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A neural model for the heart muscle

H.N.Teodorescu D.Arotaritei

Abstract

An electric model of the heart muscle, using neural networks
(NN), is proposed, the heart distributed electrical resistance be-
ing modelled by weights of a NN. It is argued that the suggested
model is more credible than the existing ones.

1 Introduction

The electrical behavior of the heart basically consists in the dynamic
depolarization/repolarization of the myocard. The heart electrical ac-
tivity is known to be dependent on two main elements:

i) the heart muscle (myocard) distributed conductances, which de-
termine the current distributed path,

ii) the internal pacemaker (atrial node and afferent system).

The current distributed path is dependent on the distributed conduc-
tivity of the heart muscle. The information one clinically gets on the
muscle state is only indirect: this information is registered at the sur-
face of the body, as electrical signals. the electrical signal so registered
is named electrocardiogram (EKG).

The EKG is known to carry global, indirect, hidden information
(about the diseases for example ) of the heart. The global information
about the muscle conductivity is available only as transformed by the
human body distributed conductivity.

In many heart diseases, such in an infarct development, the muscle
state plays a major part. The determination of muscle areas with low
conductivities is very important, as decreased conductivity indicates ill
muscle areas, e.g. necroses.

(©1993 by H.N.Teodorescu, D.Arotaritei

110



A neural model for. ..

To determine the electric component of the heart muscle, and also
to generate in a logic way the knowledge needed by an expert diagnosis
system, one possibility is to use an electric (more or less simplified)
model. This way was recently used by many research groups, by using
different modeling principles and techniques. There are three basic
models:

i) analytic, continuous i.e. the description by analytic equations of

the electric muscle behavior;

ii) finite elements models;

iii) network-type models.

To exactly describe the electric fields inside the conducting bod-
ies with complex shapes, analytic models use complicated equations.
These equations are sometime impossible to analytically solve, or their
solutions are very difficult to find. So, it is necessary to approximate the
solution, using the finite element method for example, or other time
- consuming techniques, and this is a major disadvantage for these
models [1], [2], [3] and [4].

Different ways to model electrical conductors in the human body
are listed bellow. Oostendorp [2] uses the boundary element technique
in the computation of the electric potential distribution into isotropic
inhomogeneous volume conductors of arbitrary shape. Mitchell [3] uses
for model of the ventricular conduction a discrete elements neighbor-
hood ( cellular automaton), using 2500 ( 50x50) element rectangular
grid. Hatsell [4] uses an analytical model of the bulk conductor for
measuring the impedance in plethysmografy.

Another model, based on neural networks (NN), was introduced in
[5]. In the present paper are developed the ideas formulated in [5],
namely, the heart muscle is simulated using a NN. The model presents
an important advantage because of the computation simplicity offered
by NNs. Indeed, for a NN, the training is based on a well established
algorithm, with exact steps, which are repeated for a number of it-
erations. The computer automatically rules this algorithm until the
iterations are finished. On the other hand, the use of NNs is nearest to
the biological modeled object, because the NN has as model the bio-
logical neurons with their connections - a good enough approximation
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of the muscle cells.On the other hand, one can simulate the inhomoge-
neous bodies ( layered bodies) using neurons with different functions
of activation, to simulate homogeneous layers with different properties.

2 Principle of the models

2.1 The principles

A way for developing the models based on NN for the heart muscle
was first presented in [5].In this model, one divides the heart into
concentric volumes, ordered by the surfaces of electric potential that
limit these thickness. Each layer is modeled by a layer of neurons in a
layered NN.

Figure 1:Schematics of the electrical model of the myocard.

The neurons are representing points into the heart muscle. On the
surface modeled by a layer of neurons, the same distance separates two
adjacent neurons.

We are modeling the heart by a set of interconnected, nonlinear re-
sistances. The linear part of the resistances are modeled by the weights

112



A neural model for. ..

of the NN, while the nonlinearity is introduced by the characteristic
function of the neurons.

The stimulus, generated by the pacemaker situated in the atrial
node (AN), travels through the His bundle to the atrioventricular node
(AVN) and then is propagating through the Purkinje fibers, to and
through the muscle (Fig. 1)

It is known that the normal activity of the muscle is equivalent to
high electrical conductance and a malfunction with a low conductance.

Figure 2:NN associated to myocard muscle.

The values of weights in the NN represent the strength of conduc-
tance between the couples of neurons (Fig.2). This is a basic principle
for the use of NN to model the behavior of the myocard muscle.

The medium of propagation is considered to be homogeneous. This
is a non-realist model, because the myocard muscle is an inhomoge-
neous medium. However, in the first approximation, the model in this
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form is satisfactory, and moreover, it is easy to simulate inhomoge-
neous, layered media by NN, taking different neurons on each layer.

It must be emphasized that NN-s based models allow the simulation
of discontinuous propagation, by introducing delays between the layers.

In this paper, the propagation of the electric impulse into the my-
ocard muscle is considered to be continuous.

Some modifications are used for the functions of activation of neu-
rons, in comparison with standard sigmoid or linear function [5], [6].
These modifications, that have a biological support, are in accordance
with the representation of waveforms to input or output,that may have
negative value.

Figure 3:Standard static EKG waveform transformations.

Two kind of simplified models are considered in this paper, accord-
ing to the possibilities regarding the available input and output data.
A first possibility consist in :

i) as input data, only the spatial signal distribution at one moment
of time is available (the distribution is considered on the inner
part of the heart muscle);
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ii) the corresponding spatial distribution at outer surface of the
heart muscle is given (see Fig.3).

In the second model, the same output is considered, but the input
consist in delayed excitations on the inner surface of the muscle (see
Fig.4).

input
Shvator

Figure 4:Delayed waveform transformation.

This dynamic behavior is suggested by delayed waveform which is
presented at input and the standard delayed EKG waveform at output
(Fig.5). We use that for to model the transformation the time-domain
in the space-domain.

Again, we remember that the waveforms at input and output are
considered to be know, although, at our best knowledge, the corre-
spounding waveforms are not yet actually known by physiologists.

2.2 The models
2.2.1 The model 1

A classic three layer perceptron type NN [6] is used. The only modi-
fication of NN is the absence of the weighted inputs for the first layer
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Figure 5:Heart muscle and delayed waveforms.

(input layer) for both models. Each layer has the same number of
neurons (Fig. 6). The function of activation is:

flz) = (1)

If the neuron is on the first, or on the last layer, and the sigmoidal
function, without threshold, for the neurons on the hidden layer:

B 1
14 e®

f(z) (2)

The learning method is back-propagation, modified according to E.
de Doncker [6].

We use the notation:

aé? — the output(activation) of j-th neuron in the k-th layer;

wfj — the connected weight between i-th neuron in the £ — 1 layer
and the j-th neuron in the k layer.

For every neuron, the weighted input is given by:

116



A neural model for. ..

1

s?szfj-ak_l, k=1,2,---,L (3)
i
where L is the number of the layers in the NN. We define for L = 0:

s? = input (4)

Also, we have for the input and output layers:

ak = ¥ (for k=0or k=1) (5)

The output errors are given by:

e?ztj— JL (6)

where t; are the target outputs. Now let the magnitude of the LMS
errors (the cost for the errors) be:

2 2
J=1/25 () =1/23 (4~ a}) 7)
J J
We take as the objective the minimization of the total error:
Jtotal - Z Jp (8)
P
over this trajectory (over all p). We do this by a gradient descendent

procedure, adjusting w% along the negative of the V,, J;otal,
The weights are adjusted by:

aJ,
Awfj =—a- awz- (9)
)
and
oSk
k _ k J

For k = L, are has
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oSk
— =a)! (11)
8wz~j

The errors for k = L —1,L — 2,...,1 are recursively computing.

Obviously, we have in both models, for the sigmoidal functions:

aJ
T ook
08}
8J oSkl oal

e? = —; 88;”’1 . Baé? . BS;-“ =
DL AR R ACH (13)
fl@) = f@) (1.0~ f(x)) (14)

and the weights are adjusted iteratively:

wfj(t +1) = wfj (t) + Awfj (t) (15)

For each NN and so for each waveform presented at input, one

trained the NN with a single output waveform (Fig.3). For each NN, a

single input waveform, which corresponds to a single output waveform,
is used.

2.2.2 The model 2

A three layer perceptron is also used in this model [6]. The function
of activation is (for all neurons):

1 1
O = (16)
This shifted form is chosen to allow the processing of the pattern
waveforms which have the positive and negative values.
Again, the NN (Fig.6) has the same number of neurons on each
layer, and the method of training is back-propagation, according to [7].
A delayed pick is a stimulus at the input layer, and the correspondent

delayed waveform is considered to be the target (output) of NN (fig.4).
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Figure 6:The multilayer NN.

Representation methods

The major problem after obtaining the value of the weights of NN,
after the training process, is to present these results as in a convenient
manner [5].

The major difficulty of the model, as reported in [5], is the com-
pression of the results. In this paper this difficulty is surpassed by using
appropriate data representation methods.

An attractive method is to represent the weights values, (after scal-
ing between maximum and minimum over all weights values in the NN),
by line styles. A line styles scale is used in the graphic representation of
these values. This modality of representation is used for both models.

We are choosing two modes of representation of the weights:

i) by different line styles for different weight values (each line con-
nects a couple of neurons - see Fig.7),

ii) by filled areas with different patterns around of this line connec-
tion.
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Figure 7:Electric conductivity for the first mode of representation.
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An example of representation by the (ii) - mode is shown in ap-
pendix (only the area of interest).

Approximations used

Only preliminary results are reported here. In the tests, the used model
has three layers of neurons. Obviously, this is a much simplified model
for the heart muscle, and it cannot offer satisfactory results for the
clinical use.

The model of the heart muscle using NN has a few approximations
to determine easier its electrical behavior.

However in this stage of the research development the three layer
NN is flexible enough to offer a realistic tour of experiments. Adding
hidden layers to the NN, the development of this model is a simple
question of technique.

The second limitation is due to the representation in the 2D
plane, because for a realistic model, a spatial representation (three-
dimensional) is necessary. (By the way,the model in [5] hat the same
deficiency).

3 Simulation results

A three layer NN with 64 neurons on each layer is used for the first
model. For this NN, 2x64x64 = 8192 weights carry the information
about conductivity in the heart, and will be represented. The NN is
trained with sampled waveforms (64 samples). The learning factor,
experimentally determined for faster convergence, is equal to 0.001.
After 9000 iterations, the standard deviation (SD) between the target
waveform and the output waveform is less than 0.1%. The input and
the output waveforms are shown in Fig.3.

For the second model, a three layer NN, with 32 neurons of each
layer (2x32x32 = 2048 weights), is used. A number of 32 samples
are used to represent the waveforms. The NN is trained with delayed
waveforms (12 delays) at input, and with the corresponding delayed
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target waveforms (Figures 4 and 5). After 24000 iterations, with opti-
mal learning factor equal to 0.35, the SD is less than 0.01%. For both
models, the range of weights values is between [-12.0, +12.0].

For these two models we are using a 2D image of the heart. This
image is located in the vertical position, and the center of coordinates
is situated approximately in AVN (Fig. 5).

In these models, usually a neuron in the middle layer has more than
32 connections,and an extremity layer has more than 16 connections,
so more information is available than in paper [3] where each cell has
eight neighbors.

The image for the first mode is shown in Fig. 7. The color scale has
seven colors. The image for the second mode is shown in Appendix.
In this image only the area of interest is represented. The scale of the
weights has the symbol “-” for the low conductance and the symbol
“+7 for the high conductance, The divisions of the scale intervals are
equal.

4 Discussion and conclusions

The simplicity of this method, and the algorithm, proposed in this
paper avoid the use of the method of finite elements, or of another
complicated calculus, as in other papers [1], [2], [3], and [4].

The models which are proposed have a few approximations. First.
the medium is considered homogeneous, the same that [1], [3], but
different to [2], where the medium is considered inhomogeneous, and
so more appropriated to reality.

A composed NN [7] may be used for modeling an inhomogeneous
body. In such NN, for each layer we use different functions of activation.

The model has a major deficiency by using only 2D plane for rep-
resentation and not 3D representation, as needed for modeling the real
case. It is a common deficiency [3], and may be solved using Spa-
tial Neural Networks. This model needs powerful resources or parallel
computers.

For satisfactory results more layers are needed in the NN, and more
neurons on each layer. For NN’s algorithm, it is a simple question of
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Figure 8:Appendix.
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technique to increase the layers number.

It can be seen that the connections in the NN permit to link each
neuron with more 16 neighbors neurons (16 weights), and we achieve
a higher amount of information than the cellular model [3], who eight
neighbors-model only.

The heart models based on NNs open a new way to deal with heart
models and new directions of development.

Using more than three layers for NN, and many neurons for each
layer, the model will be more realistic. One way in the realistic mod-
eling of the myocard muscle is to use the composed NN, for modeling
an inhomogeneous volume. Another way is due to [8]. The response of
the heart muscle is not a “crisp” value. Almost sure, the response of
the cell is fuzzy (a non-deterministic mode).

That suggest one way to use for modeling the heart muscle with
fuzzy neurons, and appropriate method to describe the surfaces of elec-
tric field distributions.

The result of the models proposed in this paper may be used to cre-
ate a complete model of the heart. The complete model uses the static
character of myocard muscle with NN, proposed by this paper, and the
oscillatory character. The oscillator characteristic may be implemented
by using a Recurrent Neural Network.

After complete implementation of model, the result should be ver-
ified by medical conclusion.
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