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On the weight of finite groups

Mohammad Amin Morshedlo and Mohammad Mehdi Nasrabadi

Abstract. For a finite group G, let W (G) denotes the set of the orders of the elements
of G. In this paper we study |W (G)| and show that the cyclic group of order n has
the maximum value of |W (G)| among all groups of the same order. Furthermore we
study this notion in nilpotent and non-nilpotent groups and state some inequality for it.
Among the result we show that the minimum value of |W (G)| is power of 2 or it pertains
to a non-nilpotent group.

1. Introduction

Let G be a finite group. The connection between structure and the set of
the orders of the elements of G, has been studied in several works. In 1932,
Levi and Waerden [4] showed that under some conditions the groups with
weight 2 are nilpotent of class at most 3. Later in 1937, Neumann [6] proved
that if W (G) = {1, 2, 3}, then G is an elementary abelian-by-prime order
group. Sanov [9] showed that, when W (G) ⊆ {1, 2, 3, 4} G is a locally finite
group. Novikov and Adjan [7] in 1968 answered negatively to the following
question. Does the finiteness of W (G) imply G to be locally finite? In the
same line of research Gupta et. al, [3] proved if W (G) ⊆ {1, 2, 3, 4, 5} and
W (G) 6= {1, 5}, then G is locally finite. In 2007, D. V. Lytkina [5] showed
that for the group G, with W (G) = {1, 2, 3, 4}, either G is an extension of
an elementary abelian 3-group by a cyclic or a quaternion group, or it is an
extension of a nilpotent 2-group of class 2 by a subgroup of S3. The sum
of element orders in finite groups is studied by Amiri, Jafarian Amiri and
Isaacs [1]. We denote by |W (G)|, the number of element orders of G. The
group G is m-weight group, if |W (G)| = m. It is easy to see that if G is
trivial, then |W (G)| = 1. If G be a non-trivial group then, the weight of
G is at least 2. In the following lemma, we state a result about 2-weight
group.
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Lemma 1.1. Let G be a group, then G is a 2-weight group if and only if
exp(G) = p.

Proof. First assumethat, G is a 2-weight group. If exp(G) = p has two
distinct prime divisors p and q, then {1, p, q} ⊆ W (G), so exp(G) must be
a p-number for some prime p. Now, if exp(G) = pn, for some n > 2, then,
{1, p, p2} ⊆W (G). The converse is trivial.

2. Preliminary results

This section contains some basic properties on the weight of a finite group.
The following proposition shows the relation of the weight of a direct prod-
uct of a finite number of finite groups with the weights of its factors.

Proposition 2.1. Let H and K be two arbitrary finite groups, then
|W (H ×K)| 6 |W (H)| × |W (K)|,

and the equality holds if (exp(H), exp(K)) = 1.

Proof. Let m ∈ W (H × K) then, there exists (h, k) ∈ H × K, such that

m = o(h, k) = [o(h), o(k)] =
o(h)

g1
× o(k)

g2
= rs. Since [o(h), o(k)] is the

least common multiple of o(h) and o(k) and g1g2 = gcd(o(h), o(k)), on the

other hand r =
o(h)

g1
, s =

o(k)

g2
. So we have r ∈ W (H) and s ∈ W (K).

Hence |W (H × K)| 6 |W (H)| × |W (K)|. Now, if (exp(H), exp(K)) = 1
and (r, s) ∈W (H)×W (K), then there exsit h ∈ H and k ∈ K of orders r
and s, respectively. Therefore, (h, k) is an element of H ×K of order rs, so
the result holds.

Now, using induction in order to prove the following corollary.

Corollary 2.2. Let Gini=1 be a family of finite groups. Then, |W (
∏n
i=1Gi)| 6∏n

i=1 |W (Gi)|. Furthermore, the equality holds if the exponent of distinct
direct factors are mutully coprime.

It is easy to see that the cyclic group of order pm−1, Cpm−1 is an m-
weight group, in which p is an arbitrary prime number, so for every natural
number n, there exists a finite group (in fact a finite p-group) of weight m.

The following theorem gives an upper bound for the weight of a finite
group in terms of its order.
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Theorem 2.3. Let G be a finite group of order n, then |W (G)| 6 |W (Cn)|
and the equality holds if and only if G ∼= Cn.

Proof. Since the order of each element of G is a divisor of n and |W (Cn)| =
d(n), in which d(n) is the number of natural divisors of n, it is trivial, such
that |W (G)| 6 |W (Cn)|. Now, if |W (G)| = |W (Cn)|, then n ∈ W (G) and
hence G ∼= Cn.

3. Nilpotent groups

In this section, we state some facts on W (G), when G is a nilpotent group.
The following proposition gives the upper and lower bound forW (G), when
G is a finite nilpotent group.

Proposition 3.1. Let ℵ be class of nilpotent groups of order n, then for
each G ∈ ℵ we have

2|π(n)| 6 |W (G)| 6 d(n),

and equality in the first inequality holds if and only if all Sylow subgroups
of G has prime exponent.

Proof. Let n = pα1
1 · · · p

αk
k , then d(n) = (α1 + 1) · · · (αk + 1). Let G be a

nilpotent group of order n, so G ∼=
∏k
i=1 Si, in which Si is the Sylow pi-

subgroup of G of order pαi
i (1 6 i 6 k). Now, by Proposition 2.1, we have

|W (G)| =
∏k
i=1 |W (Si)|. Applying, Theorem 2.3, thus 2 6 |W (Si)| 6 αi+1,

for all i, 1 6 i 6 k. So 2|π(n)| 6 |W (G)| 6
∏k
i=1(αi + 1) = d(n). Hence,

|W (G)| = 2|π(n)| if and only if αi = 1, for all i, 1 6 i 6 k which is equal to
exp(Si) = pi, for all i, 1 6 i 6 k.

As an immediate result we have.

Corollary 3.2. Let G be a finite group of order n, if |W (G)| < 2|π(n)| then
G is non-nilpotent.

Theorem 3.3. Let G be a group of prime weight then G is nilpotent if and
only if G is a p-group.

Proof. Since G is a nilpotent group we have G = P1 × · · · × Pk so W (G) =
W (P1) · · ·W (Pk) this implies k = 1 hence G is a p-group

Immediate consequence of Theorem 3.3, we get the following corollary.
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Corollary 3.4. In the class of all finite groups of prime weight, each group
is either a p-group or non-nilpotent.

Proposition 3.5. (See [8, Theorem 1]) Suppose that n = pα1
1 pα2

2 · · · p
αk
k , in

which pi’s are distinct prime numbers. Then, every finite group of order n is
a nilpotent group if and only if pi - p

βj
j −1, for each j, 0 < βj 6 αj and i 6= j.

In above proposition such these numbers are called nilpotent numbers.
Now in order to prove our main result, we need the following results.

Lemma 3.6. Every finite nilpotent group of order n is cyclic if and only if
n is square free.

Proof. Let n = pα1
1 pα2

2 · · · p
αk
k be decomposition of n into prime factors and

G be a nilpotent group of order n. By Proposition 3.1, we have 2k 6
|W (G)| 6 |W (Cn)|, since every nilpotent group of order n is cyclic, so both
inequalities are in fact equality and hence αi = 1, for all i, 1 6 i 6 k.
Conversely, let G be a nilpotent group of order n = p1 · · · pk. Applying,
Proposition 3.1 again, so we have |W (G)| = 2k = d(n) = |W (Cn)|, it
implies that G ∼= Cn.

Using, the above lemma we can prove the following theorem.

Theorem 3.7. Every finite group of order n is cyclic if and only if n =
p1 · · · pk, in which p1 < . . . < pk and pi - pi+s − 1, where 1 6 i 6 k − 1 and
1 6 s 6 k − i.

Proof. If every finite group of order n is cyclic, then by Lemma 3.6 and
Proposition 3.5, the result holds. If n = p1 · · · pk, in which p1 < . . . < pk
and pi - pi+s−1, where 1 6 i 6 k−1 and 1 6 s 6 k− i, then every group of
order n is nilpotent, so we have |W (G)| = 2k = d(n) = |W (Cn)| and hence
G ∼= Cn.

4. Non-nilpotent groups

This section is devoted to some results on non-nilpotent groups.
Let K(n) denote the class of all groups of order n.

Definition 4.1. We say that K(n) has non-nilpotency property if there ex-
ists a non-nilpotent group T in K(n), such that min

{
|W (G)| | G ∈ K(n)

}
=

|W (T )|.
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Theorem 4.2. If K(n) has non-nilpotency property, then K(nm), has also
non-nilpotency property, for any natural number m, such that (n,m) = 1.

Proof. Let H be a nilpotent group of order nl, since (n, l) = 1 and H is
nilpotent, there exist normal subgroups N and L of H, such that |L| = l,
|N | = n and H = N × L. Now, as N ∈ K(n) and K(n) has non-nilpotency
property, so there is a non-nilpotent group T in K(n) such that

|W (T )| = min{|W (G)| | G ∈ K(n)}

so
|W (T )| 6 |W (N)|.

If E = T×L, then E is also a non-nilpotent group, and clearly |T | = |N | = n
and |L| = l. Now, we have

|W (E)|= |W (T×L)|= |W (T )||W (L)|6W (N)||W (L)|= |W (N×L)|= |W (H)|.

So, as E is a non-nilpotent group, and H is nilpotent group inK(nl) and
|W (E)| 6W (H)|, then K(nl) has non-nilpotency property.

Example 4.3. It is easy to see that K(6) has the non-nilpotency property,
so K(30) has the non-nilpotency property, we know that

K(30) = {C30, C3 ×D10, C5 ×D6, D30}
and

ω (C30) = 8, ω (C3 ×D10) = 6, ω (C6 ×D6) = 6 and ω (D30) = 5.

Therefore, the minimum weight occurs at the non-nilpotent group D30 .

In the following lemma, we construct non-nilpotent groups with small
enough weights.

Lemma 4.4. Let p and q be two distinct prime numbers and α ∈ Aut(Crq )
be of order p. If {a1, . . . , am} be the standard generating set for Cmp , then the
semidirect product Cmp and Crq , by the homomorphism µ : Cmp → Aut(Crq ),
such that µ(ai) = α, for each i, i = 1, . . . ,m, is a non-nilpotent group with
weight at most 4.

Proof. Let b 6= 0 and (0, b) ∈ Cmp n Crq . Clearly (0, b)q = (0, bq) = (0, 0)
and hence o(0, b) = q. So, if a 6= 0 and (a, 0) ∈ Cmp nCrq , we have (a, 0)p =
(ap, 0) = (0, 0), it implies that o(a, 0) = p
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Now, assume that a 6= 0 and b 6= 0, as (a, b)pq = (0, 0) and o(a, b) 6 pq,
it follows that

W (Cmp n Crq ) ⊆ {1, p, q, pq} ,
therefore Cmp n Crq is a non-nilpotent group with maximum weight 4.

We use the following useful result in the next theorem.

Proposition 4.5. (See [2]) For a finite p-group G, Aut(G) ∼= Gl(n, p) if
and only if G is an elementary abelian p-group of order pn.

Theorem 4.6. The class of K(n) has non-nilpotency property, for any non-
nilpotent natural number n.

Proof. As n is not a nilpotent number according to Proposition 3.5, there
exist distinct and prime divisors p and q of n such that

p | qi − 1

Now, we consider n = pmqrk that (pq, k) = 1. By Proposition 4.5, we
have ∣∣Aut(Crq )∣∣ = (qr − 1)(qr − q)(. . . (qr − qr−1)
As

p | qi − 1,

thus
p | (qi − 1)qr−i = qr − qr−i.

Therefore, p |
∣∣Aut(Crq )∣∣ and hence there exists α ∈ Aut(Crq ) with o(α) = p.

Now, if {a1, . . . , am} is standard generator set of Cmp , we consider homo-
morphism µ, such that

µ : Cmp → Aut(Crq )

given by µ(ai) = α for i = 1, . . . ,m. We get semidirect product Cmp and
Crq , by homomorphism µ. Then, Cmp nCrq is a non-nilpotent group of order
pmqr. On the other hand by Lemma 4.4, we have∣∣W (Cmp n Crq )

∣∣ 6 4

So, if G is a nilpotent group of order pmqr, then we have

|W (G)| > 22 = 4

Thus, we conclude that K(pmqr) has nonnilpotency property. Since (pq, k) =
1 and pmqrk = n, by Theorem 4.2, K(n) has non-nilpotency property.
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Theorem 4.7. Let n be an even number, such that n is not a power of 2,
then K(n) has the non-nilpotency property.

Proof. Suppose that n = 2α1pα2qα3
3 · · · qαr

r , for some r ≥ 2. Since 2 is a
divisor of

∣∣Aut (Zα2
p

)∣∣, we have ω
(
Zα1
2 n Zα2

p

)
⊆ {1, 2, p, 2p}. Now, let G

be a nilpotent group of order n, thus ω (G) > 2r, also we have

ω
((
Zα1
2 n Zα2

p

)
× Zα3

q3 × ...× Zαr
qr

)
6 4(2r−2) = 2r

Therefore
ω
((
Zα1
2 n Zα2

p

)
× Zα3

q3 × ...× Zαr
qr

)
6 ω (G)

and the results hold.

Example 4.8. K(12), K(22) and K(30) has the non-nilpotency property. We
know that K(12) = {A4, D12, T, C12, C3 × C2 × C2} in which

T =< a, b | a4 = b3 = 1; a−1ba = b−1 >.
We have ω (T ) = ω (D12) = ω (C2 × C2 × C3) = 4 also ω (A4) = 3 and
ω (C12) = 6.
K(22) = {C22, D22}, ω (C22) = 4 and ω (D22) = 3.
K(30) = {C30, C3 ×D10, C5 ×D6, D30}( see Theorem 4.2).

Here, we can prove the main theorem.

Theorem 4.9. Let G be a finite group of order n, then |W (G)| 6 |W (Cn)|.
If min{|W (G)| | |G| = n} = m, then m = 2|π(n)| or there is a nonnilpotent
group T that |T | = n and |W (T )| = m. In other words, the class of groups
of order n, cyclic group Cn has the most weight and if the least weight on
the above groups equals m, then m is a power of 2, such that the power
equals to numbers of distinct prime factors of n. Therefore m is the weight
of a non-nilpotent group.

Proof. Let Cn be a cyclic group of order n. If m is a divisor of n, then
m ∈W (G) and it follows that

{m ∈ Z | m > 0,m | n} ⊆W (Cn).

Now, if G is a group of order n and m ∈W (G), then m | n and hence

W (G) ⊆ {m ∈ Z | m > 0,m | n} .

Thus, W (G) ⊆W (Cn), and so we have

|W (G)| 6 |W (Cn)| .
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For the finite group G if n is a nilpotent number, then

|W (G)| > 2|π(n)|,

If n is not a nilpotent number, then K(n) has nonnilpotency property. So,
there exists a nonnilpotent group T in K(n), such that for every group G in
K(n), we have

|W (T )| 6 |W (G)| .

Hence
|W (T )| = min

{
|W (G)| | G ∈ K(n)

}
,

Therefore, the proof is completed
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