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Rough set theory applied to BCI-algebras

Wiesław A. Dudek, Young Bae Jun and Hee Sik Kim

Abstract

As a generalization of subalgebras/ideals in BCI-algebras, the notion of rough sub-
algebras/ideals is introduced, and some of their properties are discussed.

1. Introduction

In 1982, Pawlak introduced the concept of a rough set (see [13]). This
concept is fundamental for the examination of granularity in knowledge. It
is a concept which has many applications in data analysis (see [14]). An
algebraic approach to rough sets has been given by Iwiński [7]. Rough set
theory is applied to semigroups and groups (see [10, 11]). In 1994, Biswas
and Nanda [2] introduced and discussed the concept of rough groups and
rough subgroups. Recently, Jun [8] applied rough set theory to BCK-
algebras. In this paper, we apply the rough set theory to BCI-algebras,
and we introduce the notion of upper/lower rough subalgebras/ideals in
BCI-algebras, and discuss some of their properties.

Note that BCI-algebras are an algebraic characterization of some types
of non-classical logics. Moreover, BCI-algebras are also a generalization
of BCK-algebras. On the other side, BCI-algebras are a generalization of
T -quasigroups, too. Namely, as it is proved in [3] and [4], a BCI-algebra
is a quasigroup if and only if it is medial. Such BCI-algebra is uniquely
determined by some abelian group. In fact, such BCI-algebra is isotopic to
this group. The class of associative BCI-algebras coincides with the class
of Boolean groups.
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2. Preliminaries

Recall that a BCI-algebra is an algebra (G, ∗, 0) of type (2, 0) satisfying
the following axioms: for every x, y, z ∈ G,

• ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
• (x ∗ (x ∗ y)) ∗ y = 0,

• x ∗ x = 0,

• x ∗ y = 0 and y ∗ x = 0 imply x = y.

For any BCI-algebra G, the relation 6 defined by x 6 y if and only if
x ∗ y = 0 is a partial order on G. In any BCI-algebra the following two
identities hold:

(P1) x ∗ 0 = x,
(P2) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

A non-empty subset S of a BCI-algebra G is said to be a subalgebra of
G if x ∗ y ∈ S whenever x, y ∈ S. A non-empty subset A of a BCI-algebra
G is called an ideal of G, denoted by A v G, if

• 0 ∈ A,

• x ∗ y ∈ A and y ∈ A imply x ∈ A.

An ideal A of a BCI-algebra G is said to be closed if 0 ∗ x ∈ A for all
x ∈ A. Note that an ideal of a BCI-algebra may not be a subalgebra in
general, but every closed ideal is closed with respect to a BCI-operation,
i.e. it is a subalgebra (cf. [5]).

A non-empty subset A of a BCI-algebra G is called a p-ideal of G if it
satisfies the following two conditions

• 0 ∈ A,

• (x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A imply x ∈ A.

Note that in BCI-algebras every p-ideal is an ideal, but not converse
(see [15]).

Let ρ be a congruence relation on G, that is, ρ is an equivalence relation
on G such that (x, y) ∈ ρ implies (x ∗ z, y ∗ z) ∈ ρ and (z ∗ x, z ∗ y) ∈ ρ for
all z ∈ G. The set of all equivalence classes of G with respect to ρ will be
denoted by G/ρ. On G/ρ we define an operation ∗ putting [x]ρ∗[y]ρ = [x∗y]ρ
for all [x]ρ, [y]ρ ∈ G/ρ. It is clear that such operation is well-defined, but
(G/ρ, ∗, [0]ρ) may not be a BCI-algebra, because G/ρ does not satisfy the
fourth condition of a BCI-algebra.
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For any non-empty subsets A and B of a BCI-algebra G we define the
complex multiplication putting A ∗B = {x ∗ y | x ∈ A, y ∈ B}.

3. Roughness of some ideals

Let V be a set and ρ an equivalence relation on V and let P(V ) denote
the power set of V . For all x ∈ V, let [x]ρ denote the equivalence class of
G with respect to ρ. Define the functions ρ− and ρ− from P(V ) to P(V )
putting for every S ∈ P(V )

ρ−(S) = {x ∈ V | [x]ρ ⊆ S},
ρ−(S) = {x ∈ V | [x]ρ ∩ S 6= ∅}.

S
V

S ⊂ V ρ−(S) ⊆ S S ⊆ ρ−(S)

ρ−(S) is called the lower approximation of S while ρ−(S) is called the
upper approximation. The set S is called definable if ρ−(S) = ρ−(S) and
rough otherwise. The pair (V, ρ) is called an approximation space.

Directly from the definition by simple calculations we can see that the
following proposition holds.

Proposition 1. Let A and B be non-empty subsets of a BCI-algebra G.
If ρ is a congruence relation on G, then the following hold:

(1) ρ−(A) ⊆ A ⊆ ρ−(A),
(2) ρ−(A ∪B) = ρ−(A) ∪ ρ−(B),
(3) ρ−(A ∩B) = ρ−(A) ∩ ρ−(B),
(4) A ⊆ B implies ρ−(A) ⊆ ρ−(B) and ρ−(A) ⊆ ρ−(B),
(5) ρ−(A ∪B) ⊇ ρ−(A) ∪ ρ−(B),
(6) ρ−(A ∩B) ⊆ ρ−(A) ∩ ρ−(B),
(7) ρ−(A) ∗ ρ−(B) ⊆ ρ−(A ∗B),
(8) ρ−(A) ∗ ρ−(B) ⊆ ρ−(A ∗B) whenever ρ−(A) ∗ ρ−(B) 6= ∅ and

ρ−(A ∗B) 6= ∅.
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Proposition 2. If ρ is a congruence relation on a BCI-algebra G, then
the following are equivalent:

(1) x ∗ y ∈ [0]ρ and y ∗ x ∈ [0]ρ imply (x, y) ∈ ρ,
(2) ρ is regular, i.e. [x]ρ ∗ [y]ρ = [0]ρ = [y]ρ ∗ [x]ρ implies [x]ρ = [y]ρ,
(3) (G/ρ, ∗, [0]ρ) is a BCI-algebra.

Proof. (1) ⇒ (2) Suppose [x]ρ ∗ [y]ρ = [0]ρ = [y]ρ ∗ [x]ρ. Then [x ∗ y]ρ =
[0]ρ = [y ∗ x]ρ, and so (x ∗ y, 0) ∈ ρ and (y ∗ x, 0) ∈ ρ. It follows from (1)
that (x, y) ∈ ρ. Hence [x]ρ = [y]ρ.

(2) ⇒ (3) Obvious.
(3) ⇒ (1) Let x, y ∈ G be such that x ∗ y ∈ [0]ρ and y ∗ x ∈ [0]ρ. Then

[x]ρ ∗ [y]ρ = [x ∗ y]ρ = [0]ρ = [y ∗ x]ρ = [y]ρ ∗ [x]ρ .

It follows from the fourth condition of the definition of a BCI-algebra that
[x]ρ = [y]ρ. Thus (x, y) ∈ ρ. This completes the proof.

Theorem 3. If ρ is a congruence relation on G, then [0]ρ is a closed ideal,
and hence a subalgebra of G.

Proof. Obviously, 0 ∈ [0]ρ. Let x, y ∈ G be such that x ∗ y ∈ [0]ρ and
y ∈ [0]ρ. Then (x ∗ y, 0) ∈ ρ and (y, 0) ∈ ρ. Since ρ is a congruence
relation on G, it follows from (P1) that (x ∗ y, x) = (x ∗ y, x ∗ 0) ∈ ρ so
that (x, 0) ∈ ρ, that is, x ∈ [0]ρ. If x ∈ [0]ρ, then (x, 0) ∈ ρ and hence
(0 ∗x, 0) = (0 ∗ x, 0 ∗ 0) ∈ ρ, that is, 0 ∗ x ∈ [0]ρ. Hence [0]ρ is a closed ideal
of G.

Definition 4. A non-empty subset S of a BCI-algebra G is called an upper
(resp. a lower) rough subalgebra (or, (closed) ideal) of G if the upper (resp.
nonempty lower) approximation of S is a subalgebra (or, (closed) ideal) of
G. If S is both an upper and a lower rough subalgebra (or, (closed) ideal)
of G, we say that S is a rough subalgebra (or (closed) ideal) of G.

Theorem 5. Every subalgebra is a rough subalgebra.

Proof. Let S be a subalgebra of a BCI-algebra G. Taking A = B = S in
Proposition 1(8), we have

ρ−(S) ∗ ρ−(S) ⊆ ρ−(S ∗ S) ⊆ ρ−(S)

because S is a subalgebra of G. Hence ρ−(S) is a subalgebra of G, that is, S
is a lower rough subalgebra of G. We now show that ρ−(S) is a subalgebra
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of G. Let x, y ∈ ρ−(S). Then [x]ρ ∩ S 6= ∅ and [y]ρ ∩ S 6= ∅. Thus there
exist ax, ay ∈ S such that ax ∈ [x]ρ and ay ∈ [y]ρ. It follows that (ax, x) ∈ ρ
and (ay, y) ∈ ρ so that (ax ∗ ay, x ∗ y) ∈ ρ, that is, ax ∗ ay ∈ [x ∗ y]ρ.
On the other hand, since S is a subalgebra of G, we have ax ∗ ay ∈ S.
Hence ax ∗ ay ∈ [x ∗ y]ρ ∩ S, that is, [x ∗ y]ρ ∩ S 6= ∅. This shows that
x ∗ y ∈ ρ−(S). Therefore S is an upper rough subalgebra of G. This
completes the proof.

For any subset I of a BCI-algebra G, define a relation ρ(I) on G induced
by I in the following way:

(x, y) ∈ ρ(I) ⇐⇒ x ∗ y, y ∗ x ∈ I.

ρ(I)−(S) is called the lower approximation of S by I, while ρ(I)−(S) is
called the upper approximation by I. In the case ρ(I)−(S) = ρ(I)−(S) we
say that S is called definable with respect to I. In otherwise S is rough with
respect to I. Obviously ρ(I)−(G) = G = ρ(I)−(G) for any I v G. This
means that any BCI-algebra is definable with respect to any its ideal.

If I is an ideal of G, then ρ(I) is a regular congruence relation on G (see
[9]). Note that in the case of BCI-quasigroups every subalgebra is an ideal.
The converse is not true (see [4]), but a finite subset of such quasigroup is
an ideal if and only if it is a subalgebra. Thus in BCI-algebras all relations
ρ(I) induced by a finite set I are regular congruences.

The following example shows that there exists non-empty subset S of G
which is not an ideal, but for which S is an upper rough subalgebra of G.
Hence we know that the notion of an upper rough subalgebra is an extended
notion of a subalgebra.

Example 6. Let G = {0, a, b, c, d} be a BCI-algebra with the following
Cayley table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0
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Then I = {0, a} v G, and thus [0]ρ(I) = [a]ρ(I) = I, [b]ρ(I) = {b},
[c]ρ(I) = {c}, and [d]ρ(I) = {d}. Consider a subset S = {a, b} of G which is
not a subalgebra of G. Then ρ(I)−(S) = {0, a, b} which is a subalgebra.

On the other hand, for M = {0, a, c} which is a subalgebra but not an
ideal, we have ρ(I)−(M) = ρ(I)−(M) = M . Hence M is definable with
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respect to I. It is not to difficult to see that M is not definable with respect
to J = {0, b} v G.

Proposition 7. Every non-empty subset of a BCI-algebra is definable with
respect to the trivial ideal {0}.
Proof. If a ∈ [x]ρ({0}) then (a, x) ∈ ρ({0}) and so a ∗ x ∈ {0} and
x ∗ a ∈ {0}. It follows that a = x so that [x]ρ({0}) = {x} for all x ∈ G.
Hence

ρ({0})−(S) =
{
x ∈ G | [x]ρ({0}) ⊆ S

}
= S

and
ρ({0})−(S) =

{
x ∈ G | [x]ρ({0}) ∩ S 6= ∅} = S.

This completes the proof.

Lemma 8. If I and J are ideals of a BCI-algebra G such that I ⊆ J ,
then ρ(I) ⊆ ρ(J).

Proof. If (x, y) ∈ ρ(I), then x ∗ y ∈ I ⊆ J and y ∗ x ∈ I ⊆ J . Hence
(x, y) ∈ ρ(J), completing the proof.

Remark 9. Let I and J be ideals of G such that I 6= J . Then ρ(I)−(J) is
not an ideal of G in general. Indeed, it is easy to see that I = {0, a} and
J = {0, b} are ideals of a BCI-algebra G defined in Example 6. But

ρ(I)−(J) = {x ∈ G | [x]ρ(I) ⊆ J} = {b}

is not an ideal of G.

The following example shows that there exists a non-ideal J of G for
which J is an upper rough ideal of G with respect to an ideal of G. Hence
we know that the notion of an upper rough ideal is an extended notion of
an ideal.

Example 10. Consider a BCI-algebra G = {0, a, b, c, d} with the following
Cayley table:

∗ 0 a b c d

0 0 0 c b c
a a 0 c b b
b b b 0 c c
c c c b 0 0
d d c b a 0
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Then for I = {0, a} v G we have [0]ρ(I) = [a]ρ(I) = I, [b]ρ(I) = {b}, and
[c]ρ(I) = [d]ρ(I) = {c, d}. Thus for J = {0, b, c}, which is not an ideal of G,
we obtain

ρ(I)−(J) = {x ∈ G | [x]ρ(I) ∩ J 6= ∅} = {0, a, b, c, d} v G.

Theorem 11. Let I ⊆ J be two ideals of a BCI-algebra G. Then

(1) ρ(I)−(J) (6= ∅) is an ideal of G, that is, J is a lower rough ideal of G
with respect to I.

(2) ρ(I)−(J) is an ideal of G, that is, J is an upper rough ideal of G with
respect to I. Moreover if J is closed, then so is ρ(I)−(J).

Proof. (1) Let x ∈ [0]ρ(I). Then x = x∗0 ∈ I ⊆ J and so [0]ρ(I) ⊆ J . Hence
0 ∈ ρ(I)−(J). Let x, y ∈ G be such that x∗y ∈ ρ(I)−(J) and y ∈ ρ(I)−(J).
Then [y]ρ(I) ⊆ J and

[x]ρ(I) ∗ [y]ρ(I) = [x ∗ y]ρ(I) ⊆ J.

Let ax ∈ [x]ρ(I) and ay ∈ [y]ρ(I). Then (ax, x) ∈ ρ(I) and (ay, y) ∈ ρ(I),
which imply (ax ∗ ay, x ∗ y) ∈ ρ(I). Hence ax ∗ ay ∈ [x ∗ y]ρ(I) ⊆ J. Since
ay ∈ [y]ρ(I) ⊆ J , it follows that ax ∈ J . Therefore [x]ρ(I) ⊆ J , or equiva-
lently, x ∈ ρ(I)−(J). This shows that ρ(I)−(J) is an ideal of G.

(2) Obviously, 0 ∈ ρ(I)−(J). Let x, y ∈ G be such that y ∈ ρ(I)−(J)
and x∗y ∈ ρ(I)−(J). Then [y]ρ(I)∩J 6= ∅ and [x∗y]ρ(I)∩J 6= ∅, and so there
exist u, v ∈ J such that u ∈ [y]ρ(I) and v ∈ [x ∗ y]ρ(I). Hence (u, y) ∈ ρ(I)
and (v, x ∗ y) ∈ ρ(I) which imply y ∗ u ∈ I ⊆ J and (x ∗ y) ∗ v ∈ I ⊆ J.
Since u, v ∈ J and J is an ideal, it follows that y ∈ J and x ∗ y ∈ J so
that x ∈ J . Note that x ∈ [x]ρ(I), thus x ∈ [x]ρ(I)∩J , that is, [x]ρ(I)∩J 6= ∅.
Therefore x ∈ ρ(I)−(J), and consequently J is an upper rough ideal of G
with respect to I. Now let x ∈ ρ(I)−(J). Then [x]ρ(I) ∩ J 6= ∅, and so
there exists ax ∈ J such that ax ∈ [x]ρ(I). Since J is closed, it follows that
0 ∗ ax ∈ J and hence

0 ∗ ax ∈
(
[0]ρ(I) ∗ [x]ρ(I)

) ∩ J = [0 ∗ x]ρ(I) ∩ J,

that is, [0 ∗ x]ρ(I) ∩ J 6= ∅. Hence 0 ∗ x ∈ ρ(I)−(J). This completes the
proof.
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Lemma 12. ([15, Theorem 4.1]) An ideal I of a BCI-algebra G is a p-ideal
if and only if for each x, y, z ∈ G,

(x ∗ z) ∗ (y ∗ z) ∈ I implies x ∗ y ∈ I.

It is not difficult to see that in the case of BCI-quasigroups every ideal
is a p-ideal and conversely.

Theorem 13. Let I v G and let J be a p-ideal of a BCI-algebra G
containing I. Then ρ(I)−(J) ( 6= ∅) and ρ(I)−(J) are p-ideals of G.

Proof. Let x, y, z ∈ G be such that (x ∗ z) ∗ (y ∗ z) ∈ ρ(I)−(J). Then
(
[x]ρ(I) ∗ [z]ρ(I)

) ∗ (
[y]ρ(I) ∗ [z]ρ(I)

)
= [(x ∗ z) ∗ (y ∗ z)]ρ(I) ⊆ J.

Let w ∈ [x ∗ y]ρ(I) = [x]ρ(I) ∗ [y]ρ(I). Then w = ax ∗ ay for some
ax ∈ [x]ρ(I) and ay ∈ [y]ρ(I). From ax ∈ [x]ρ(I) and ay ∈ [y]ρ(I), we have
(ax, x) ∈ ρ(I) and (ay, y) ∈ ρ(I). Taking az ∈ [z]ρ(I), then (az, z) ∈ ρ(I).
Since ρ(I) is a congruence relation, we get (ax ∗ az, x ∗ z) ∈ ρ(I) and
(ay ∗ az, y ∗ z) ∈ ρ(I), and thus

(
(ax ∗ az) ∗ (ay ∗ az), (x ∗ z) ∗ (y ∗ z)

) ∈ ρ(I).

This means that

(ax ∗ az) ∗ (ay ∗ az) ∈ [(x ∗ z) ∗ (y ∗ z)]ρ(I) ⊆ J.

Since J is a p-ideal, it follows from Lemma 12 that w = ax ∗ ay ∈ J so that
[x ∗ y]ρ(I) ⊆ J , or equivalently, x ∗ y ∈ ρ(I)−(J). Combining Theorem 11(1)
and Lemma 12, ρ(I)−(J) is a p-ideal of G.

Now let x, y, z ∈ G be such that (x ∗ z) ∗ (y ∗ z) ∈ ρ(I)−(J) and
y ∈ ρ(I)−(J). Then [y]ρ(I) ∩ J 6= ∅ and [(x ∗ z) ∗ (y ∗ z)]ρ(I) ∩ J 6= ∅, and
thus there are a, b ∈ J such that a ∈ [y]ρ(I) and b ∈ [(x ∗ z) ∗ (y ∗ z)]ρ(I).
Hence (a, y) ∈ ρ(I) and

(
b, (x ∗ z) ∗ (y ∗ z)

) ∈ ρ(I), which imply that
y ∗ a ∈ I ⊆ J and

(
(x ∗ z) ∗ (y ∗ z)

) ∗ b ∈ I ⊆ J . Since J is an ideal and
since a, b ∈ J , we have y ∈ J and (x ∗ z) ∗ (y ∗ z) ∈ J . Since J is a p-ideal,
it follows that x ∈ J . Note that x ∈ [x]ρ(I), and thus x ∈ [x]ρ(I) ∩ J , that
is, [x]ρ(I) ∩ J 6= ∅. Therefore x ∈ ρ(I)−(J). This completes the proof.
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