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The family of local C2 splines with two free

generating functions

I.Verlan

Abstract

The family of local generalised C2 splines with two free gen-
erating functions is proposed. Cases of one-dimensional and bidi-
mensional interpolation are discussed with numerical examples.

1 Introduction

The generation of interpolating curves using splines is a useful and
powerful tool in computer-aided geometric design. Although various
methods of spline interpolation were proposed (cf., e.g., [1]–[4], [6]–[8])
the problem of new splines generation is the actual one. In the present
paper a spline family with two free generating functions is discussed.
Let us assume that on the segment [a, b] the mesh ∆ : a = x0 <
x1 < . . . < xn = b is given and values fi = f(xi), i = 0, (1), n, at
the knots of the mesh are known. The interpolant S(x) such that
S(xi) = fi, i = 0, (1), n; and S ∈ C2[a, b], is to be constructed.

This problem can be solved [1] using polynomial C2 cubic splines.
But in many cases difficulties may appear when these splines are used.
We refere to the cases when the set of initial data is too large or the
initial data are dynamically complemented. Thus when complementary
data appear the using of cubic splines leads to the necessity to solve
once more the equations system upon the unknown coefficients of spline
and to recompute the values of spline and its derivatives on the whole
segment. The lack of the property of localness becomes more critical
in the case of bidimensional interpolation. Because of these factors we
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sometimes give up this type of splines and use the well known local
splines (see, for instance, [3]–[4]), which do not possess the smoothness
required. At the same time the continuity of the second derivative may
be essential requirement in many practical problems.

In the present paper the family of splines which hold both conditions
- splines are local ones and are continuous with their derivatives of the
first and the second order is proposed .

2 One-dimensional interpolation.

Let us introduce the following notations:

S′(xi) = mi, i = 0, (1), n; hi = xi+1 − xi, t = (x− xi)/hi.

Let us define splines as follows: on [xi, xi+1]

S(x) = fi(1− ν1(t)) + fi+1ν1(t) + himiν2(t) +
+himi+1(t− ν1(t)− ν2(t)), (1)

where (ν1(t), ν2(t)) ∈ L, and

L = {(ν1(t), ν2(t)) : ν1(1) = 1, ν1(0) = ν ′(0) = ν ′(1) = 0,

ν2(0) = ν2(1) = ν ′2(1) = 0, ν′2(0) = 1, ν′′2 (1) = 0,

ν ′′2 (0) + ν ′′1 (0) = 0; ν1(t), ν2(t) ∈ C2[0, 1]}. (2)

Functions ν1(t) and ν2(t) will be called generating functions for
spline (1) and the set L will be called the set of generating functions.
It is easy to prove that interpolation conditions are held for every pair
of generating functions (ν1(t), ν2(t)) ∈ L, namely S(xi) = fi, i =
0, (1), n.

From (1) the next formulae for the first and the second derivatives
of spline are obtained.

S′(x) = δ
(1)
i ν ′1(t) + miν

′
2(t) + mi+1(1− ν ′1(t)− ν ′2(t)), (3)

S′′(x) = [δ(1)
i ν ′′1 (t) + miν

′′
2 (t)−mi+1(ν ′′1 (t) + ν ′′2 (t))]/hi, (4)
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where δ
(1)
i = (fi+1 − fi)/hi.

Taking into account (3) and properties of generating functions it
follows that the first derivative of spline is continuous on [a, b]. From
(4) it follows

S′′(xi+) = (δ(1)
i −mi)ν ′′1 (0)/hi, (5)

S′′(xi+1−) = (δ(1)
i −mi+1)ν ′′1 (1)/hi. (6)

and from the requirement of continuity of the second derivative of the
spline at the knots of the mesh ∆ S′′(xi+) = S′′(xi−) we get

mi = [λiν
′′
1 (1)δ(1)

i−1 − µiν
′′
1 (0)δ(1)

i ]/[λiν
′′
1 (1)− µiν

′′
1 (0)], (7)

i = 1, (1), n− 1,

where µi = hi−1/(hi−1 + hi), λi = 1− µi.
As a result (n− 1) unknown coefficients of splines are determined.

Values of m0 and mn remain unknown. There are two possibilities in
this case - either to construct an interpolant on [x1, xn−1] only or to
determine values of m0 and mn in an appropriate way. So, one of the
following methods of approximation can be used:

1. If at points a and b f ′(a) = f ′0 and f ′(b) = f ′n are known then
m0 = f ′0 and mn = f ′n is an obvious choice.

2. In the case when at points a and b f ′′(a) = f ′′0 and f ′′(b) = f ′′n
are known then forcing S′′(a) = f ′′0 and S′′(b) = f ′′n , we get
m0 = δ

(1)
0 + h0f

′′
0 /ν ′′1 (0) and mn = δ

(1)
n−1 + hn−1f

′′
n/ν′′1 (1).

3. If the function f(x) is periodic with period (b − a), extending
periodically the mesh ∆, values m0 and mn can be computed
using formula (7).

Methods 1–3 above represent well known end conditions which are
widely used in cases of nonlocal interpolation. It should be mentioned
that any appropriate way of approximation of m0 and mn may be used.
In the sequel it is supposed that the interpolant is constructed on the
segment [x1, xn−1] only.
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So, the family of splines which solve the problem stated at the
beginning of the paper is constructed. Splines from this family are
local ones, which is very important in many practical situations.

In many cases an other representation of spline may be more conve-
nient, namely the representation via the values of the second derivative
of spline at the knots of the mesh. Let us denote S′′(xi) = Mi. Then
from (5) and (6) it follows

mi = δ
(1)
i − hiMi/ν′′1 (0)

mi+1 = δ
(1)
i − hiMi+1/ν ′′1 (1).

Substituting the previous in (1) the following representations of
splines and its derivatives are obtained

S(x) = fi(1− t) + fi+1t− h2
i Miν2(t)/ν ′′1 (0)−

−h2
i Mi+1(t− ν1(t)− ν2(t))/ν′′1 (1)

S′(x) = δ
(1)
i − hiMiν

′
2(t)/ν ′′1 (0)−

−hiMi+1(1− ν ′1(t)− ν ′2(t))/ν′′1 (1)
S′′(x, ui) = Mi+1(ν ′′1 (t) + ν ′′2 (t))/ν′′1 (1)−Miν

′′
2 (t)/ν ′′1 (0)

The values of unknown coefficients of the spline in this case are
computed as follows:

Mi = ν ′′1 (1)ν ′′1 (0)δ(2)
i /[λiν

′′
1 (1)− µiν

′′
1 (0)], i = 1, (1), n− 1,

where δ
(2)
i = (δ(1)

i − δ
(1)
i−1)/(hi−1 + hi).

There are no difficulties to get expressions for computation of M0

and Mn, which remain unknown yet, using end conditions presented
above.

3 Error analisys.

Problem of the interpolation accuracy using spline (1) is of great inter-
est. Let Wn∞[a, b] be the real Sobolev space

Wn
∞[a, b] = {f ∈ Cn−1[a, b] : f (n−1)abs.cont.; f (n) ∈ L∞[a, b]}
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The following theorem can be stated

Theorem 1 If f(x) ∈ W 2∞[a, b], then for the spline (1) generated by
the functions (ν1(t), ν2(t)) ∈ L, where thr second derivative of the func-
tion ν1(t) has different signes at the points 0 and 1, the following esti-
mate

‖S(k) − f (k)‖C = O(h̄2−k), k = 0, 1,

is valid, where h̄ = maxi hi.

Proof. Let’s denote by SE(x) the corresponding Hermite spline (see
[5]). Then the following identity

R(x) = S(x)− f(x) = S(x)− SE(x) + SE(x)− f(x)

can be obtained for the error term of interpolation. From the last
relation we get

|R(x)| ≤ |S(x)− SE(x)|+ |SE(x)− f(x)|. (8)

It was shown (see [5]) that

‖SE(x)− f(x)‖C = O(h̄2), (9)

therefore we have to estimate the first term of the right-hand side in
(8). The next inequality

|S(x)−SE(x)| ≤ h̄max
i

(|mi−f ′i |)max
t

(|ν2(t)|+ |t−ν1(t)−ν2(t)|) (10)

can be easy obtained. Taking into account (7) it can be proved that

|mi − f ′i | ≤ h̄‖f ′′‖∞/4.

As a result from (10) it follows

|S(x)− SE(x)| = O(h̄2).

Thus, from (8)-(10) we get

‖S(x)− f(x)‖C = O(h̄2).

In an analogous way the corresponding result for the derivative can be
obtained. So, the proof of the theorem is ended.
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4 Bidimensional interpolation.

Let us continue with the problem of bidimensional interpolation.
Let’s assume that the mesh ∆ = ∆x × ∆y is given on the domain
Ω = [a, b] × [c, d], where ∆x : a = x0 < x1 < . . . < xn = b and
∆y : c = y0 < y1 < . . . < yr = d. Let us suppose that values
f(xi, yj) = fij , i = 0, (1), n; j = 0, (1), r, are known at tne knots
of mesh ∆. The interpolant S(x, y) such that S(xi, yj) = fij , i =
0, (1), n; j = 0, (1), r, and S(x, y) ∈ C2,2(Ω) is to be constructed. By
C2,2(Ω) the class of functions g(x, y), which are continuous together
with their derivatives ∂k+lg(x, y)/∂kx∂ly; k, l = 0, 1, 2, on the do-
main Ω is denoted.

Let us define splines as follows: on Ωij = [xi, xi+1]× [yj , yj+1]

S(x, y) = φi(t)Fijψj(τ), (11)

where

Fij =




fij fij+1 m
(1,0)
ij m

(0,1)
ij+1

fi+1j fi+1j+1 m
(0,1)
i+1j m

(0,1)
i+1j+1

m
(1,0)
ij m

(1,0)
ij+1 m

(1,1)
ij m

(1,1)
ij+1

m
(1,0)
i+1j m

(1,0)
i+1j+1 m

(1,1)
i+1j m

(1,1)
i+1j+1




,

∂k+lS(xi, yj)/∂xk∂yl = m
(k,l)
ij ; k, l = 0, 1;

φi(t) and ψj(τ) are vector functions of the following form

φi(t) = (1− ν1(t), ν1(t), hiν2(t), hi(t− ν1(t)− ν2(t))), (12)

ψj(τ) = (1− ν1(τ), ν1(τ), ljν2(τ), lj(τ − ν1(τ)− ν2(τ)))T , (13)

t = (x − xi)/hi, hi = xi+1 − xi, τ = (y − yj)/lj , lj = yj+1 −
yj , T denotes the operation of transposition and the pair of functions
(ν1(t, u), ν2(t, u)) belongs to L.

The next natural question arises - are the interpolation conditions
held? Taking into account the definition of the set of generating func-
tions L we have ψT (0) = φ(0) = (1, 0, 0, 0) and ψT (1) = φ(1) =
(0, 1, 0, 0). Then it is easy to obtain from (11), that the spline holds
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interpolation conditions in every domain Ωij , i = 0, (1), n− 1, j =
0, (1), r − 1. Let us introduce the following notations

µ∗j = lj−1/(lj−1 + lj), λ∗j = 1− µ∗j ,

δ
(1,0)
ij = (fi+1j − fij)/hi, i = 0, (1), n− 1; j = 0, (1), r;

δ
(0,1)
ij = (fij+1 − fij/lj , i = 0, (1), n; j = 0, (1), r − 1.

Then unknown coefficients of spline are determined using the next for-
mulae

m
(1,0)
ij = (λiν

′′
1 (1)δ(1,0)

i−1j − µiν
′′
1 (0)δ(1,0)

ij )/(λiν
′′
1 (1)− µiν

′′
1 (0)), (14)

i = 1, (1), n− 1; j = 0, (1), r;

m
(0,1)
ij = (λ∗jν

′′
1 (1)δ(0,1)

ij−1 − µ∗jν
′′
1 (0)δ(0,1)

ij )/(λ∗jν
′′
1 (1)− µ∗jν

′′
1 (0)), (15)

i = 0, (1), n; j = 1, (1), r − 1;

and
m

(1,1)
ij = [λiν

′′
1 (1)(m(0,1)

ij −m
(0,1)
i−1j)/hi−1−

−µiν
′′
1 (0)(m(0,1)

i+1j −m
(0,1)
ij )/hi]/(λiν

′′
1 (1)− µiν

′′
1 (0)), (16)

i = 1, (1), n− 1; j = 1, (1), r − 1;

or
m

(1,1)
ij = [λ∗jν

′′
1 (1)(m(1,0)

ij −m
(1,0)
ij−1)/lj−1−

−µ∗jν
′′
1 (0)(m(1,0)

ij+1 −m
(1,0)
ij )/l∗j ]/(λiν

′′
1 (1)− µ∗i ν

′′
1 (0)), (17)

i = 1, (1), n− 1; j = 1, (1), r − 1.

Substituting in (16) expressions for m
(0,1)
ij , given in (15), we get (17).

So, formulae (16) and (17) are equivalent and values of m
(1,1)
ij can

be computed using one of them. As a result there are coefficients
at the knots situated on the border of the domain Ω, which remain
unknown, namely at the knots situated on the lines x = xi, i = 0, n,
and y = yj , j = 0, r. Thus the interpolant is constructed on the
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domain Ω′ = [x1, xn−1] × [y1, yr−1] only. In this situation there are
two possibilities - either to construct an interpolant on the domain
Ω′ only or to determine the values of the coefficients which remain
unknown yet in an appropriate way. So, unknown values of coefficients
can be determined using end conditions. We do not present here the
corresponding formulae, which can be easy derived.

Now we have to prove that the second requirement of the problem
is satisfied, namely the requirement of smoothness of the interpolant
S. Taking into account (2) it is easy to determine that

[ψ′(0)]T = φ′(0) = (0, 0, 1, 0);
[ψ′(1)]T = φ′(1) = (0, 0, 0, 1);

φ′′i (0) = (−ν ′′1 (0)/h2
i , ν

′′
1 (0)/h2

i , ν′′2 (0)/hi, 0);
φ′′i (1) = (−ν ′′1 (1)/h2

i , ν ′′1 (1)/h2
i , 0, −ν ′′1 (1)/hi),

ψ′′j (0) = (−ν ′′1 (0)/l2j , ν′′1 (0)/l2j , ν ′′2 (0)/lj , 0)T ;

ψ′′j (1) = (−ν ′′1 (1)/l2j , ν′′1 (1)/l2j , 0, −ν ′′1 (1)/lj)T .

Now the validity of the next equalities

φi(0)Fij = φi−1(1)Fi−1j ; Fijψj(0) = Fij−1ψj−1(1); (18)

φ′i(0)Fij = φ′i−1(1)Fi−1j ; Fijψ
′
j(0) = Fij−1ψ

′
j−1(1); (19)

φ′′i (0)Fij = φ′′i−1(1)Fi−1j ; Fijψ
′′
j (0) = Fij−1ψ

′′
j−1(1). (20)

can be proved. There are no difficulties when proving the first two
groups. It is more comlpicate to do this for the last group but there
is no special difficulties in this case too. Taking into account (18)-(20)
the continuity of the spline and its derivatives along the lines x = xi

and y = yj follows immediately. So, we have constructed the spline
(11), which solves the problem of bidimensional interpolation and this
spline is the local one.

5 Examples of generating functions.

In what follows we will give some examples of generating functions,
since the natural question arises - is the set of generating functions L
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nonempty? It is easy to prove that the following pairs of functions

ν1(t) = 3t2 − 2t3; ν2(t) = t(1− t)3 (21)

ν1(t) = t2/(2t2 − 2t + 1); ν2(t) = −2t5 + 5t4 − 3t3 − t2 + t. (22)

belong to the set L. We should note that having a pair of gener-
ating functions new ones can be constructed as follows. Let us as-
sume that (ν1(t), ν2(t)) ∈ L. Let us set now φ1(t, u) = ν1(t)ψ(t, u)
and φ2(t, u) = ν2(t)γ(t, u), where u is vector of free parameters of
the spline, γ(1, u) = 1, γ′(1, u) = 1, ψ(1, u) = 1, ψ′(1, u) =
0, ψ(0, u) = γ(0, u) and functions γ(t, u) and ψ(t, u) are twice con-
tinuously differentiable on t. It is easy to prove that the pair of
functions (φ1(t, u), φ2(t, u)) belong to L too. There is an exam-
ple of functions γ and ψ given below, namely if ψ(t, u) = 1 then
γ(t, u) = 1 − t(1 − t) exp(−u(1 − t)), where u is free parameter of
spline.

6 Numerical examples.

Some examples which illustrate the algorithms presented above are
given below. The test functions were taken from [2], namely f1(x) =
exp(x), f2(x) = exp(−10x), f3(x) = sin(πx) and f4(x) = 1/(1 +
100(x − 0.5)2). The errors of interpolation using spline generated by
functions (21) are given in the tables 1-3. Initial data were given on
the uniform mesh with the step h on the segment [−h, 1 + h]. Errors
of interpolation were computed in the following way

Er = max
x∈∆′

(|f (r)(x)− S(r)(x)|, r = 0, 1, 2,

where ∆′ is a uniform mesh with the step h/10 on the segment [0,1].

Table 1
E0

h f1 f2 f3 f4

0.1 1.614E − 3 3.38E − 2 6.192E − 3 2.981E − 2
0.01 1.69E − 5 5.94E − 4 6.17E − 5 1.255E − 3
0.001 1.7E − 7 6.22E − 6 6.17E − 7 1.25E − 5
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Table 2
E1

h f1 f2 f3 f4

0.1 4.98E − 2 1.75 1.892E − 1 1
0.01 5.2E − 3 7.434E − 1 1.895E − 3 3.831E − 2
0.001 5.22E − 4 1.91E − 2 1.895E − 3 3.84E − 2

Table 3
E2

h f1 f2 f3 f4

0.1 5.44 225.85 19.5 100
0.01 5.44 200.3 19.74 394.1
0.001 5.44 200 19.74 400

Errors of interpolation using spline generated by functions (22) are
presented in the tables 4-5.

Table 4
E0

h f1 f2 f3 f4

0.1 4.39E − 3 2.383E − 2 6.192E − 3 2.77E − 2
0.01 1.69E − 5 9.58E − 5 6.17E − 5 3.405E − 4
0.001 1.7E − 7 1.2422E − 6 6.17E − 7 2.57E − 6

Table 5
E1

h f1 f2 f3 f4

0.1 1.353E − 1 17.4 1.892E − 1 2.1
0.01 5.2E − 3 2.26 1.895E − 2 2, 783− 1
0.001 5.22E − 4 2.363E − 1 1.895E − 3 2.51E − 2

Table 6
E2

h f1 f2 f3 f4

0.1 14.8 81.8 19.5 139.5
0.01 5.44 81.21 19.74 197.2
0.001 5.44 93.1 19.74 189.2

7 Conclusions.

Numerical examples given above are in full accordance with the es-
timations of accuracy of interpolation using spline (1). It should be
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mentioned that splines from the family proposed in the present pa-
per can be successfully used for solving problems of shape preserving
interpolation.
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