Rough set theory applied to BCI-algebras

Wiesław A. Dudek, Young Bae Jun and Hee Sik Kim

Abstract

As a generalization of subalgebras/ideals in *BCI*-algebras, the notion of rough subalgebras/ideals is introduced, and some of their properties are discussed.

1. Introduction

In 1982, Pawlak introduced the concept of a rough set (see [13]). This concept is fundamental for the examination of granularity in knowledge. It is a concept which has many applications in data analysis (see [14]). An algebraic approach to rough sets has been given by Iwiński [7]. Rough set theory is applied to semigroups and groups (see [10, 11]). In 1994, Biswas and Nanda [2] introduced and discussed the concept of rough groups and rough subgroups. Recently, Jun [8] applied rough set theory to BCK-algebras. In this paper, we apply the rough set theory to BCI-algebras, and we introduce the notion of upper/lower rough subalgebras/ideals in BCI-algebras, and discuss some of their properties.

Note that BCI-algebras are an algebraic characterization of some types of non-classical logics. Moreover, BCI-algebras are also a generalization of BCK-algebras. On the other side, BCI-algebras are a generalization of T-quasigroups, too. Namely, as it is proved in [3] and [4], a BCI-algebra is a quasigroup if and only if it is medial. Such BCI-algebra is uniquely determined by some abelian group. In fact, such BCI-algebra is isotopic to this group. The class of associative BCI-algebras coincides with the class of Boolean groups.

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25, 68T30

Keywords: upper/lower approximation, definable, upper/lower rough subalgebra

2. Preliminaries

Recall that a *BCI-algebra* is an algebra (G, *, 0) of type (2, 0) satisfying the following axioms: for every $x, y, z \in G$,

- ((x*y)*(x*z))*(z*y) = 0,
- (x * (x * y)) * y = 0,
- x * x = 0,
- x * y = 0 and y * x = 0 imply x = y.

For any *BCI*-algebra *G*, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on *G*. In any *BCI*-algebra the following two identities hold:

 $\begin{array}{ll} (P_1) & x*0=x, \\ (P_2) & (x*y)*z=(x*z)*y. \end{array}$

A non-empty subset S of a BCI-algebra G is said to be a subalgebra of G if $x * y \in S$ whenever $x, y \in S$. A non-empty subset A of a BCI-algebra G is called an *ideal* of G, denoted by $A \sqsubseteq G$, if

- $0 \in A$,
- $x * y \in A$ and $y \in A$ imply $x \in A$.

An ideal A of a *BCI*-algebra G is said to be *closed* if $0 * x \in A$ for all $x \in A$. Note that an ideal of a *BCI*-algebra may not be a subalgebra in general, but every closed ideal is closed with respect to a *BCI*-operation, i.e. it is a subalgebra (cf. [5]).

A non-empty subset A of a BCI-algebra G is called a p-ideal of G if it satisfies the following two conditions

- $0 \in A$,
- $(x * z) * (y * z) \in A$ and $y \in A$ imply $x \in A$.

Note that in BCI-algebras every p-ideal is an ideal, but not converse (see [15]).

Let ρ be a congruence relation on G, that is, ρ is an equivalence relation on G such that $(x, y) \in \rho$ implies $(x * z, y * z) \in \rho$ and $(z * x, z * y) \in \rho$ for all $z \in G$. The set of all equivalence classes of G with respect to ρ will be denoted by G/ρ . On G/ρ we define an operation * putting $[x]_{\rho}*[y]_{\rho} = [x*y]_{\rho}$ for all $[x]_{\rho}, [y]_{\rho} \in G/\rho$. It is clear that such operation is well-defined, but $(G/\rho, *, [0]_{\rho})$ may not be a *BCI*-algebra, because G/ρ does not satisfy the fourth condition of a *BCI*-algebra. For any non-empty subsets A and B of a BCI-algebra G we define the complex multiplication putting $A * B = \{x * y \mid x \in A, y \in B\}.$

3. Roughness of some ideals

Let V be a set and ρ an equivalence relation on V and let $\mathcal{P}(V)$ denote the power set of V. For all $x \in V$, let $[x]_{\rho}$ denote the equivalence class of G with respect to ρ . Define the functions ρ_{-} and ρ^{-} from $\mathcal{P}(V)$ to $\mathcal{P}(V)$ putting for every $S \in \mathcal{P}(V)$

$$\rho_{-}(S) = \{ x \in V \mid [x]_{\rho} \subseteq S \},$$
$$\rho^{-}(S) = \{ x \in V \mid [x]_{\rho} \cap S \neq \emptyset \}.$$

 $\rho_{-}(S)$ is called the *lower approximation* of S while $\rho^{-}(S)$ is called the *upper approximation*. The set S is called *definable* if $\rho_{-}(S) = \rho^{-}(S)$ and *rough* otherwise. The pair (V, ρ) is called an *approximation space*.

Directly from the definition by simple calculations we can see that the following proposition holds.

Proposition 1. Let A and B be non-empty subsets of a BCI-algebra G. If ρ is a congruence relation on G, then the following hold:

- (1) $\rho_{-}(A) \subseteq A \subseteq \rho^{-}(A),$
- (2) $\rho^{-}(A \cup B) = \rho^{-}(A) \cup \rho^{-}(B),$
- (3) $\rho_{-}(A \cap B) = \rho_{-}(A) \cap \rho_{-}(B),$
- (4) $A \subseteq B$ implies $\rho_{-}(A) \subseteq \rho_{-}(B)$ and $\rho^{-}(A) \subseteq \rho^{-}(B)$,
- (5) $\rho_{-}(A \cup B) \supseteq \rho_{-}(A) \cup \rho_{-}(B),$
- (6) $\rho^-(A \cap B) \subseteq \rho^-(A) \cap \rho^-(B),$
- (7) $\rho^{-}(A) * \rho^{-}(B) \subseteq \rho^{-}(A * B),$
- (8) $\rho_{-}(A) * \rho_{-}(B) \subseteq \rho_{-}(A * B)$ whenever $\rho_{-}(A) * \rho_{-}(B) \neq \emptyset$ and $\rho_{-}(A * B) \neq \emptyset$.

Proposition 2. If ρ is a congruence relation on a BCI-algebra G, then the following are equivalent:

- (1) $x * y \in [0]_{\rho}$ and $y * x \in [0]_{\rho}$ imply $(x, y) \in \rho$,
- (2) ρ is regular, i.e. $[x]_{\rho} * [y]_{\rho} = [0]_{\rho} = [y]_{\rho} * [x]_{\rho}$ implies $[x]_{\rho} = [y]_{\rho}$,
- (3) $(G/\rho, *, [0]_{\rho})$ is a BCI-algebra.

Proof. (1) \Rightarrow (2) Suppose $[x]_{\rho} * [y]_{\rho} = [0]_{\rho} = [y]_{\rho} * [x]_{\rho}$. Then $[x * y]_{\rho} = [0]_{\rho} = [y * x]_{\rho}$, and so $(x * y, 0) \in \rho$ and $(y * x, 0) \in \rho$. It follows from (1) that $(x, y) \in \rho$. Hence $[x]_{\rho} = [y]_{\rho}$.

 $(2) \Rightarrow (3)$ Obvious.

(3) \Rightarrow (1) Let $x, y \in G$ be such that $x * y \in [0]_{\rho}$ and $y * x \in [0]_{\rho}$. Then

$$[x]_{\rho} * [y]_{\rho} = [x * y]_{\rho} = [0]_{\rho} = [y * x]_{\rho} = [y]_{\rho} * [x]_{\rho}.$$

It follows from the fourth condition of the definition of a *BCI*-algebra that $[x]_{\rho} = [y]_{\rho}$. Thus $(x, y) \in \rho$. This completes the proof.

Theorem 3. If ρ is a congruence relation on G, then $[0]_{\rho}$ is a closed ideal, and hence a subalgebra of G.

Proof. Obviously, $0 \in [0]_{\rho}$. Let $x, y \in G$ be such that $x * y \in [0]_{\rho}$ and $y \in [0]_{\rho}$. Then $(x * y, 0) \in \rho$ and $(y, 0) \in \rho$. Since ρ is a congruence relation on G, it follows from (P_1) that $(x * y, x) = (x * y, x * 0) \in \rho$ so that $(x, 0) \in \rho$, that is, $x \in [0]_{\rho}$. If $x \in [0]_{\rho}$, then $(x, 0) \in \rho$ and hence $(0 * x, 0) = (0 * x, 0 * 0) \in \rho$, that is, $0 * x \in [0]_{\rho}$. Hence $[0]_{\rho}$ is a closed ideal of G.

Definition 4. A non-empty subset S of a BCI-algebra G is called an *upper* (resp. a *lower*) rough subalgebra (or, (closed) ideal) of G if the upper (resp. nonempty lower) approximation of S is a subalgebra (or, (closed) ideal) of G. If S is both an upper and a lower rough subalgebra (or, (closed) ideal) of G, we say that S is a rough subalgebra (or (closed) ideal) of G.

Theorem 5. Every subalgebra is a rough subalgebra.

Proof. Let S be a subalgebra of a *BCI*-algebra G. Taking A = B = S in Proposition 1(8), we have

$$\rho_{-}(S) * \rho_{-}(S) \subseteq \rho_{-}(S * S) \subseteq \rho_{-}(S)$$

because S is a subalgebra of G. Hence $\rho_{-}(S)$ is a subalgebra of G, that is, S is a lower rough subalgebra of G. We now show that $\rho^{-}(S)$ is a subalgebra

of G. Let $x, y \in \rho^{-}(S)$. Then $[x]_{\rho} \cap S \neq \emptyset$ and $[y]_{\rho} \cap S \neq \emptyset$. Thus there exist $a_x, a_y \in S$ such that $a_x \in [x]_{\rho}$ and $a_y \in [y]_{\rho}$. It follows that $(a_x, x) \in \rho$ and $(a_y, y) \in \rho$ so that $(a_x * a_y, x * y) \in \rho$, that is, $a_x * a_y \in [x * y]_{\rho}$. On the other hand, since S is a subalgebra of G, we have $a_x * a_y \in S$. Hence $a_x * a_y \in [x * y]_{\rho} \cap S$, that is, $[x * y]_{\rho} \cap S \neq \emptyset$. This shows that $x * y \in \rho^{-}(S)$. Therefore S is an upper rough subalgebra of G. This completes the proof.

For any subset I of a BCI-algebra G, define a relation $\rho(I)$ on G induced by I in the following way:

$$(x,y) \in \rho(I) \iff x * y, y * x \in I.$$

 $\rho(I)_{-}(S)$ is called the *lower approximation* of S by I, while $\rho(I)^{-}(S)$ is called the *upper approximation* by I. In the case $\rho(I)_{-}(S) = \rho(I)^{-}(S)$ we say that S is called *definable* with respect to I. In otherwise S is *rough* with respect to I. Obviously $\rho(I)_{-}(G) = G = \rho(I)^{-}(G)$ for any $I \sqsubseteq G$. This means that any *BCI*-algebra is definable with respect to any its ideal.

If I is an ideal of G, then $\rho(I)$ is a regular congruence relation on G (see [9]). Note that in the case of *BCI*-quasigroups every subalgebra is an ideal. The converse is not true (see [4]), but a finite subset of such quasigroup is an ideal if and only if it is a subalgebra. Thus in *BCI*-algebras all relations $\rho(I)$ induced by a finite set I are regular congruences.

The following example shows that there exists non-empty subset S of G which is not an ideal, but for which S is an upper rough subalgebra of G. Hence we know that the notion of an upper rough subalgebra is an extended notion of a subalgebra.

Example 6. Let $G = \{0, a, b, c, d\}$ be a *BCI*-algebra with the following Cayley table:

Then $I = \{0, a\} \sqsubseteq G$, and thus $[0]_{\rho(I)} = [a]_{\rho(I)} = I$, $[b]_{\rho(I)} = \{b\}$, $[c]_{\rho(I)} = \{c\}$, and $[d]_{\rho(I)} = \{d\}$. Consider a subset $S = \{a, b\}$ of G which is not a subalgebra of G. Then $\rho(I)^-(S) = \{0, a, b\}$ which is a subalgebra.

On the other hand, for $M = \{0, a, c\}$ which is a subalgebra but not an ideal, we have $\rho(I)^{-}(M) = \rho(I)_{-}(M) = M$. Hence M is definable with

respect to I. It is not to difficult to see that M is not definable with respect to $J = \{0, b\} \sqsubseteq G$.

Proposition 7. Every non-empty subset of a BCI-algebra is definable with respect to the trivial ideal $\{0\}$.

Proof. If $a \in [x]_{\rho(\{0\})}$ then $(a, x) \in \rho(\{0\})$ and so $a * x \in \{0\}$ and $x * a \in \{0\}$. It follows that a = x so that $[x]_{\rho(\{0\})} = \{x\}$ for all $x \in G$. Hence

$$\rho(\{0\})_{-}(S) = \left\{ x \in G \mid [x]_{\rho(\{0\})} \subseteq S \right\} = S$$

and

$$\rho(\{0\})^{-}(S) = \left\{ x \in G \mid [x]_{\rho(\{0\})} \cap S \neq \emptyset \right\} = S.$$

This completes the proof.

Lemma 8. If I and J are ideals of a BCI-algebra G such that $I \subseteq J$, then $\rho(I) \subseteq \rho(J)$.

Proof. If $(x, y) \in \rho(I)$, then $x * y \in I \subseteq J$ and $y * x \in I \subseteq J$. Hence $(x, y) \in \rho(J)$, completing the proof.

Remark 9. Let *I* and *J* be ideals of *G* such that $I \neq J$. Then $\rho(I)_{-}(J)$ is not an ideal of *G* in general. Indeed, it is easy to see that $I = \{0, a\}$ and $J = \{0, b\}$ are ideals of a *BCI*-algebra *G* defined in Example 6. But

$$\rho(I)_{-}(J) = \{x \in G \mid [x]_{\rho(I)} \subseteq J\} = \{b\}$$

is not an ideal of G.

The following example shows that there exists a non-ideal J of G for which J is an upper rough ideal of G with respect to an ideal of G. Hence we know that the notion of an upper rough ideal is an extended notion of an ideal.

Example 10. Consider a *BCI*-algebra $G = \{0, a, b, c, d\}$ with the following Cayley table:

*	0	a	b	c	d
0	0	0	c	b	c
a	a	0	c	b	b
b	b	b	0	c	c
c	c	c	b	0	0
d	d	c	b	a	0

Then for $I = \{0, a\} \sqsubseteq G$ we have $[0]_{\rho(I)} = [a]_{\rho(I)} = I$, $[b]_{\rho(I)} = \{b\}$, and $[c]_{\rho(I)} = [d]_{\rho(I)} = \{c, d\}$. Thus for $J = \{0, b, c\}$, which is not an ideal of G, we obtain

$$\rho(I)^{-}(J) = \{x \in G \mid [x]_{\rho(I)} \cap J \neq \emptyset\} = \{0, a, b, c, d\} \sqsubseteq G.$$

Theorem 11. Let $I \subseteq J$ be two ideals of a BCI-algebra G. Then

- (1) $\rho(I)_{-}(J) \ (\neq \emptyset)$ is an ideal of G, that is, J is a lower rough ideal of G with respect to I.
- (2) ρ(I)⁻(J) is an ideal of G, that is, J is an upper rough ideal of G with respect to I. Moreover if J is closed, then so is ρ(I)⁻(J).

Proof. (1) Let $x \in [0]_{\rho(I)}$. Then $x = x * 0 \in I \subseteq J$ and so $[0]_{\rho(I)} \subseteq J$. Hence $0 \in \rho(I)_{-}(J)$. Let $x, y \in G$ be such that $x * y \in \rho(I)_{-}(J)$ and $y \in \rho(I)_{-}(J)$. Then $[y]_{\rho(I)} \subseteq J$ and

$$[x]_{\rho(I)} * [y]_{\rho(I)} = [x * y]_{\rho(I)} \subseteq J.$$

Let $a_x \in [x]_{\rho(I)}$ and $a_y \in [y]_{\rho(I)}$. Then $(a_x, x) \in \rho(I)$ and $(a_y, y) \in \rho(I)$, which imply $(a_x * a_y, x * y) \in \rho(I)$. Hence $a_x * a_y \in [x * y]_{\rho(I)} \subseteq J$. Since $a_y \in [y]_{\rho(I)} \subseteq J$, it follows that $a_x \in J$. Therefore $[x]_{\rho(I)} \subseteq J$, or equivalently, $x \in \rho(I)_{-}(J)$. This shows that $\rho(I)_{-}(J)$ is an ideal of G.

(2) Obviously, $0 \in \rho(I)^{-}(J)$. Let $x, y \in G$ be such that $y \in \rho(I)^{-}(J)$ and $x * y \in \rho(I)^{-}(J)$. Then $[y]_{\rho(I)} \cap J \neq \emptyset$ and $[x * y]_{\rho(I)} \cap J \neq \emptyset$, and so there exist $u, v \in J$ such that $u \in [y]_{\rho(I)}$ and $v \in [x * y]_{\rho(I)}$. Hence $(u, y) \in \rho(I)$ and $(v, x * y) \in \rho(I)$ which imply $y * u \in I \subseteq J$ and $(x * y) * v \in I \subseteq J$. Since $u, v \in J$ and J is an ideal, it follows that $y \in J$ and $x * y \in J$ so that $x \in J$. Note that $x \in [x]_{\rho(I)}$, thus $x \in [x]_{\rho(I)} \cap J$, that is, $[x]_{\rho(I)} \cap J \neq \emptyset$. Therefore $x \in \rho(I)^{-}(J)$, and consequently J is an upper rough ideal of Gwith respect to I. Now let $x \in \rho(I)^{-}(J)$. Then $[x]_{\rho(I)} \cap J \neq \emptyset$, and so there exists $a_x \in J$ such that $a_x \in [x]_{\rho(I)}$. Since J is closed, it follows that $0 * a_x \in J$ and hence

$$0 * a_x \in ([0]_{\rho(I)} * [x]_{\rho(I)}) \cap J = [0 * x]_{\rho(I)} \cap J,$$

that is, $[0 * x]_{\rho(I)} \cap J \neq \emptyset$. Hence $0 * x \in \rho(I)^{-}(J)$. This completes the proof.

Lemma 12. ([15, Theorem 4.1]) An ideal I of a BCI-algebra G is a p-ideal if and only if for each $x, y, z \in G$,

$$(x * z) * (y * z) \in I$$
 implies $x * y \in I$.

It is not difficult to see that in the case of BCI-quasigroups every ideal is a p-ideal and conversely.

Theorem 13. Let $I \sqsubseteq G$ and let J be a p-ideal of a BCI-algebra G containing I. Then $\rho(I)_{-}(J) \ (\neq \emptyset)$ and $\rho(I)^{-}(J)$ are p-ideals of G.

Proof. Let $x, y, z \in G$ be such that $(x * z) * (y * z) \in \rho(I)_{-}(J)$. Then

$$\left([x]_{\rho(I)} * [z]_{\rho(I)} \right) * \left([y]_{\rho(I)} * [z]_{\rho(I)} \right) = [(x * z) * (y * z)]_{\rho(I)} \subseteq J.$$

Let $w \in [x * y]_{\rho(I)} = [x]_{\rho(I)} * [y]_{\rho(I)}$. Then $w = a_x * a_y$ for some $a_x \in [x]_{\rho(I)}$ and $a_y \in [y]_{\rho(I)}$. From $a_x \in [x]_{\rho(I)}$ and $a_y \in [y]_{\rho(I)}$, we have $(a_x, x) \in \rho(I)$ and $(a_y, y) \in \rho(I)$. Taking $a_z \in [z]_{\rho(I)}$, then $(a_z, z) \in \rho(I)$. Since $\rho(I)$ is a congruence relation, we get $(a_x * a_z, x * z) \in \rho(I)$ and $(a_y * a_z, y * z) \in \rho(I)$, and thus

$$((a_x * a_z) * (a_y * a_z), (x * z) * (y * z)) \in \rho(I).$$

This means that

$$(a_x * a_z) * (a_y * a_z) \in [(x * z) * (y * z)]_{\rho(I)} \subseteq J.$$

Since J is a p-ideal, it follows from Lemma 12 that $w = a_x * a_y \in J$ so that $[x * y]_{\rho(I)} \subseteq J$, or equivalently, $x * y \in \rho(I)_{-}(J)$. Combining Theorem 11(1) and Lemma 12, $\rho(I)_{-}(J)$ is a p-ideal of G.

Now let $x, y, z \in G$ be such that $(x * z) * (y * z) \in \rho(I)^{-}(J)$ and $y \in \rho(I)^{-}(J)$. Then $[y]_{\rho(I)} \cap J \neq \emptyset$ and $[(x * z) * (y * z)]_{\rho(I)} \cap J \neq \emptyset$, and thus there are $a, b \in J$ such that $a \in [y]_{\rho(I)}$ and $b \in [(x * z) * (y * z)]_{\rho(I)}$. Hence $(a, y) \in \rho(I)$ and $(b, (x * z) * (y * z)) \in \rho(I)$, which imply that $y * a \in I \subseteq J$ and $((x * z) * (y * z)) * b \in I \subseteq J$. Since J is an ideal and since $a, b \in J$, we have $y \in J$ and $(x * z) * (y * z) \in J$. Since J is a p-ideal, it follows that $x \in J$. Note that $x \in [x]_{\rho(I)}$, and thus $x \in [x]_{\rho(I)} \cap J$, that is, $[x]_{\rho(I)} \cap J \neq \emptyset$. Therefore $x \in \rho(I)^{-}(J)$. This completes the proof. \Box

Acknowledgements. The second author was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

References

- S. A. Bhatti, M. A. Chaudhry and B. Ahmad: On classification of BCI-algebras, Math. Japon. 34 (1989), 865 – 876.
- [2] R. Biswas and S. Nanda: Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42(3) (1994), 251 – 254.
- [3] W. A. Dudek: On some BCI-algebras with the condition (S), Math. Japon. 31 (1986), 25 - 29.
- [4] W. A. Dudek: On group-like BCI-algebras, Demonstratio Math. 21 (1988), 369 - 376.
- [5] C. S. Hoo and P. V. Ramana Murty: Quasi-commutative p-semisimple BCI-algebras, Math. Japon. 32 (1987), 889 – 894.
- [6] K. Iséki: On BCI-algebras, Math. Seminar Notes 8 (1980), 125–130.
- T. B. Iwiński: Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math. 35 (1987), 673 - 683.
- [8] Y. B. Jun: Roughness of ideals in BCK-algebras, Sci. Math. Japon. 7 (2002), 115 - 119.
- [9] M. Kondo: Congruences and closed ideals in BCI-algebras, Math. Japon. 46 (1997), 491 – 496.
- [10] N. Kuroki: Rough ideals in semigroups, Inform. Sci. 100 (1997), 139– 163.
- [11] N. Kuroki and J. N. Mordeson: Structure of rough sets and rough groups, J. Fuzzy Math. 5 (1997), 183 – 191.
- [12] J. Meng and Y. B. Jun: BCK-algberas, Kyungmoonsa Co. Seoul, Korea, 1994.
- [13] Z. Pawlak: Rough sets, Int. J. Inform. Comp. Sci. 11 (1982), 341–356.
- [14] Z. Pawlak: Rough sets-theorical aspects of reasoning about data, Kluwer Academic, Norwell, MA, 1991.
- [15] X. H. Zhang, H. Jiang and S. A. Bhatti: On p-ideals of a BCIalgebra, Punjab Univ. J. Math. 27 (1994), 121 – 128.

Received April 22, 2002

W. A. Dudek Institute of Mathematics Technical University of Wrocław Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland e-mail: dudek@im.pwr.wroc.pl

Y. B. Jun Department of Mathematics Education Gyeongsang National University Chinju (Jinju) 660-701 Korea e-mail: ybjun@nongae.gsnu.ac.kr

H. S. Kim Department of Mathematics Hanyang University Seoul 133-791 Korea e-mail: heekim@hanyang.ac.kr