On the finite loop algebra $F\left[M\left(C_{p}^{m} \rtimes C_{2}, 2\right)\right]$

Swati Sidana

Abstract

Let $G=C_{p}^{m} \rtimes C_{2}$ be a generalized dihedral group for an odd prime p and a natural number $m, L=M(G, 2)$ be the $R A 2$ loop obtained from G and F be a finite field of characteristic 2. For the loop algebra $F[L]$, we determine the Jacobson radical $J(F[L])$ of $F[L]$ and the Wedderburn decomposition of $F[L] / J(F[L])$. The structure of $1+J(F[L])$ is also determined.

1. Introduction

The problem of determining the structure of the unit loop of the loop ring is of great interest to many authors. Goodaire in [4], Jespers and Leal in [5] determined the unit loops of integral loop rings of $R A$ loops. Ferraz, Goodaire and Milies [3] studied some classes of semisimple loop algebras of $R A$ loops over finite fields. Sidana and Sharma have characterized the structure of the unit loops of the finite loop algebras of many $R A$ and $R A 2$ loops in $[7,8,9]$. In [1], Chein and Goodaire studied the loops whose loop rings over the field of characteristic 2 are alternative. In this paper, we study the structure of the unit loop of the loop algebra $F[L]$ of $R A 2$ loop $L=M(G, 2)$ obtained from the group
$G=C_{p}^{m} \rtimes C_{2}=\left\langle a_{1}, a_{2}, \ldots, a_{m}, b \mid a_{i}^{p}, b^{2}, a_{i} a_{j} a_{i}^{-1} a_{j}^{-1}, b a_{i} b a_{i}, i, j=1,2, \ldots, m\right\rangle$, p an odd prime and m a natural number, over the finite field F of characteristic 2 which contains a primitive $p^{t h}$ root of unity. The structure of $1+J(F[L])$ is also determined.

Following is the main theorem of this paper.
Theorem 1.1. Let p be an odd prime, $m \in \mathbb{N}, F$ be a finite field with $|F|=2^{n}$ containing a primitive $p^{\text {th }}$ root of unity and $L=M\left(C_{p}^{m} \rtimes C_{2}, 2\right)$.

2010 Mathematics Subject Classification: 20N05, 17D05
Keywords: Loop algebra, RA2 loop, Zorn's algebra, unit loop, general linear loop.

Then

$$
\mathcal{U}(F[L] / J(F[L])) \cong F^{*} \times G L L(2, F)^{\frac{p^{m}-1}{2}}
$$

and $1+J(F[L]) \cong C_{2}^{3 n}$, an elementary abelian 2 -group of order $2^{3 n}$.
Throughout the paper, p is an odd prime, F denotes the finite field of characteristic 2 containing a primitive $p^{t h}$ root of unity, $F^{*}=F \backslash\{0\}, C_{m}$ the cyclic group of order $m, \Phi_{n}(x)$ the $n^{\text {th }}$ cyclotomic polynomial and ξ_{p} a primitive $p^{\text {th }}$ root of unity.

2. Preliminaries

A loop L is said to be a Moufang Loop if it satisfies any of the following three equivalent identities:

$$
\begin{aligned}
& ((x y) x) z=x(y(x z)), \quad \text { the left Moufang identity } \\
& ((x y) z) y=x(y(z y)), \quad \text { the right Moufang identity } \\
& (x y)(z x)=(x(y z)) x, \quad \text { the middle Moufang identity }
\end{aligned}
$$

for all $x, y, z \in L$.
Let G be a non-abelian group, $g_{0} \in \mathcal{Z}(G)$, the center of G and $g \mapsto g^{*}$ be an involution of G such that $g_{0}^{*}=g_{0}$ and $g g^{*} \in \mathcal{Z}(G)$ for every $g \in G$. For an indeterminate u, let $L=G \dot{\cup} G u$ and extend the binary operation from G to L by the rules

$$
g(h u)=(h g) u, \quad(g u) h=\left(g h^{*}\right) u, \quad(g u)(h u)=g_{0} h^{*} g, \quad \text { for all } g, h \in G .
$$

The loop L so constructed is a Moufang loop denoted by $M\left(G, *, g_{0}\right)$ and its order is twice the order of the group G. If the involution ' $*$ ' is the inverse map on G and $g_{0}=1$, the identity element of G, then $M(G,-1,1)$ is denoted as $M(G, 2)$.

A loop whose loop ring in characteristic 2 is alternative but not associative is known as $R A 2$ loop.

Theorem 2.1. [1, Theorem 5.4] The loop $M\left(G,-1, g_{0}\right)$ is an RA2 loop if and only if either $G=\operatorname{Dih}(A)$ is the generalized dihedral group of some abelian group A of exponent >2, or G is a non-abelian group of exponent 4 having exactly 2 squares.

The Zorn's vector matrix algebra is an 8-dimensional alternative algebra and is a generalization of the matrix algebra over an associative ring. For any commutative and associative ring R (with unity), let R^{3} denotes the set of ordered triples over R. Consider the set of 2×2 matrices of the form $\left[\begin{array}{ll}a & x \\ y & b\end{array}\right]$, where $a, b \in R$ and $x, y \in R^{3}$ with the usual addition

$$
\left[\begin{array}{ll}
a & x \\
y & b
\end{array}\right]+\left[\begin{array}{cc}
c & z \\
w & d
\end{array}\right]=\left[\begin{array}{ll}
a+c & x+z \\
y+w & b+d
\end{array}\right]
$$

and the multiplication defined by

$$
\left[\begin{array}{ll}
a & x \\
y & b
\end{array}\right]\left[\begin{array}{ll}
c & z \\
w & d
\end{array}\right]=\left[\begin{array}{cc}
a c+x \cdot w & a z+d x-y \times w \\
c y+b w+x \times z & b d+y \cdot z
\end{array}\right],
$$

where \cdot and \times denote the dot product and the cross product respectively in R^{3}. By this construction, we obtain an alternative algebra called as Zorn's vector matrix algebra denoted by $\mathfrak{Z}(R)$.

The loop of the invertible elements of the Zorn's vector matrix algebra,

$$
G L L(2, R)=\{A \in \mathfrak{Z}(R) \mid \operatorname{det} A \text { is a unit in } R\}
$$

is a Moufang loop called the General Linear Loop. This loop is a generalization of the General Linear group for associative algebras.

For any abelian group A, the generalized dihedral group of A is the semidirect product of A and C_{2}, with C_{2} acting on A by inverting the elements and is written as $\operatorname{Dih}(A)=A \rtimes C_{2}$.

If G is a non-abelian group with a faithful two dimensional matrix representation, then we can find a matrix representation of Moufang loop $M(G, 2)$ with the help of the following remark.

Remark 2.2. [10, §2.3] Let G be a non-abelian group with a faithful, two-dimensional representation over a commutative ring R with identity. That is, there exists an embedding $\phi: G \rightarrow G L(2, R)$. If we choose two orthogonal unit vectors v, w in R^{3} such that $\|v \times w\|=1$ and consider the map $\psi: G L(2, R) \rightarrow \mathfrak{Z}(R)$ defined as $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{cc}a & b v \\ c v & d\end{array}\right]$. Then $\psi \phi: G \rightarrow \mathcal{Z}(R)$ and $u \mapsto\left[\begin{array}{cc}0 & w \\ w & 0\end{array}\right]$ give the matrix representation of L.

The following lemma will be used repeatedly in this article.

Lemma 2.3. Let p be an odd prime and ξ_{p} be a primitive $p^{t h}$ root of unity. If $\xi_{p}, \xi_{p}^{2}, \ldots, \xi_{p}^{p-1}$ are the roots of a polynomial $f(x)=a_{p-1} x^{p-1}+a_{p-2} x^{p-2}+$ $\ldots+a_{1} x+a_{0}$ over F, then the coefficients of $f(x)$ are all the same, that is, $a_{p-1}=a_{p-2}=\ldots=a_{1}=a_{0}=a($ say $)$.

Proof. Since the factor $1+x+x^{2}+\ldots+x^{p-1}$ of $p^{t h}$ cyclotomic polynomial $\Phi_{p}(x)$ divides $f(x)$, therefore all the coefficients of the polynomial $f(x)$ must be the same.

An element $a \in R$ is said to be quasiregular if there exists $b \in R$ such that $a+b=a b=b a$ and b is called the quasi-inverse of a. An ideal is said to be quasiregular ideal if all its elements are quasiregular elements. The Jacobson radical $J(R)$ of an alternative ring R is the largest quasiregular ideal of R. If the ring R has unity, this ideal is also the intersection of all the maximal left ideals of R. Let θ be an onto ring homomorphism from a ring R_{1} to a ring R_{2}. Then $\theta\left(J\left(R_{1}\right)\right) \subseteq J\left(R_{2}\right)$.

3. Irreducible matrix representations of $C_{p}^{m} \rtimes C_{2}$

In this section, we determine the irreducible and inequivalent representations of the group $C_{p}^{m} \rtimes C_{2}$ over F induced from the irreducible representations of its subgroup C_{p}^{m} over F. In [6, §3], the irreducible and inequivalent representations of $C_{p}^{2} \rtimes C_{2}$ over F have been discussed. Here we extend this to $C_{p}^{m} \rtimes C_{2}$. Since $H=C_{p}^{m}$ is an abelian group, therefore, all the irreducible representations of H are of degree 1.

For $1 \leqslant k \leqslant m, 0 \leqslant i_{k} \leqslant p-1$, let

$$
\rho_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}: H \rightarrow F
$$

be defined by

$$
a_{k} \mapsto \xi_{p}^{i_{k}}
$$

Using [2, Ch $1, \S 10]$, we get the induced representations of G as

$$
\theta_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}: G \rightarrow M(2, F)
$$

defined by

$$
a_{k} \mapsto\left[\begin{array}{cc}
\xi_{p}^{i_{k}} & 0 \\
0 & \xi_{p}^{-i_{k}}
\end{array}\right], \quad b \mapsto\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] \text { for all } 0 \leqslant i_{k} \leqslant p-1,1 \leqslant k \leqslant m
$$

All these representations of G need not be irreducible and inequivalent.
For each $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in\{0,1, \ldots, p-1\}$, the representation $\theta_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}$ is similar to the representation $\theta_{\left(-i_{1},-i_{2}, \ldots,-i_{m}\right)}$. Also it is clear that the representation $\theta_{(0,0, \ldots, 0)}$ is not irreducible. Thus, for each $1 \leqslant k \leqslant m$, if we define

$$
\mathcal{J}_{k}^{m}=\left\{\begin{array}{l|ll}
\left(i_{1}, i_{2}, \ldots, i_{m}\right) & \begin{array}{ll}
1 \leqslant i_{j} \leqslant \frac{p-1}{2}, & \text { if } j=k \\
0 \leqslant i_{j} \leqslant p-1, & \text { if } j<k \\
i_{j}=0, & \text { if } j>k
\end{array}
\end{array}\right\}
$$

and

$$
S^{m}=\left\{\left(i_{1}, i_{2}, \ldots, i_{m}\right) \mid\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{J}_{k}^{m}, \quad 1 \leqslant k \leqslant m\right\}
$$

then the representations $\theta_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}$ for all $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in S^{m}$ are irreducible and inequivalent over F.

Hence the total number of 2-degree irreducible and inequivalent representations of G are

$$
\frac{p-1}{2}+p \cdot \frac{p-1}{2}+p^{2} \cdot \frac{p-1}{2}+\ldots+p^{m-1} \cdot \frac{p-1}{2}=\frac{p^{m}-1}{2} .
$$

4. The unit loop $\mathcal{U}(F[L] / J(F[L]))$ for $L=M\left(C_{p}^{m} \rtimes C_{2}, 2\right)$

In this section, we determine the Wedderburn decomposition of $F[L] / J(F[L])$ for $L=M\left(C_{p}^{m} \rtimes C_{2}, 2\right)$ and prove the main theorem. Consider the following loop homomorphisms:

1. $\phi_{0}: L \rightarrow F^{*}$ defined by

$$
a_{j} \mapsto 1, \quad \forall j=1,2, \ldots, m, \quad b \mapsto 1, \quad u \mapsto 1 .
$$

2. For each $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in S^{m}$, define

$$
\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}: L \rightarrow G L L(2, F)
$$

by

$$
\begin{gathered}
a_{j} \mapsto\left[\begin{array}{cc}
\xi_{p}^{i_{j}} & (0,0,0) \\
(0,0,0) & \xi_{p}^{-i_{j}}
\end{array}\right] \text { for all } j=1,2, \ldots, m, \\
b \mapsto\left[\begin{array}{cc}
0 & (0,1,0) \\
(0,1,0) & 0
\end{array}\right], \quad u \mapsto\left[\begin{array}{cc}
0 & (0,0,1) \\
(0,0,1) & 0
\end{array}\right] .
\end{gathered}
$$

Then

$$
T_{m}: L \rightarrow F^{*} \times(G L L(2, F))^{\frac{p^{m}-1}{2}}
$$

defined as

$$
T_{m}:=\phi_{0} \times \prod_{\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in S^{m}} \phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}
$$

is a well defined loop homomorphism.
Let $\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}: F[L] \rightarrow \mathfrak{Z}(F)$ be the loop algebra homomorphism obtained by extending $\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}$ linearly over F and

$$
T_{m}^{*}: F[L] \rightarrow F \bigoplus(\mathfrak{Z}(F))^{\frac{p^{m}-1}{2}}
$$

be defined as

$$
T_{m}^{*}:=\phi_{0}^{*} \bigoplus \underset{\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in S^{m}}{\oplus} \phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}
$$

Now we shall calculate the kernel of T_{m}^{*}.
Let

$$
\begin{aligned}
X_{m} & =\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} \alpha_{i_{1}, i_{2}, \ldots, i_{m}} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} \\
& +\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} \beta_{i_{1}, i_{2}, \ldots, i_{m}} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} b \\
& +\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} \gamma_{i_{1}, i_{2}, \ldots, i_{m}} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} u \\
& +\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} \delta_{i_{1}, i_{2}, \ldots, i_{m}} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} b u \\
& =X_{m 1}+X_{m 2}+X_{m 3}+X_{m 4} \in \operatorname{Ker} T_{m}^{*} .
\end{aligned}
$$

For $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{J}_{k}^{m}$, on applying $\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}$ on X_{m}, we get

$$
\begin{gathered}
\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m 1}\right)=\left[\begin{array}{cc}
Y_{11} & (0,0,0) \\
(0,0,0) & Y_{12}
\end{array}\right], \\
\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m 2}\right)=\left[\begin{array}{cc}
0 & \left(0, Y_{21}, 0\right) \\
\left(0, Y_{22}, 0\right) & 0
\end{array}\right],
\end{gathered}
$$

$$
\begin{aligned}
\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m 3}\right) & =\left[\begin{array}{cc}
0 & \left(0,0, Y_{31}\right) \\
\left(0,0, Y_{32}\right) & 0
\end{array}\right], \\
\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m 4}\right) & =\left[\begin{array}{cc}
0 & \left(Y_{41}, 0,0\right) \\
\left(Y_{42}, 0,0\right) & 0
\end{array}\right]
\end{aligned}
$$

for some $Y_{11}, Y_{12}, Y_{21}, Y_{22}, Y_{31}, Y_{32}, Y_{41}$ and $Y_{42} \in F$.
That is,

$$
\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m}\right)=\left[\begin{array}{cc}
Y_{11} & \left(Y_{41}, Y_{21}, Y_{31}\right) \\
\left(Y_{42}, Y_{22}, Y_{32}\right) & Y_{12}
\end{array}\right]
$$

Thus $\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m}\right)=0$ gives that $Y_{11}=Y_{12}=Y_{21}=Y_{22}=Y_{31}=Y_{32}=$ $Y_{41}=Y_{42}=0$. This means that for all $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{J}_{k}^{m}$,
$\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m}\right)=0$ implies that $\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m j}\right)=0$ for all $j=1,2,3,4$.
Firstly, consider $\phi_{\left(i_{1}, i_{2}, \ldots, i_{m}\right)}^{*}\left(X_{m 1}\right)=0$. For a fixed $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{J}_{k}^{m}$, define

$$
\mathcal{A}_{k}^{m}=\left\{\begin{array}{l|l}
\left(j_{1}, j_{2}, \ldots, j_{m}\right) & \begin{array}{ll}
j_{l} \in\left\{i_{l}, 0\right\}, & \text { if } 1 \leqslant l<k \\
j_{k}=i_{k}, & \\
i_{j}=0, & \text { if } l>k
\end{array}
\end{array}\right\}
$$

Let us start with $k=m$, for $\left(j_{1}, j_{2}, \ldots, j_{m}\right) \in \mathcal{A}_{m}^{m}, \phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 1}\right)=0$ and using Lemma 2.3, we get that

$$
\alpha_{i_{1}, i_{2}, \ldots, i_{m-1}, i_{m}}=\alpha_{i_{1}, i_{2}, \ldots, i_{m-1}}(\text { say }) \text { for all } i_{1}, \ldots, i_{m}=0,1, \ldots, m
$$

Then $\phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 1}\right)=0$ for $\left(j_{1}, j_{2}, \ldots, j_{m}\right) \in \mathcal{A}_{m-1}^{m}$ gives

$$
\alpha_{i_{1}, i_{2}, \ldots, i_{m-2}, i_{m-1}}=\alpha_{i_{1}, i_{2}, \ldots, i_{m-2}}(\text { say }) \text { for all } i_{1}, \ldots, i_{m-1}=0,1, \ldots, m
$$

Continuing the same process, $\phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 1}\right)=0$ for $\left(j_{1}, \ldots, j_{m}\right) \in \mathcal{A}_{2}^{m}$, implies that $\alpha_{i_{1}, i_{2}}=\alpha_{i_{1}}($ say $)$ for all $i_{1}, i_{2}=0,1, \ldots, m$.

Finally, $\phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 1}\right)=0$ for $\left(j_{1}, j_{2}, \ldots, j_{m}\right) \in \mathcal{A}_{1}^{m}$ gives that $\alpha_{i_{1}}=$ α (say) for all $i_{1}=0,1, \ldots, m$. Hence $\alpha_{i_{1}, i_{2}, \ldots, i_{m}}=\alpha$ for all $i_{1}, i_{2}, \ldots, i_{m}=$ $0,1, \ldots, m$. By repeating the same procedure for $\phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 2}\right)=0$, $\phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 3}\right)=0$ and for $\phi_{\left(j_{1}, j_{2}, \ldots, j_{m}\right)}^{*}\left(X_{m 4}\right)=0$, we get $\beta_{i_{1}, i_{2}, \ldots, i_{m}}=$ $\beta, \quad \gamma_{i_{1}, i_{2}, \ldots, i_{m}}=\gamma$ and $\delta_{i_{1}, i_{2}, \ldots, i_{m}}=\delta$ for all $i_{1}, i_{2}, \ldots, i_{m}=0,1, \ldots, m$.

Next, $\phi_{0}^{*}\left(X_{m}\right)=0$ implies that $\alpha+\beta+\gamma+\delta=0$. Thus

$$
\begin{aligned}
X_{m} & =\beta\left(\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}}+\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} b\right) \\
& +\gamma\left(\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}}+\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} u\right) \\
& +\delta\left(\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}}+\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}} b u\right) \\
& =\beta f_{m 1}+\gamma f_{m 2}+\delta f_{m 3} .
\end{aligned}
$$

We have few observations to note, which will be used here:
In the group $G=C_{p}^{m} \rtimes C_{2},\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)^{2}=p\left(a_{i}^{0}+a_{i}^{1}+\right.$ $\left.a_{i}^{2}+\ldots+a_{i}^{p-1}\right)$ and $\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) b=b\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)$, since $a_{i}^{k} b=b a_{i}^{-k}$ (a presenting relator of G).

Further, the definition of the loop gives $u g=g^{-1} u$, which implies $\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) u=u\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)$.

Also we can write
$\sum_{i_{1}=0}^{p-1} \sum_{i_{2}=0}^{p-1} \ldots \sum_{i_{m}=0}^{p-1} a_{1}^{i_{1}} a_{2}^{i_{2}} \ldots a_{m}^{i_{m}}=\prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)$.
Consequently, we have $f_{m 1}=\prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)+\prod_{i=1}^{m}\left(a_{i}^{0}+\right.$ $\left.a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) b$. This gives
$f_{m 1}^{2}=2 \prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)+2 \prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) b$ $=0$, since the characteristic of F is 2 . Similarly, we can prove $f_{m 2}^{2}=0$, and $f_{m 3}^{2}=0$.

Also for $1 \leqslant r, s \leqslant 3, f_{m r}$ and $f_{m s}$ commute, as

$$
\begin{aligned}
f_{m r} f_{m s} & =\prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right)+\prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) b \\
& +\prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) u+\prod_{i=1}^{m}\left(a_{i}^{0}+a_{i}^{1}+a_{i}^{2}+\ldots+a_{i}^{p-1}\right) b u \\
& =\sum_{l \in L} l .
\end{aligned}
$$

It follows that every element of $\operatorname{ker} T_{m}^{*}$ is a nilpotent element of nilpotency
index 2 and hence is quasiregular with quasi-inverse as itself. Thus $\mathrm{ker} T_{m}^{*}$ is a quasiregular ideal of $F[L]$, which implies that $\operatorname{ker} T_{m}^{*} \subseteq J(F[L])$.

Since

$$
\operatorname{dim}_{F}\left(F \oplus \mathcal{Z}(F)^{\frac{p^{m}-1}{2}}\right)=4 p^{m}-3=\operatorname{dim}_{F}\left(F[L] / \operatorname{ker} T_{m}^{*}\right)
$$

therefore, T_{m}^{*} is onto. This implies $J(F[L]) \subseteq \operatorname{ker} T_{m}^{*}$. Consequently, $\operatorname{ker} T_{m}^{*}=J(F[L])$. Hence

$$
F[L] / J(F[L]) \cong F \oplus \mathcal{Z}(F)^{\frac{p^{m}-1}{2}}
$$

which further gives

$$
\mathcal{U}(F[L] / J(F[L])) \cong F^{*} \times G L L(2, F)^{\frac{p^{m}-1}{2}} .
$$

Consider $1+J(F[L])$. An element h of $1+J(F[L])$ is of the form $h=$ $1+c_{1} f_{m 1}+c_{2} f_{m 2}+c_{3} f_{m 3}$, where $c_{i}^{\prime} s \in F$. As $f_{m r}$ and $f_{m s}$ commute for all $1 \leqslant r, s \leqslant 3$, we get that $1+J(F[L])$ is a commutative loop.

Further, for all $r, s, t=1,2,3$,

$$
\left(f_{m r} f_{m s}\right) f_{m t}=2 \sum_{l \in L} l=0 \quad \text { and } f_{m r}\left(f_{m s} f_{m t}\right)=2 \sum_{l \in L} l=0 .
$$

Thus $1+J(F[L])$ is an abelian group and $h^{2}=1$ for all $h \in 1+J(F[L])$, which gives $1+J(F[L]) \cong\left(C_{2} \times C_{2} \times C_{2}\right)^{n}$.

Acknowledgments. The author is thankful to the anonymous referees and Professor Petr Vojtěchovský for their useful comments and suggestions, which have greatly improved the presentation of the paper.

References

[1] O. Chein and E. G. Goodaire, Loops whose loop rings in characteristic 2 are alternative, Comm. Algebra, 18 (1990), no. 3, 659 - 688.
[2] Ch.W. Curtis and I. Reiner, Methods of representation theory. Vol. I, John Wiley \& Sons, Inc., New York (1990).
[3] R.A. Ferraz, E.G. Goodaire and C.P. Milies, Some classes of semisimple group (and loop) algebras over finite fields, J. Algebra, 324 (2010), no. 12, 3457 - 3469 .
[4] E.G. Goodaire, Six Moufang loops of units, Canad. J. Math., 44 (1992), no. 5, 951 - 973 .
[5] E. Jespers and G. Leal, A characterization of the unit loop of the integral loop ring $\mathbf{Z} M_{16}(Q, 2)$, J. Algebra, 155 (1993), no. 1, $95-109$.
[6] S. Sidana, On units in loop algebra $F\left[M\left(\operatorname{Dih}\left(C_{p}^{2}\right), 2\right)\right]$, Beitr. Algebra Geom., 58 (2017), no. 4, 765 - 774.
[7] S. Sidana and R.K. Sharma, Finite semisimple loop algebras of indecomposable RA loops, Canad. Math. Bull., 58 (2015), no. 2, $363-373$.
[8] S. Sidana and R.K. Sharma, On the finite loop algebra of the smallest Moufang loop $M\left(S_{3}, 2\right)$, Armenian J. Math., 8 (2016), no. 1, $68-76$.
[9] S. Sidana and R.K. Sharma, Units in finite loop algebras of RA2 loops, Asian-Eur. J. Math., 9 (2016), no. 1, 1650026.
[10] A.T. Wells, Zorn vector matrices over commutative rings and the loops arising from their construction, Thesis (Ph.D.)-Iowa State University (2010).

Revised July 20, 2022
Post Graduate Department of Mathematics
Mehr Chand Mahajan DAV College for Women
Sector 36-A
Chandigarh
India 160036
E-mail: swatisidana@gmail.com

