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The �lter theory in quotients of complete lattices

Shahabaddin Ebrahimi Atani, Reza Ebrahimi Atani,

Amir Hassani Karbasi

Abstract. We study a partitioning �lter F of a distributive complete lattice (L,∨,∧). Speci�-
cally, the properties and possible basic structures of the quotient L/F are investigated.

1. Introduction

P. J. Allen [1] introduced the notion of a Q-ideal and a construction process was
presented by which one can build the quotient structure of a semiring modulo a Q-
ideal. The present authors introduce the notion of a Q-�lter F in the distributive
complete lattice L and constructed the quotient semiring L/F . Since then, there
has been a lot of interest in this subject and various papers were published estab-
lishing di�erent properties of this semirings as well as relations between semirings
of various extensions [2, 3, 4]. In this paper, we extend the de�nition and some
results given in [1] and [2] to a more general Q-�lter case.

An upper bound of a subset X of a poset (L,6) is an element a ∈ L containing
every x ∈ X. The least upper bound is an upper bound contained in every other
upper bound; it is denoted l.u.b. X or supX (supX is unique if it is exists). The
notions of lower bound of X and greatest lower bound (g.l.b. X or infX) of X are
de�ned dually (infX is unique if it is exists). A lattice is a poset (L,6) in which
every couple elements x, y has a g.l.b. (called the meet of x and y, and written
x ∧ y) and a l.u.b. (called the join of x and y, and written x ∨ y). A lattice L is
complete when each of its subsets X has a l.u.b. and a g.l.b. in L. Setting X = L,
we see that any nonempty complete lattice contains a least element 0 and greatest
element 1. A lattice L is called a distributive lattice if (a∨ b)∧ c = (a∧ c)∨ (b∧ c)
for all a, b, c in L. First we need the following well-known lemma.

Lemma 1.1. In a complete lattice L we have
(1) a ∧ a = a, a ∨ a = a,
(2) a ∧ b = b ∧ a, a ∨ b = b ∨ a,
(3) (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c,
(4) a ∧ 0 = 0 and a ∨ 0 = a,
(5) a ∨ b = 0 implies a = b = 0,
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(6) a ∨ 1 = 1 and a ∧ 1 = a.

2. Quotient of lattices

Let (L,∨,∧) be a distributive complete lattice with a least element 0 and greatest
element 1. Then (L,∨) and (L,∧) are commutative semigroups, connected by
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L, and there exist 0, 1 ∈ L such that
r ∨ 0 = r and r ∧ 0 = 0 ∧ r = 0 and r ∨ 1 = 1 ∨ r = r for all r ∈ L. Thus L is a
commutative semiring with nonzero identity.

Remark 2.1. Throughout this paper we shall assume, unless otherwise stated,

that (L,∨,∧) is a distributive complete lattice semiring with a least element 0 and

greatest element 1.

De�nition 2.2. Let L be as in Remark 2.1. A nonempty subset F of L is called
a �lter if it is closed under ∧ and satis�es the condition a∨ b ∈ F for all a ∈ F and
b ∈ L (so 1 ∈ F and {1} is a �lter of L. Moreover, 0 ∈ F if and only if L = F ).

Let L be as in Remark 2.1. A �lter F of L is called subtractive if x, x ∧ y ∈ F
imply y ∈ Y (so {1} is a subtractive �lter of L). If F is a �lter of L and x∧ y ∈ F
(x, y ∈ L), then x∨ (x∧ y) = x∧ (x∨ y) = x ∈ F . Similarly, y ∈ F . Thus we have
the following lemma:

Lemma 2.3. Let L be as in Remark 2.1. Then every �lter of L is subtractive.

De�nition 2.4. Let L be as in Remark 2.1. A �lter F of L is called a partitioning

�lter (or a Q-�lter denoted by FQ) if there exists a subset Q of L such that
(1) L =

⋃
{q ∧ F : q ∈ Q}, where a ∧ F = {a ∧ t : t ∈ F} for all a ∈ L,

(2) for q1, q2 ∈ Q (q1 ∧ F ) ∩ (q2 ∧ F ) 6= ∅ if and only if q1 = q2.

Example 2.5. Let A = {1, 2, 3}. Then the set L = {X : X ⊆ A} forms a distribu-
tive complete lattice under set inclusion with greatest element A and least element
∅. It is clear that F = {A, {1, 2}} is a Q-�lter, where Q = {{3}, {1, 3}, {2, 3}, A}
(note that if x, y ∈ L, then x ∨ y = x ∪ y and x ∧ y = x ∩ y).

Proposition 2.6. Let L be as in Remark 2.1. If F is a �lter of L and x ∈ L,
then there exists a unique q ∈ Q such that x∧ F ⊆ q ∧ F . In particular, x = q ∧ a
for some a ∈ F .

Proof. Let x ∈ L. Since {q ∧ F}q∈Q is a partition of L, there exists q ∈ Q such
that x ∈ q∧F . If y ∈ x∧F , there exists a ∈ F such that y = x∧a. Since x ∈ q∧F ,
there exists b ∈ F such that x = q ∧ b; hence y = x ∧ a = q ∧ a ∧ b ∈ q ∧ F . Thus
x ∧ F ⊆ q ∧ F . The uniqueness follows from (2) of De�nition 2.4.

If F is a Q-�lter of L and q, q′ ∈ Q, then q ∨ q′ ∈ (q ∧ F ) ∨ (q′ ∧ F ) and
(q ∧ F ) ∨ (q′ ∧ F ) 6= ∅. So, on L/F = {q ∧ F : q ∈ Q} we can de�ne the binary
operations ∨̄ and ∧̄ as follows:
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(1) (q1 ∧ F )∨̄(q2 ∧ F ) = q3 ∧ F , where q3 is the unique element in Q such that
(q1 ∨ q2) ∧ F ⊆ q3 ∧ F ,

(2) (q1 ∧ F )∧̄(q2 ∧ F ) = q3 ∧ F , where q3 is the unique element in Q such that
(q1 ∧ q2) ∧ F ⊆ q3 ∧ F (note that q1 ∧ F = q2 ∧ F if and only if q1 = q2).

Proposition 2.7. Let L be as in Remark 2.1. If F is a Q-�lter of L, then (L/F, ∨̄)
and (L/F, ∧̄) are commutative monoids.

Proof. Clearly, ∨̄ and ∧̄ are well-de�ned and they are commutative operations.
Now we show that

(q1 ∧ F )∨̄[(q2 ∧ F )∨̄(q3 ∧ F )] = [(q1 ∧ F )∨̄(q2 ∧ F )]∨̄(q3 ∧ F ).

There exists the unique element q′ of Q such that (q1 ∧ F )∨̄[(q2 ∧ F )∨̄(q3 ∧ F )] =
(q1 ∧ F )∨̄(q′ ∧ F ), where

(q2 ∨ q3) ∧ F ⊆ q′ ∧ F. (1)

Also we have (q1 ∧F )∨̄(q′ ∧F ) = t1 ∧F , where t1 is the unique element of Q such
that (q1 ∨ q′) ∧ F ⊆ t1 ∧ F , and set e = q1 ∨ q2 ∨ q3. Now (1) gives

e ∈ (q1 ∨ q2 ∨ q3)∧F ⊆ (q1 ∧F )∨ (q2 ∨ q3)∧F ⊆ (q1 ∧F )∨ (q′ ∧F ) ⊆ t1 ∧F. (2)

By assumption, [(q1 ∧F )∨̄(q2 ∧F )]∨̄(q3 ∧F ) = (t2 ∧F )∨̄(q3 ∧F ) = t3 ∧F , where
t2 and t3 are the unique elements of Q such that (q1 ∨ q2) ∧ F ⊆ (t2 ∧ F and
(t2 ∨ q3) ∧ F ⊆ t3 ∧ F . It follows that

e ∈ (q1 ∨ q2 ∨ q3)F ⊆ (q1 ∨ q2) ∧ F ∨ (q3 ∧ F ) ⊆ (t2 ∧ F ) ∨ (q3 ∧ F ⊆ t3 ∧ F. (3)

Now (2) and (3) give t1 = t3, and so ∨̄ is an associative operation.
Next, we will show that (L/F, ∨̄) has a zero element. By Proposition 2.6, there

is a unique element q0 ∈ Q such that 0∧F ⊆ q0 ∧F ; so 0 = q0 ∧a for some a ∈ F .
We show that q0∧F is the zero in L/F . If q∧F ∈ L/F , then (q∧F )∨̄(q0∧F = q′∧F ,
where q′ is the unique element of Q such that (q∨q0)∧F ⊆ q′∧F , so q∨q0 = q′∧c
for some c ∈ F . Thus q ∧ a = q′ ∧ c∧ a; hence q ∧ a ∈ (q ∧F )∩ (q′ ∧F ). It follows
that q = q′, and so (q ∧F )∨̄(q0 ∧F ) = q ∧F . Similarly, (q0 ∧F )∨̄(q ∧F ) = q ∧F .
By an argument like that case ∨̄ above, ∧̄ is an associative operation. Finally,
let qe ∈ Q be a unique element such that 1 ∧ F ⊆ qe ∧ F ; so 1 = qe ∧ d for
some d ∈ F . We show that qe ∧ F is the identity in L/F . Let q ∧ F ∈ L/F
and (q ∧ F )∧̄(qe ∧ F ) = q′ ∧ F , where q′ is the unique element of Q such that
(q ∧ qe)∧F ⊆ q′ ∧F . Since 1∧F ⊆ qe ∧F , we have q ∧F ⊆ (q ∧ qe)∧F ⊆ q′ ∧F ;
thus q = q′. It follows that (q∧F )∧̄(qe∧F ) = q∧F for all q∧F ∈ L/F . Similarly,
(qe ∧ F )∧̄(q ∧ F ) = q ∧ F .

Theorem 2.8. Let L be as in Remark 2.1. If F is a Q-�lter of L, then (L/F, ∨̄, ∧̄)
is a commutative semiring with identity.
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Proof. Assume that q1 ∧ F, q2 ∧ F, q3 ∧ F ∈ L/F ; we show that

(q1 ∧ F )∧̄[(q2 ∧ F )∨̄(q3 ∧ F )] = [(q1 ∧ F )∧̄(q2 ∧ F )]∨̄[(q1 ∧ F )∧̄(q3 ∧ F )].

There exists a unique element q23 of Q such that (q1 ∧ F )∧̄[(q2 ∧ F )∨̄(q3 ∧ F )] =
(q1 ∧ F )∧̄(q23 ∧ F ), where

(q2 ∨ q3) ∧ F ⊆ q23 ∧ F, (4)

so q1 ∧ [(q2 ∨ q3) ∧ F ] ⊆ (q1 ∧ q23) ∧ F . Also we have (q1 ∧ F )∧̄(q23 ∧ F ) = q′ ∧ F ,
where q′ is the unique element of Q such that (q1 ∧ q23) ∧ F ⊆ q′ ∧ F . Now (4)
gives

q1 ∧ (q2 ∨ q3) ∈ q1 ∧ [(q2 ∨ q3) ∧ F ] ⊆ (q1 ∧ q23) ∧ F ⊆ q′ ∧ F. (5)

By assumption, [(q1 ∧ F )∧̄(q2 ∧ F )]∨̄[(q1 ∧ F )∧̄(q3 ∧ F )] =

(q12 ∧ F )∨̄(q13 ∧ F ) = q′′ ∧ F,

where q12, q13 and q′′ are the unique elements of Q such that (q1∧q2)∧F ⊆ q12∧F ,
(q1∧q3)∧F ⊆ q13∧F , and (q12∨q13)∧F ⊆ q′′∧F . Thus [(q1∧q2)∧F ]∨ [(q1∧q3)∧
F ] ⊆ q′′ ∧F . Now by (5), q1 ∧ (q2 ∨ q3) = (q1 ∧ q2)∨ (q1 ∧ q3) ∈ (q′ ∧F )∩ (q′′ ∧F );
hence q′ = q′′, and so we have equality. Thus ∧̄ distributes over ∨̄ from the left.
Likewise, ∧̄ distributes over ∨̄ from the right. Assume that q0 ∧ F is the zero in
L/F and let (q ∧ F )∧̄(q0 ∧ F ) = q′ ∧ F , where q′ is the unique element of Q such
that (q ∧ q0)∧F ⊆ q′ ∧F . But 0∧F ⊆ (q0 ∧ q)∧F ⊆ q′ ∧F , hence q0 = q′. Thus
(q∧F )∧̄(q0∧F ) = q0∧F for all q∧F ∈ L/F . Similarly, (q0∧F )∧̄(q∧F ) = q0∧F
for all q ∧ F ∈ L/F . Now the assertion follows from Proposition 2.7.

Theorem 2.9. Assume that L is as in Remark 2.1 and let F be a partitioning

�lter of L with respect to two subsets Q1 and Q2 of L. Then

(1) L/FQ1
and L/FQ2

are equal as sets,

(2) L/FQ1
∼= L/FQ2 .

Proof. (1). Let q1 ∧ F ∈ L/FQ1
. Since q1 ∈ L, there exists a unique q2 ∈ Q2 such

that q1 ∧F ⊆ q2 ∧F by Proposition 2.6. Again there exists a unique q′1 ∈ Q1 such
that q2 ∧ F ⊆ q′1 ∧ F . It follows that q1 ∧ F = q2 ∧ F = q′1 ∧ F ∈ R/IQ2 . Thus
L/FQ1

⊆ L/FQ2
. Likewise, L/FQ2

⊆ L/FQ1
.

(2). De�ne ϕ : L/FQ1
→ L/FQ2

by ϕ(q ∧ F ) = q′ ∧ F , where q′ is the unique
element of Q2 such that q ∧ F ⊆ q′ ∧ F . Clearly, ϕ is well-de�ned.

Let q1 ∧ F, q2 ∧ F ∈ L/FQ1 . Then

ϕ((q1 ∧ F )∨̄(q2 ∧ F )) = ϕ(q3 ∧ F ) = q4 ∧ F, (6)

where q3 ∈ Q1 is the unique element such that (q1 ∨ q2)∧F ⊆ q3 ∧F and q4 ∈ Q2

is the unique element such that q3 ∧ F ⊆ q4 ∧ F . Now q1 ∨ q2 ∈ q3 ∧ F ⊆ q4 ∧ F .
Also,

ϕ(q1 ∧ F )∨̄ϕ(q2 ∧ F ) = (q5 ∧ F )∨̄(q6 ∧ F ) = q7 ∧ F, (7)
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where q5, q6 ∈ Q2 are unique elements such that q1 ∧ F ⊆ q5 ∧ F , q2 ∧ F ⊆
q6 ∧ F , and q7 ∈ Q2 is the unique element such that (q5 ∨ q6) ∧ F ⊆ q7 ∧ F .
Now q1 ∨ q2 ∈ (q4 ∧ F ) ∩ (q7 ∧ F ). Thus q4 = q7. Therefore, by (6) and (7),
ϕ((q1 ∧ F )∨̄(q2 ∧ F )) = ϕ(q1 ∧ F )∨̄ϕ(q2 ∧ F ). Similarly, it can be shown that
ϕ((q1 ∧ F )∧̄(q2 ∧ F )) = ϕ(q1 ∧ F )∧̄ϕ(q2 ∧ F ).

Let q2 ∧ F ∈ L/FQ2
. Since q2 ∈ R, there is a unique element q1 of Q1 such

that q2 ∧ F ⊆ q1 ∧ F by Proposition 2.6. But then there exists a unique q′2 ∈ Q2

such that q1 ∧ F ⊆ q′2 ∧ F . Now q2 = q′2 gives q2 ∧ F = q′2 ∧ F , and hence
ϕ(q1 ∧ F ) = q2 ∧ F . Thus ϕ is onto. Suppose that ϕ(q1 ∧ F ) = ϕ(q2 ∧ F ) = q ∧ F
say, where q ∈ Q2 is a unique such that q1 ∧ F ⊆ q ∧ F and q2 ∧ F ⊆ q ∧ F . Since
q ∈ L, there exists a unique q′ ∈ Q1 such that q ∧ F ⊆ q′ ∧ F ; hence q1 = q′ = q2.
So q1 ∧ F = q2 ∧ F . Thus ϕ : L/FQ1

→ L/FQ2
is an isomorphism.

Lemma 2.10. Assume that L is as in Remark 2.1 and let F be a Q-�lter of L.
(1) There exists a unique qe ∈ Q such that F = qe ∧ F . In particular, qe ∧ F

is the identity element of L/F .

(2) If F ′ is a �lter of L with F ⊆ F ′, then F is a F ′ ∩Q-�lter of F ′.

Proof. (1). Since 1 ∈ L, by Proposition 2.6, there exists a unique qe ∈ Q such
that F = 1 ∧ F ⊆ qe ∧ F ; hence 1 = qe ∧ a for some a ∈ F . Now it su�ces to
show that qe ∧ F ⊆ F . Let x ∈ qe ∧ F . Then x = qe ∧ b for some b ∈ F ; so
x = (qe ∧ b)∧ 1 = qe ∧ b∧ a ∈ F . Finally, by an argument like that in Proposition
2.7, qe ∧ F is the identity element of L/F .

(2). It su�ces to show that F ′ = ∪{q ∧ F : q ∈ Q ∩ F ′}. Since the inclusion
∪{q∧F : q ∈ Q∩F ′} ⊆ F ′ is clear, we will prove the reverse inclusion. Let x ∈ F ′.
By Proposition 2.6, x = q ∧ a for some q ∈ Q and a ∈ F ⊆ F ′. Then q ∈ Q ∩ F ′

since F ′ is a subtractive �lter of L, and so we have equality.

Theorem 2.11. Assume that L is as in Remark 2.1 and let F be a Q-�lter of L.
(1) If F ′ is a subtractive �lter of L and F ⊆ F ′, then F ′/F = {q∧F : q ∈ Q∩F ′}

is a subtractive �lter of L/F .

(2) If F ′ is a subtractive �lter of L/F , then F ′ = J/F for some subtractive

�lter J of L.

Proof. (1). Let qe be the unique element in Q such that qe ∧ F is the identity
in L/F . First, we show that qe ∧ F ∈ F ′/F . Let a ∧ F ∈ F ′/F ⊆ L/F , where
a ∈ F ′ ∩ Q. Then (a ∧ F )∧̄(qe ∧ F ) = a ∧ F , where (qe ∧ a) ∧ F ⊆ a ∧ F ; hence
a ∧ qe = a ∧ c ∈ F ′ for some c ∈ F . Thus qe ∈ F ′ ∩ Q since F ′ is subtractive;
so qe ∧ F ∈ F ′/F . Next, suppose that q1 ∧ F, q2 ∧ F ∈ F ′/F ; we show that
(q1 ∧ F )∧̄(q2 ∧ F ) ∈ F ′/F . Since F is a Q-�lter, there is a unique element q3 ∈ Q
with (q1∧F )∧̄(q2∧F ) = q3∧F , where (q1∧q2)∧F ⊆ q3∧F , so q1∧q2 = q3∧b ∈ F ′

for some b ∈ F ; hence q3 ∈ F ′ ∩Q since F ′ is a subtractive �lter of L. Therefore,
(q1 ∧ F )∧̄(q2 ∧ F ) ∈ F ′/F . Now it is enough to show that if r ∧ F ∈ L/F and
a ∧ F ∈ F ′/F (for some r ∈ Q, a ∈ F ′ ∩ Q), then (r ∧ F )∨̄(a ∧ F ) ∈ F ′/F .
There exists a unique element q4 ∈ Q such that (r ∧ F )∧̄(a ∧ F ) = q4 ∧ F , where
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r ∨ a ∈ (r ∨ a)∧F ⊆ q4 ∧F , so r ∨ a = q4 ∧ d ∈ F ′ for some d ∈ F . It follows that
q4 ∈ F ′ ∩Q; hence q4 ∧ F ∈ F ′/F . Thus F ′/F is a �lter of L/F . Finally, assume
that t ∧ F ∈ F ′/F and (t ∧ F )∧̄(s ∧ F ) = u ∧ F ∈ F ′/F , where t, u ∈ F ′ ∩ Q,
s ∈ Q, and (t ∧ s) ∧ F ⊆ u ∧ F . Then t ∧ s = u ∧ d ∈ F ′ for some d ∈ F ; thus
s ∈ F ′ ∩Q since F ′ is a subtractive �lter. Therefore, s ∧ F ∈ F ′/F , as needed.

(2). Assume that qe is the unique element in Q such that qe ∧F is the identity
in L/F and set J = { r ∈ L : ∃q ∈ Q s.t r ∈ q ∧ F , q ∧ F ∈ F ′}. The proof
can now be broken down into a sequence of steps.

i) F ⊆ J . Let a ∈ F . By Proposition 2.7, a ∈ F = qe ∧F ∈ F ′, so a ∈ J . Thus
F ⊆ J . Since 1 ∈ F , 1 ∈ J .

ii) J is a �lter of L. For if r, s in J , there are elements q1, q2 ∈ Q such that
q1∧F, q2∧F ∈ F ′, r = q1∧c, s = q2∧d for some c, d ∈ F , and (q1∧F )∧̄(q2∧F ) =
q3 ∧ F ∈ F ′, where q3 ∈ Q is the unique element such that (q1 ∧ q2)∧ F ⊆ q3 ∧ F ;
hence r ∧ s ∈ (q1 ∧ q2) ∧ F ⊆ q3 ∧ F ∈ F ′. Thus r ∧ s ∈ J . Similarly, if r ∈ J
and t ∈ L, then there are elements q1, q2 ∈ Q such that r ∈ q1 ∧ F ∈ F ′ and
t ∈ q2 ∧ F . Since F ′ is a �lter of R/I, (q1 ∧ F )∨̄(q2 ∧ F ) = q3 ∧ F ∈ F ′, where
r ∧ t ∈ (q1 ∨ (q2) ∧ F ⊆ q3 ∧ F ; thus r ∨ t ∈ J .

iii) J is a subtractive �lter of L. Let a, a∧b ∈ J . Then there are elements q1, q2,
and q3 of Q such that a ∈ q1∧F ∈ F ′, ab ∈ q2∧F ∈ F ′ and b ∈ q3∧F , so a = q1∧c,
a∧ b = q2 ∧ d and b = q3 ∧ f for some c, d, f ∈ F ; hence a∧ b ∈ (q4 ∧F )∩ (q2 ∧F ),
where q4 is a unique element of Q such that (q1 ∧ F )∧̄(q3 ∧ F ) = q4 ∧ F ; hence
q2 = q4. Therefore, q3∧F ∈ F ′ since F ′ is a subtractive �lter; so b ∈ J . Thus J is a
subtractive �lter of L. Finally, we can see that F ′ = J/F = {q∧F : q ∈ J∩Q}.

De�nition 2.12. Let L be as in Remark 2.1. L is called an L-domain, if a∨b = 1
(a, b ∈ L), then either a = 1 or b = 1. A proper �lter F of L is called prime if
x ∨ y ∈ F , then x ∈ F or y ∈ F .

Theorem 2.13. Assume that L is as in Remark 2.1 and let F be a Q-�lter of L.

(1) If P is a �lter of L with F ⊆ P , then P is a prime �lter of L if and only

if P/F is a prime �lter of L/F .

(2) F is a prime �lter of L if and only if L/F is a L-domain.

Proof. (1). Assume that P is a prime �lter of L and let q1 ∧ F, q2 ∧ F ∈ L/F
be such that (q1 ∧ F )∨̄(q2 ∧ F )) ∈ P/F , where q1, q2 ∈ Q. There exists a unique
q3 ∈ Q∩P such that q1 ∨ q2 ∈ (q1 ∨ q2)∧F ⊆ q3 ∧F ∈ P/F ; so q1 ∨ q2 = q3 ∧ c for
some c ∈ F ; hence q1 ∨ q2 ∈ P . Then P prime gives q1 ∈ P or q2 ∈ P ; thus either
q1 ∧ F ∈ P/F or q2 ∧ F ∈ P/.

Conversely, suppose that P/F is a prime �lter and let x, y ∈ L such that
x ∨ y ∈ P . Then there exist q4, q5 ∈ Q such that x ∈ q4 ∧ F and y ∈ q5 ∧ F ;
so x = q4 ∧ e and y = q5 ∧ f for some e, f ∈ F . Let q be the unique element in
Q such that (q4 ∧ F )∨̄(q5 ∧ F ) = q ∧ F , where (q4 ∨ q5) ∧ F ⊆ q ∧ F . It follows
that x ∨ y = q ∧ d ∈ P for some d ∈ F ; so q ∈ P since P is a subtractive �lter;
hence (q4 ∧ f)∨̄(q5 ∧ F ) = q ∧ F ∈ P/F . Now P/F is a prime �lter gives either
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q4 ∧F ∈ P/F or q5 ∧F ∈ P/F . Therefore, either q4 ∈ P (so x ∈ P ) or q5 ∈ P (so
y ∈ P ). Thus P is a prime �lter of L.

(2). Let qe be the unique element in Q such that qe ∧ F is the identity in
L/F . Let F be a prime �lter of L and q1 ∧ F, q2 ∧ F be elements of L/F such
that (q1 ∧ F )∨̄(q2 ∧ F ) = qe ∧ F , where (q1 ∨ q2) ∧ F ⊆ qe ∧ F = F . Hence
(q1 ∨ q2) ∧ a = (q1 ∧ a) ∨ (q2 ∧ a) ∈ F for every a ∈ F . Since P is a prime �lter,
either q1∧a ∈ F or q2∧a ∈ F ; hence (q1∧F )∩(qe∧F ) 6= ∅ or (q2∧F )∩(qe∧F ) 6= ∅.
This implies that q1 ∧ F = qe ∧ F or q2 ∧ F = qe ∧ F .

Conversely, assume that L/F is a L-domain and let a∨b ∈ F for some a, b ∈ L.
Since F is a partitioning �lter, there exist q1, q2 ∈ Q such that a ∈ q1 ∧ F and
b ∈ q2 ∧ F . There exists a unique q3 ∈ Q such that (q1 ∧ F )∨̄(q2 ∧ F = q3 ∧ F ,
where a ∨ b ∈ (q1 ∧ F ) ∨ (q2 ∧ F ) = (q1 ∨ q2) ∧ F ⊆ q3 ∧ F ; hence q3 = qe since
a∨b ∈ (q3∧F )∩(qe∧F ). As L/F is a L-domain, q1∧F = qe∧F or q2∧F = qe∧F .
Thus a ∈ F or b ∈ F , and the proof is complete.

Let L be as in Remark 2.1. If A is an arbitrary nonempty subset of L, then
the set T (A) consisting of all elements of L of the form (a1 ∧ a2 ∧ · · · ∧ an) ∨ x
(with ai ∈ A for all 1 6 i 6 n and x ∈ L) is a �lter of L containing A (let
u = (a1 ∧ a2 ∧ · · · ∧ an) ∨ x, v = (b1 ∧ b2 ∧ · · · ∧ bm) ∨ y ∈ T (A) and z ∈ L. An
inspection will show that u∧ v = (∧ni=1ai ∧ (∧mi=1bi)∨ t ∈ T (A) for some t ∈ L and
u ∨ z = ((∧ni=1ai) ∨ (r ∨ z) ∈ T (A); hence T (A) is a �lter of L).

Theorem 2.14. Let L be as in Remark 2.1. If F is a maximal �lter of L, then
F is a prime �lter.

Proof. Let a ∨ b ∈ F , a /∈ F and b /∈ F . As F is a maximal �lter, T (F ∪ {a}) =
T (F ∪ {b}) = L since F $ T (F ∪ {a}) ⊆ L and F $ T (F ∪ {b}) ⊆ L. Since 0 ∈ L,
we split the proof into three cases for T (F ∪ {a}).

Case 1: There existm1, ...,mn ∈ F and r ∈ L such that (m1∧m2∧...∧mn)∨r =
0. Since F is a �lter, we have 0 ∈ F which is a contradiction.

Case 2: a∨r = 0 for some r ∈ L. So b = b∨a∨r; hence b ∈ F , a contradiction.

Case 3: There exist m,n ∈ F , r, s ∈ L and a positive integers t, k such that
(m ∧

∧t
i=1 a) ∨ r = (m ∧ a) ∨ r = 0 and (n ∧

∧k
i=1 b) ∨ s = (n ∧ b) ∨ s = 0;

hence m ∧ a = 0 = n ∧ b. It follows tha m ∧ n ∧ a = m ∧ n ∧ b = 0. Thus
(m ∧ n) ∧ (a ∨ b)) = (m ∧ n ∧ a) ∨ (m ∧ n ∧ b) = 0. As (m ∧ n) ∧ (a ∨ b) ∈ F , we
obtain 0 ∈ F , a contradiction. Thus F is a prime �lter of L.
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