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On the finite loop algebra F [M(Cm
p o C2, 2)]

Swati Sidana

Abstract. Let G = Cm
p o C2 be a generalized dihedral group for an odd prime p and

a natural number m, L = M(G, 2) be the RA2 loop obtained from G and F be a finite
field of characteristic 2. For the loop algebra F [L], we determine the Jacobson radical
J(F [L]) of F [L] and the Wedderburn decomposition of F [L]/J(F [L]). The structure of
1 + J(F [L]) is also determined.

1. Introduction

The problem of determining the structure of the unit loop of the loop ring
is of great interest to many authors. Goodaire in [4], Jespers and Leal in
[5] determined the unit loops of integral loop rings of RA loops. Ferraz,
Goodaire and Milies [3] studied some classes of semisimple loop algebras
of RA loops over finite fields. Sidana and Sharma have characterized the
structure of the unit loops of the finite loop algebras of many RA and RA2
loops in [7, 8, 9]. In [1], Chein and Goodaire studied the loops whose loop
rings over the field of characteristic 2 are alternative. In this paper, we
study the structure of the unit loop of the loop algebra F [L] of RA2 loop
L = M(G, 2) obtained from the group

G=Cm
p oC2=〈a1, a2, . . . , am, b | api , b

2, aiaja
−1
i a
−1
j , baibai, i, j=1, 2, . . . ,m〉,

p an odd prime and m a natural number, over the finite field F of char-
acteristic 2 which contains a primitive pth root of unity. The structure of
1 + J(F [L]) is also determined.

Following is the main theorem of this paper.

Theorem 1.1. Let p be an odd prime, m ∈ N, F be a finite field with
|F | = 2n containing a primitive pth root of unity and L = M(Cm

p o C2, 2).
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Then
U(F [L]/J(F [L])) ∼= F ∗ ×GLL(2, F )

pm−1
2

and 1 + J(F [L]) ∼= C3n
2 , an elementary abelian 2-group of order 23n.

Throughout the paper, p is an odd prime, F denotes the finite field of
characteristic 2 containing a primitive pth root of unity, F ∗ = F\{0}, Cm

the cyclic group of order m, Φn(x) the nth cyclotomic polynomial and ξp a
primitive pth root of unity.

2. Preliminaries

A loop L is said to be a Moufang Loop if it satisfies any of the following
three equivalent identities:

((xy)x)z = x(y(xz)), the left Moufang identity,
((xy)z)y = x(y(zy)), the right Moufang identity,
(xy)(zx) = (x(yz))x, the middle Moufang identity

for all x, y, z ∈ L.
Let G be a non-abelian group, g0 ∈ Z(G), the center of G and g 7→ g∗

be an involution of G such that g∗0 = g0 and gg∗ ∈ Z(G) for every g ∈ G.
For an indeterminate u, let L = G ∪̇ Gu and extend the binary operation
from G to L by the rules

g(hu) = (hg)u, (gu)h = (gh∗)u, (gu)(hu) = g0h
∗g, for all g, h ∈ G.

The loop L so constructed is a Moufang loop denoted by M(G, ∗, g0) and
its order is twice the order of the group G. If the involution ‘∗’ is the
inverse map on G and g0 = 1, the identity element of G, then M(G,−1, 1)
is denoted as M(G, 2).

A loop whose loop ring in characteristic 2 is alternative but not asso-
ciative is known as RA2 loop.

Theorem 2.1. [1, Theorem 5.4] The loop M(G,−1, g0) is an RA2 loop if
and only if either G = Dih(A) is the generalized dihedral group of some
abelian group A of exponent > 2, or G is a non-abelian group of exponent
4 having exactly 2 squares.
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The Zorn’s vector matrix algebra is an 8-dimensional alternative algebra
and is a generalization of the matrix algebra over an associative ring. For
any commutative and associative ring R (with unity), let R3 denotes the
set of ordered triples over R. Consider the set of 2× 2 matrices of the form[
a x
y b

]
, where a, b ∈ R and x, y ∈ R3 with the usual addition

[
a x
y b

]
+

[
c z
w d

]
=

[
a+ c x+ z
y + w b+ d

]
and the multiplication defined by[

a x
y b

] [
c z
w d

]
=

[
ac+ x · w az + dx− y × w

cy + bw + x× z bd+ y · z

]
,

where · and × denote the dot product and the cross product respectively in
R3. By this construction, we obtain an alternative algebra called as Zorn’s
vector matrix algebra denoted by Z(R).

The loop of the invertible elements of the Zorn’s vector matrix algebra,

GLL(2, R) = {A ∈ Z(R) | det A is a unit in R}

is a Moufang loop called the General Linear Loop. This loop is a general-
ization of the General Linear group for associative algebras.

For any abelian group A, the generalized dihedral group of A is the
semidirect product of A and C2, with C2 acting on A by inverting the
elements and is written as Dih(A) = Ao C2.

If G is a non-abelian group with a faithful two dimensional matrix
representation, then we can find a matrix representation of Moufang loop
M(G, 2) with the help of the following remark.

Remark 2.2. [10, §2.3] Let G be a non-abelian group with a faithful,
two-dimensional representation over a commutative ring R with identity.
That is, there exists an embedding φ : G → GL(2, R). If we choose two
orthogonal unit vectors v, w in R3 such that ||v × w|| = 1 and consider

the map ψ : GL(2, R) → Z(R) defined as
[
a b
c d

]
7→
[
a bv
cv d

]
. Then

ψφ : G→ Z(R) and u 7→
[

0 w
w 0

]
give the matrix representation of L.

The following lemma will be used repeatedly in this article.
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Lemma 2.3. Let p be an odd prime and ξp be a primitive pth root of unity. If
ξp, ξ

2
p , . . . , ξ

p−1
p are the roots of a polynomial f(x) = ap−1x

p−1 +ap−2x
p−2 +

. . .+a1x+a0 over F , then the coefficients of f(x) are all the same, that is,
ap−1 = ap−2 = . . . = a1 = a0 = a(say).

Proof. Since the factor 1 +x+x2 + . . .+xp−1 of pth cyclotomic polynomial
Φp(x) divides f(x), therefore all the coefficients of the polynomial f(x) must
be the same.

An element a ∈ R is said to be quasiregular if there exists b ∈ R such
that a+ b = ab = ba and b is called the quasi-inverse of a. An ideal is said
to be quasiregular ideal if all its elements are quasiregular elements. The
Jacobson radical J(R) of an alternative ring R is the largest quasiregular
ideal of R. If the ring R has unity, this ideal is also the intersection of all
the maximal left ideals of R. Let θ be an onto ring homomorphism from a
ring R1 to a ring R2. Then θ(J(R1)) ⊆ J(R2).

3. Irreducible matrix representations of Cm
p o C2

In this section, we determine the irreducible and inequivalent representa-
tions of the group Cm

p oC2 over F induced from the irreducible representa-
tions of its subgroup Cm

p over F . In [6, §3], the irreducible and inequivalent
representations of C2

p o C2 over F have been discussed. Here we extend
this to Cm

p o C2. Since H = Cm
p is an abelian group, therefore, all the

irreducible representations of H are of degree 1.
For 1 6 k 6 m, 0 6 ik 6 p− 1, let

ρ(i1,i2,...,im) : H → F

be defined by
ak 7→ ξikp .

Using [2, Ch 1, §10], we get the induced representations of G as

θ(i1,i2,...,im) : G→M(2, F )

defined by

ak 7→
[
ξikp 0

0 ξ−ikp

]
, b 7→

[
0 1
1 0

]
for all 0 6 ik 6 p− 1, 1 6 k 6 m.
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All these representations of G need not be irreducible and inequivalent.
For each (i1, i2, . . . , im)∈{0, 1, . . . , p−1}, the representation θ(i1,i2,...,im)

is similar to the representation θ(−i1,−i2,...,−im). Also it is clear that the
representation θ(0,0,...,0) is not irreducible. Thus, for each 1 6 k 6 m, if we
define

Jm
k =

(i1, i2, . . . , im)

∣∣∣∣ 1 6 ij 6
p−1
2 , if j = k

0 6 ij 6 p− 1, if j < k
ij = 0, if j > k


and

Sm =
{

(i1, i2, . . . , im) | (i1, i2, . . . , im) ∈ Jm
k , 1 6 k 6 m

}
,

then the representations θ(i1,i2,...,im) for all (i1, i2, . . . , im) ∈ Sm are irre-
ducible and inequivalent over F .

Hence the total number of 2-degree irreducible and inequivalent repre-
sentations of G are

p− 1

2
+ p.

p− 1

2
+ p2.

p− 1

2
+ . . .+ pm−1.

p− 1

2
=
pm − 1

2
.

4. The unit loop U(F [L]/J(F [L])) for L=M(Cm
p oC2,2)

In this section, we determine theWedderburn decomposition of F [L]/J(F [L])
for L = M(Cm

p oC2, 2) and prove the main theorem. Consider the following
loop homomorphisms:

1. φ0 : L→ F ∗ defined by

aj 7→ 1, ∀ j = 1, 2, . . . ,m, b 7→ 1, u 7→ 1.

2. For each (i1, i2, . . . , im) ∈ Sm, define

φ(i1,i2,...,im) : L→ GLL(2, F )

by

aj 7→

[
ξ
ij
p (0, 0, 0)

(0, 0, 0) ξ
−ij
p

]
for all j = 1, 2, . . . ,m,

b 7→
[

0 (0, 1, 0)
(0, 1, 0) 0

]
, u 7→

[
0 (0, 0, 1)

(0, 0, 1) 0

]
.
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Then
Tm : L→ F ∗ × (GLL(2, F ))

pm−1
2

defined as
Tm := φ0 ×

∏
(i1,i2,...,im)∈Sm

φ(i1,i2,...,im)

is a well defined loop homomorphism.
Let φ∗(i1,i2,...,im) : F [L] → Z(F ) be the loop algebra homomorphism

obtained by extending φ(i1,i2,...,im) linearly over F and

T ∗m : F [L]→ F
⊕

(Z(F ))
pm−1

2

be defined as

T ∗m := φ∗0
⊕

⊕
(i1,i2,...,im)∈Sm

φ∗(i1,i2,...,im).

Now we shall calculate the kernel of T ∗m.
Let

Xm =

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

αi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m

+

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

βi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m b

+

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

γi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m u

+

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

δi1,i2,...,ima
i1
1 a

i2
2 . . . a

im
m bu

= Xm1 +Xm2 +Xm3 +Xm4 ∈ Ker T ∗m.

For (i1, i2, . . . , im) ∈ Jm
k , on applying φ∗(i1,i2,...,im) on Xm, we get

φ∗(i1,i2,...,im)(Xm1) =

[
Y11 (0, 0, 0)

(0, 0, 0) Y12

]
,

φ∗(i1,i2,...,im)(Xm2) =

[
0 (0, Y21, 0)

(0, Y22, 0) 0

]
,
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φ∗(i1,i2,...,im)(Xm3) =

[
0 (0, 0, Y31)

(0, 0, Y32) 0

]
,

φ∗(i1,i2,...,im)(Xm4) =

[
0 (Y41, 0, 0)

(Y42, 0, 0) 0

]
for some Y11, Y12, Y21, Y22, Y31, Y32, Y41 and Y42 ∈ F.

That is,

φ∗(i1,i2,...,im)(Xm) =

[
Y11 (Y41, Y21, Y31)

(Y42, Y22, Y32) Y12

]
.

Thus φ∗(i1,i2,...,im)(Xm) = 0 gives that Y11 = Y12 = Y21 = Y22 = Y31 = Y32 =

Y41 = Y42 = 0. This means that for all (i1, i2, . . . , im) ∈ Jm
k ,

φ∗(i1,i2,...,im)(Xm) = 0 implies that φ∗(i1,i2,...,im)(Xmj) = 0 for all j = 1, 2, 3, 4.

Firstly, consider φ∗(i1,i2,...,im)(Xm1) = 0. For a fixed (i1, i2, . . . , im) ∈ Jm
k ,

define

Am
k =

(j1, j2, . . . , jm)

∣∣∣∣ jl ∈ {il, 0}, if 1 6 l < k
jk = ik,
ij = 0, if l > k

 .

Let us start with k = m, for (j1, j2, . . . , jm) ∈ Am
m, φ∗(j1,j2,...,jm)(Xm1) = 0

and using Lemma 2.3, we get that

αi1,i2,...,im−1,im = αi1,i2,...,im−1(say) for all i1, . . . , im = 0, 1, . . . ,m.

Then φ∗(j1,j2,...,jm)(Xm1) = 0 for (j1, j2, . . . , jm) ∈ Am
m−1 gives

αi1,i2,...,im−2,im−1 = αi1,i2,...,im−2(say) for all i1, . . . , im−1 = 0, 1, . . . ,m.

Continuing the same process, φ∗(j1,j2,...,jm)(Xm1) = 0 for (j1, . . . , jm)∈Am
2 ,

implies that αi1,i2 = αi1(say) for all i1, i2 = 0, 1, . . . ,m.

Finally, φ∗(j1,j2,...,jm)(Xm1) = 0 for (j1, j2, . . . , jm) ∈ Am
1 gives that αi1 =

α(say) for all i1 = 0, 1, . . . ,m. Hence αi1,i2,...,im = α for all i1, i2, . . . , im =
0, 1, . . . ,m. By repeating the same procedure for φ∗(j1,j2,...,jm)(Xm2) = 0,
φ∗(j1,j2,...,jm)(Xm3) = 0 and for φ∗(j1,j2,...,jm)(Xm4) = 0, we get βi1,i2,...,im =
β, γi1,i2,...,im = γ and δi1,i2,...,im = δ for all i1, i2, . . . , im = 0, 1, . . . ,m.
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Next, φ∗0(Xm) = 0 implies that α+ β + γ + δ = 0. Thus

Xm = β

(
p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m +

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m b

)

+ γ

(
p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m +

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m u

)

+ δ

(
p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m +

p−1∑
i1=0

p−1∑
i2=0

. . .

p−1∑
im=0

ai11 a
i2
2 . . . a

im
m bu

)
= βfm1 + γfm2 + δfm3.

We have few observations to note, which will be used here:
In the group G = Cm

p o C2, (a0i + a1i + a2i + . . .+ ap−1i )2 = p(a0i + a1i +

a2i + . . .+ap−1i ) and (a0i +a1i +a2i + . . .+ap−1i )b = b(a0i +a1i +a2i + . . .+ap−1i ),
since aki b = ba−ki (a presenting relator of G).

Further, the definition of the loop gives ug = g−1u, which implies
(a0i + a1i + a2i + . . .+ ap−1i )u = u(a0i + a1i + a2i + . . .+ ap−1i ).

Also we can write
p−1∑
i1=0

p−1∑
i2=0

. . .
p−1∑
im=0

ai11 a
i2
2 . . . a

im
m =

m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ).

Consequently, we have fm1 =
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ) +
m∏
i=1

(a0i +

a1i + a2i + . . .+ ap−1i )b. This gives

f2m1 = 2
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ) + 2
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )b

= 0, since the characteristic of F is 2. Similarly, we can prove f2m2 = 0, and
f2m3 = 0.

Also for 1 6 r, s 6 3, fmr and fms commute, as

fmrfms =
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i ) +
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )b

+
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )u+
m∏
i=1

(a0i + a1i + a2i + . . .+ ap−1i )bu

=
∑
l∈L

l.

It follows that every element of ker T ∗m is a nilpotent element of nilpotency
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index 2 and hence is quasiregular with quasi-inverse as itself. Thus ker T ∗m
is a quasiregular ideal of F [L], which implies that ker T ∗m ⊆ J(F [L]).

Since

dimF (F ⊕ Z(F )
pm−1

2 ) = 4pm − 3 = dimF (F [L]/ ker T ∗m)

therefore, T ∗m is onto. This implies J(F [L]) ⊆ ker T ∗m. Consequently,
ker T ∗m = J(F [L]). Hence

F [L]/J(F [L]) ∼= F ⊕ Z(F )
pm−1

2

which further gives

U(F [L]/J(F [L])) ∼= F ∗ ×GLL(2, F )
pm−1

2 .

Consider 1 + J(F [L]). An element h of 1 + J(F [L]) is of the form h =
1 + c1fm1 + c2fm2 + c3fm3, where c′is ∈ F. As fmr and fms commute for all
1 6 r, s 6 3, we get that 1 + J(F [L]) is a commutative loop.

Further, for all r, s, t = 1, 2, 3,

(fmrfms)fmt = 2
∑
l∈L

l = 0 and fmr(fmsfmt) = 2
∑
l∈L

l = 0.

Thus 1 + J(F [L]) is an abelian group and h2 = 1 for all h ∈ 1 + J(F [L]),
which gives 1 + J(F [L]) ∼= (C2 × C2 × C2)

n.
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