ware Foundation’s GNU C compiler version 2.1. The compiler can be
obtained by anonymous ftp from grape.ecs.clarkson.edu where it is
in the directory pub/msdos/djgpp. Many thanks to the Free Software
Foundation and DJ Delorie for this amazing piece of work.

The GNU C compiler is
Copyright (© 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

under the terms of the GNU General Public License (GPL). Note that
the GNU GPL states that the mere act of compiling does not affect
the copyright status of GAP.

The modifications to the compiler to make it operating under MS-DOS,
the functions from the standard library libpc.a, the modifications of
the functions from the standard library 1ibc.a to make them operate
under MS-DOS, and the DOS extender go32 (which is prepended to
gapexe.386) are

Copyright (© 1991 DJ Delorie
24 Kirsten Ave, Rochester NH 03867-2954, USA

also under the terms of the GNU GPL. The terms of the GPL require
that we make the source code for libpc.a available. They can be
obtained by writing to Steve Linton (however, it may be easier for
you to ftp them from grape.ecs.clarkson.edu yourself). They also
require that GAP falls under the GPL too, i.e., is distributed freely,
which it basically does anyhow.

97

M.Schonert

The functions in 1ibc.a that GAP for the 386 uses are
Copyright (© 1988 Regents of the University of California.
under the following terms

All rights reserved.

Redistribution and use in source and binary forms are permitted pro-
vided that the above copyright notice and this paragraph are duplicated
in all such forms and that any documentation, advertising materials,
and other materials related to such distribution and use acknowledge
that the software was developed by the University of California, Berke-
ley. The name of the University may not be used to endorse or promote
products derived from this software without specific prior written per-
mission.

THIS SOFTWARE IS PROVIDED “AS IS”AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBI-
LITY AND FITNESS FOR A PARTICULAR PURPOSE.

5 How to get GAP

GAP is distributed free of charge. You can obtain it via ftp or
electronic mail and give it away to your colleagues.

If you get GAP, we would appreciate it if you could notify us, e.g., by
sending a short e-mail message to gap@samson.math.rwth-aachen.de,
containing your full name and address, so that we have a rough idea
of the number of users. We also hope that this number will be large
enough to convince various agencies that GAP is a project worthy of
(financial) support. If you publish some result that was partly obtained
using GAP, we would appreciate it if you would cite GAP, just as you
would cite another paper that you used. Again we would appreciate if
you could inform us about such a paper.

We distribute the full source for everything, the C code for the kernel,
the GAP code for the library, and the LaTeX code for the manual,

98

An Invitation to GAP

which has at present about 800 pages. So it should be no problem to
get GAP, even if you have a rather uncommon system. Of course, ports
to non UNIX systems may require some work. We already have ports
for IBM PC compatibles with an Intel 80386 or 80486, for the Apple
Macintosh under MPW, and for the Atari ST. We also hope to provide
a standalone port for the Apple Macintosh in the near future (there is
already such a port of GAP 3.1). Note that about 4 MByte of main
memory and a harddisk are required to run GAP.

GAP 3.2 (currently — May 1993 — at patchlevel 2) can be obtained from
several ftp servers, including:

samson.math.rwth-aachen.de
Lehrstuhl D fur Mathematik, RWTH Aachen, Germany;
directory /pub/gap/.

ftp to that server, login as user £tp and give your full e-mail address as
password. GAP is in the directory pub/gap. Then get the file README,
which contains further instructions on how to get and install GAP.

For users in the Eastern countries £tp may not be a viable option. They
should contact Victor Ufnarovski (91csjmol@math.moldova.su), who
has offered to distribute GAP to such users.

6 The Future of GAP

See ye not all these things?
Verily I say unto you,

there shall not be left here

one stone upon another,

that shall not be thrown down.
(Matthew 24:2)

Clearly GAP will contain bugs, as any system of this size, though cur-
rently we know none. Also there are things that we feel are still missing,

99

M.Schonert

and that we would like to include into GAP. We will continue to im-
prove and extend GAP. We will release new versions quite regulary now,
and about three or four upgrades a year are planned. Make sure to get
these, since they will in particular contain bug-fixes.

We are committed however, to staying upward compatible from now
on in future releases. That means that everything that works now
will also work in those future releases. This is different from the quite
radical step from GAP 2.4 to GAP 3.1, in which almost everything was
changed.

Of course, we have ideas about what we want to have in future versions
of GAP. However we are also looking forward to your comments or
suggestions.

7 The GAP Forum

We have also established a GAP forum, where interested users can
discuss GAP related topics by e-mail. In particular this forum is for
questions about GAP, general comments, bug reports, and maybe bug
fixes. We, the developers of GAP, will read this forum and answer
questions and comments, and distribute bug fixes. Of course others
are also invited to answer questions, etc. We will also announce future
releases of GAP on this forum. So in order to be informed about bugs
and their fixes as well as about additions to GAP we recommend that
you subscribe to the GAP forum.

Send an e-mail message to listserv@samson.math.rwth-aachen.de
to subcribe to the GAP forum. This message should contain the line
subscribe gap-forum your-name, where your-name should be your
full name, not your e-mail address. You will receive an acknowledge-
ment, and from then on all e-mail messages sent to the e-mail address
gap—forum@samson.math.rwth-aachen.de.

listserv@samson.math.rwth-aachen.de also accepts the following
requests: help for a short help on how to use listserv, unsubscribe

100

An Invitation to GAP

gap-forum to unsubscribe, recipients gap-forum to get a list of sub-
scribers, and statistics gap-forum to see how many e-mail messages
each subscriber has sent so far.

If you have technical problems or problems with the installation of
GAP, write to gap-trouble@math.rwth-aachen.de instead of the GAP
forum, as such discussions are usually not very interesting for a larger
audience. Your e-mail message will be read by several people here, and
we shall try to provide support.

Martin Schonert Received June 22, 1993
Lehrstuhl D fiir Mathematik

RWTH

Templergraben 64,

5100 Aachen,

Germany

e-mail m.schoenert@Qmath.rwth — aachen.de

101

