https://doi.org/10.56415/qrs.v30.25

On the weight of finite groups

Mohammad Amin Morshedlo and Mohammad Mehdi Nasrabadi

Abstract. For a finite group G, let W(G) denotes the set of the orders of the elements of G. In this paper we study |W(G)| and show that the cyclic group of order n has the maximum value of |W(G)| among all groups of the same order. Furthermore we study this notion in nilpotent and non-nilpotent groups and state some inequality for it. Among the result we show that the minimum value of |W(G)| is power of 2 or it pertains to a non-nilpotent group.

1. Introduction

Let G be a finite group. The connection between structure and the set of the orders of the elements of G, has been studied in several works. In 1932, Levi and Waerden [4] showed that under some conditions the groups with weight 2 are nilpotent of class at most 3. Later in 1937, Neumann [6] proved that if $W(G) = \{1, 2, 3\}$, then G is an elementary abelian-by-prime order group. Sanov [9] showed that, when $W(G) \subseteq \{1, 2, 3, 4\}$ G is a locally finite group. Novikov and Adjan [7] in 1968 answered negatively to the following question. Does the finiteness of W(G) imply G to be locally finite? In the same line of research Gupta et. al, [3] proved if $W(G) \subseteq \{1, 2, 3, 4, 5\}$ and $W(G) \neq \{1, 5\}$, then G is locally finite. In 2007, D. V. Lytkina [5] showed that for the group G, with $W(G) = \{1, 2, 3, 4\}$, either G is an extension of an elementary abelian 3-group by a cyclic or a quaternion group, or it is an extension of a nilpotent 2-group of class 2 by a subgroup of S_3 . The sum of element orders in finite groups is studied by Amiri, Jafarian Amiri and Isaacs [1]. We denote by |W(G)|, the number of element orders of G. The group G is m-weight group, if |W(G)| = m. It is easy to see that if G is trivial, then |W(G)| = 1. If G be a non-trivial group then, the weight of G is at least 2. In the following lemma, we state a result about 2-weight group.

²⁰¹⁰ Mathematics Subject Classification: Primary 20D15; Secondary 20K01. Keywords: Weight of group, finite p-group, non-nilpotency property.

Lemma 1.1. Let G be a group, then G is a 2-weight group if and only if exp(G) = p.

Proof. First assumethat, G is a 2-weight group. If $\exp(G) = p$ has two distinct prime divisors p and q, then $\{1, p, q\} \subseteq W(G)$, so exp(G) must be a p-number for some prime p. Now, if $exp(G) = p^n$, for some $n \ge 2$, then, $\{1, p, p^2\} \subseteq W(G)$. The converse is trivial.

2. Preliminary results

This section contains some basic properties on the weight of a finite group. The following proposition shows the relation of the weight of a direct product of a finite number of finite groups with the weights of its factors.

Proposition 2.1. Let H and K be two arbitrary finite groups, then $|W(H \times K)| \leq |W(H)| \times |W(K)|,$

and the equality holds if (exp(H), exp(K)) = 1.

Proof. Let $m \in W(H \times K)$ then, there exists $(h,k) \in H \times K$, such that $m = o(h,k) = [o(h),o(k)] = \frac{o(h)}{g_1} \times \frac{o(k)}{g_2} = rs$. Since [o(h),o(k)] is the least common multiple of o(h) and o(k) and $g_1g_2 = gcd(o(h),o(k))$, on the other hand $r = \frac{o(h)}{g_1}, s = \frac{o(k)}{g_2}$. So we have $r \in W(H)$ and $s \in W(K)$. Hence $|W(H \times K)| \leq |W(H)| \times |W(K)|$. Now, if (exp(H), exp(K)) = 1 and $(r,s) \in W(H) \times W(K)$, then there exsit $h \in H$ and $k \in K$ of orders r and s, respectively. Therefore, (h,k) is an element of $H \times K$ of order rs, so the result holds.

Now, using induction in order to prove the following corollary.

Corollary 2.2. Let $G_{i_{i=1}}^n$ be a family of finite groups. Then, $|W(\prod_{i=1}^n G_i)| \leq \prod_{i=1}^n |W(G_i)|$. Furthermore, the equality holds if the exponent of distinct direct factors are mutully coprime.

It is easy to see that the cyclic group of order p^{m-1} , $C_{p^{m-1}}$ is an *m*-weight group, in which *p* is an arbitrary prime number, so for every natural number *n*, there exists a finite group (in fact a finite *p*-group) of weight *m*.

The following theorem gives an upper bound for the weight of a finite group in terms of its order.

Theorem 2.3. Let G be a finite group of order n, then $|W(G)| \leq |W(C_n)|$ and the equality holds if and only if $G \cong C_n$.

Proof. Since the order of each element of G is a divisor of n and $|W(C_n)| = d(n)$, in which d(n) is the number of natural divisors of n, it is trivial, such that $|W(G)| \leq |W(C_n)|$. Now, if $|W(G)| = |W(C_n)|$, then $n \in W(G)$ and hence $G \cong C_n$.

3. Nilpotent groups

In this section, we state some facts on W(G), when G is a nilpotent group. The following proposition gives the upper and lower bound for W(G), when G is a finite nilpotent group.

Proposition 3.1. Let \aleph be class of nilpotent groups of order n, then for each $G \in \aleph$ we have

$$2^{|\pi(n)|} \leq |W(G)| \leq d(n),$$

and equality in the first inequality holds if and only if all Sylow subgroups of G has prime exponent.

Proof. Let $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then $d(n) = (\alpha_1 + 1) \cdots (\alpha_k + 1)$. Let G be a nilpotent group of order n, so $G \cong \prod_{i=1}^k S_i$, in which S_i is the Sylow p_i -subgroup of G of order $p_i^{\alpha_i}$ $(1 \leq i \leq k)$. Now, by Proposition 2.1, we have $|W(G)| = \prod_{i=1}^k |W(S_i)|$. Applying, Theorem 2.3, thus $2 \leq |W(S_i)| \leq \alpha_i + 1$, for all $i, 1 \leq i \leq k$. So $2^{|\pi(n)|} \leq |W(G)| \leq \prod_{i=1}^k (\alpha_i + 1) = d(n)$. Hence, $|W(G)| = 2^{|\pi(n)|}$ if and only if $\alpha_i = 1$, for all $i, 1 \leq i \leq k$ which is equal to $\exp(S_i) = p_i$, for all $i, 1 \leq i \leq k$.

As an immediate result we have.

Corollary 3.2. Let G be a finite group of order n, if $|W(G)| < 2^{|\pi(n)|}$ then G is non-nilpotent.

Theorem 3.3. Let G be a group of prime weight then G is nilpotent if and only if G is a p-group.

Proof. Since G is a nilpotent group we have $G = P_1 \times \cdots \times P_k$ so $W(G) = W(P_1) \cdots W(P_k)$ this implies k = 1 hence G is a p-group \Box

Immediate consequence of Theorem 3.3, we get the following corollary.

Corollary 3.4. In the class of all finite groups of prime weight, each group is either a p-group or non-nilpotent.

Proposition 3.5. (See [8, Theorem 1]) Suppose that $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, in which p_i 's are distinct prime numbers. Then, every finite group of order n is a nilpotent group if and only if $p_i \nmid p_j^{\beta_j} - 1$, for each $j, 0 < \beta_j \leq \alpha_j$ and $i \neq j$.

In above proposition such these numbers are called nilpotent numbers. Now in order to prove our main result, we need the following results.

Lemma 3.6. Every finite nilpotent group of order n is cyclic if and only if n is square free.

Proof. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be decomposition of n into prime factors and G be a nilpotent group of order n. By Proposition 3.1, we have $2^k \leq |W(G)| \leq |W(C_n)|$, since every nilpotent group of order n is cyclic, so both inequalities are in fact equality and hence $\alpha_i = 1$, for all $i, 1 \leq i \leq k$. Conversely, let G be a nilpotent group of order $n = p_1 \cdots p_k$. Applying, Proposition 3.1 again, so we have $|W(G)| = 2^k = d(n) = |W(C_n)|$, it implies that $G \cong C_n$.

Using, the above lemma we can prove the following theorem.

Theorem 3.7. Every finite group of order n is cyclic if and only if $n = p_1 \cdots p_k$, in which $p_1 < \ldots < p_k$ and $p_i \nmid p_{i+s} - 1$, where $1 \leq i \leq k - 1$ and $1 \leq s \leq k - i$.

Proof. If every finite group of order n is cyclic, then by Lemma 3.6 and Proposition 3.5, the result holds. If $n = p_1 \cdots p_k$, in which $p_1 < \ldots < p_k$ and $p_i \nmid p_{i+s} - 1$, where $1 \leq i \leq k-1$ and $1 \leq s \leq k-i$, then every group of order n is nilpotent, so we have $|W(G)| = 2^k = d(n) = |W(C_n)|$ and hence $G \cong C_n$.

4. Non-nilpotent groups

This section is devoted to some results on non-nilpotent groups. Let $\mathcal{K}_{(n)}$ denote the class of all groups of order n.

Definition 4.1. We say that $\mathcal{K}_{(n)}$ has non-nilpotency property if there exists a non-nilpotent group T in $\mathcal{K}_{(n)}$, such that $\min \{|W(G)| \mid G \in \mathcal{K}_{(n)}\} = |W(T)|$.

Theorem 4.2. If $\mathcal{K}_{(n)}$ has non-nilpotency property, then $\mathcal{K}_{(nm)}$, has also non-nilpotency property, for any natural number m, such that (n,m) = 1.

Proof. Let H be a nilpotent group of order nl, since (n, l) = 1 and H is nilpotent, there exist normal subgroups N and L of H, such that |L| = l, |N| = n and $H = N \times L$. Now, as $N \in \mathcal{K}_{(n)}$ and $\mathcal{K}_{(n)}$ has non-nilpotency property, so there is a non-nilpotent group T in $\mathcal{K}_{(n)}$ such that

$$|W(T)| = \min\{|W(G)| \mid G \in \mathcal{K}_{(n)}\}$$

 \mathbf{SO}

$$|W(T)| \leqslant |W(N)|.$$

If $E = T \times L$, then E is also a non-nilpotent group, and clearly |T| = |N| = nand |L| = l. Now, we have

$$|W(E)| = |W(T \times L)| = |W(T)||W(L)| \leq W(N)||W(L)| = |W(N \times L)| = |W(H)| =$$

So, as E is a non-nilpotent group, and H is nilpotent group in $\mathcal{K}_{(nl)}$ and $|W(E)| \leq W(H)|$, then $\mathcal{K}_{(nl)}$ has non-nilpotency property.

Example 4.3. It is easy to see that $\mathcal{K}_{(6)}$ has the non-nilpotency property, so $\mathcal{K}_{(30)}$ has the non-nilpotency property, we know that

$$\mathcal{K}_{(30)} = \{C_{30}, C_3 \times D_{10}, C_5 \times D_6, D_{30}\}$$

and

$$\omega(C_{30}) = 8, \omega(C_3 \times D_{10}) = 6, \omega(C_6 \times D_6) = 6 \text{ and } \omega(D_{30}) = 5.$$

Therefore, the minimum weight occurs at the non-nilpotent group D_{30} .

In the following lemma, we construct non-nilpotent groups with small enough weights.

Lemma 4.4. Let p and q be two distinct prime numbers and $\alpha \in Aut(C_q^r)$ be of order p. If $\{a_1, \ldots, a_m\}$ be the standard generating set for C_p^m , then the semidirect product C_p^m and C_q^r , by the homomorphism $\mu : C_p^m \to Aut(C_q^r)$, such that $\mu(a_i) = \alpha$, for each $i, i = 1, \ldots, m$, is a non-nilpotent group with weight at most 4.

Proof. Let $b \neq 0$ and $(0,b) \in C_p^m \ltimes C_q^r$. Clearly $(0,b)^q = (0,b^q) = (0,0)$ and hence o(0,b) = q. So, if $a \neq 0$ and $(a,0) \in C_p^m \ltimes C_q^r$, we have $(a,0)^p = (a^p,0) = (0,0)$, it implies that o(a,0) = p

Now, assume that $a \neq 0$ and $b \neq 0$, as $(a, b)^{pq} = (0, 0)$ and $o(a, b) \leq pq$, it follows that

$$W(C_p^m \ltimes C_q^r) \subseteq \{1, p, q, pq\},\$$

therefore $C_p^m \ltimes C_q^r$ is a non-nilpotent group with maximum weight 4.

We use the following useful result in the next theorem.

Proposition 4.5. (See [2]) For a finite p-group G, $\operatorname{Aut}(G) \cong Gl(n,p)$ if and only if G is an elementary abelian p-group of order p^n .

Theorem 4.6. The class of $\mathcal{K}_{(n)}$ has non-nilpotency property, for any nonnilpotent natural number n.

Proof. As n is not a nilpotent number according to Proposition 3.5, there exist distinct and prime divisors p and q of n such that

 $p \mid q^i - 1$

Now, we consider $n = p^m q^r k$ that (pq, k) = 1. By Proposition 4.5, we have

$$|Aut(C_q^r)| = (q^r - 1)(q^r - q)(\dots(q^r - q^{r-1}))$$

As

$$p \mid q^i - 1,$$

thus

$$p \mid (q^i - 1)q^{r-i} = q^r - q^{r-i}.$$

Therefore, $p \mid |Aut(C_q^r)|$ and hence there exists $\alpha \in Aut(C_q^r)$ with $o(\alpha) = p$. Now, if $\{a_1, \ldots, a_m\}$ is standard generator set of C_p^m , we consider homomorphism μ , such that

$$\mu: C_p^m \to Aut(C_q^r)$$

given by $\mu(a_i) = \alpha$ for i = 1, ..., m. We get semidirect product C_p^m and C_q^r , by homomorphism μ . Then, $C_p^m \ltimes C_q^r$ is a non-nilpotent group of order $p^m q^r$. On the other hand by Lemma 4.4, we have

$$\left|W(C_p^m \ltimes C_q^r)\right| \leqslant 4$$

So, if G is a nilpotent group of order $p^m q^r$, then we have

$$|W(G)| \ge 2^2 = 4$$

Thus, we conclude that $\mathcal{K}_{(p^mq^r)}$ has nonnilpotency property. Since (pq, k) = 1 and $p^mq^rk = n$, by Theorem 4.2, $\mathcal{K}_{(n)}$ has non-nilpotency property. \Box

Theorem 4.7. Let n be an even number, such that n is not a power of 2, then $\mathcal{K}_{(n)}$ has the non-nilpotency property.

Proof. Suppose that $n = 2^{\alpha_1} p^{\alpha_2} q_3^{\alpha_3} \cdots q_r^{\alpha_r}$, for some $r \ge 2$. Since 2 is a divisor of $|Aut(Z_p^{\alpha_2})|$, we have $\omega(\mathbb{Z}_2^{\alpha_1} \ltimes \mathbb{Z}_p^{\alpha_2}) \subseteq \{1, 2, p, 2p\}$. Now, let G be a nilpotent group of order n, thus $\omega(G) \ge 2^r$, also we have

$$\omega\left(\left(\mathbb{Z}_{2}^{\alpha_{1}}\ltimes\mathbb{Z}_{p}^{\alpha_{2}}\right)\times\mathbb{Z}_{q_{3}}^{\alpha_{3}}\times\ldots\times\mathbb{Z}_{q_{r}}^{\alpha_{r}}\right)\leqslant4(2^{r-2})=2^{r}$$

Therefore

$$\omega\left(\left(\mathbb{Z}_{2}^{\alpha_{1}}\ltimes\mathbb{Z}_{p}^{\alpha_{2}}\right)\times\mathbb{Z}_{q_{3}}^{\alpha_{3}}\times\ldots\times\mathbb{Z}_{q_{r}}^{\alpha_{r}}\right)\leqslant\omega\left(G\right)$$

and the results hold.

Example 4.8. $\mathcal{K}_{(12)}$, $\mathcal{K}_{(22)}$ and $\mathcal{K}_{(30)}$ has the non-nilpotency property. We know that $\mathcal{K}_{(12)} = \{A_4, D_{12}, T, C_{12}, C_3 \times C_2 \times C_2\}$ in which

$$T = < a, b \mid a^4 = b^3 = 1; a^{-1}ba = b^{-1} > .$$

We have $\omega(T) = \omega(D_{12}) = \omega(C_2 \times C_2 \times C_3) = 4$ also $\omega(A_4) = 3$ and $\omega(C_{12}) = 6$.

$$\mathcal{K}_{(22)} = \{C_{22}, D_{22}\}, \ \omega(C_{22}) = 4 \text{ and } \omega(D_{22}) = 3.$$

$$\mathcal{K}_{(30)} = \{C_{30}, C_3 \times D_{10}, C_5 \times D_6, D_{30}\} (\text{ see Theorem 4.2})$$

Here, we can prove the main theorem.

Theorem 4.9. Let G be a finite group of order n, then $|W(G)| \leq |W(C_n)|$. If $\min\{|W(G)| \mid |G| = n\} = m$, then $m = 2^{|\pi(n)|}$ or there is a nonnilpotent group T that |T| = n and |W(T)| = m. In other words, the class of groups of order n, cyclic group C_n has the most weight and if the least weight on the above groups equals m, then m is a power of 2, such that the power equals to numbers of distinct prime factors of n. Therefore m is the weight of a non-nilpotent group.

Proof. Let C_n be a cyclic group of order n. If m is a divisor of n, then $m \in W(G)$ and it follows that

$$\{m \in \mathbb{Z} \mid m > 0, m \mid n\} \subseteq W(C_n).$$

Now, if G is a group of order n and $m \in W(G)$, then $m \mid n$ and hence

$$W(G) \subseteq \{m \in \mathbb{Z} \mid m > 0, m \mid n\}.$$

Thus, $W(G) \subseteq W(C_n)$, and so we have

$$|W(G)| \leq |W(C_n)|.$$

For the finite group G if n is a nilpotent number, then

 $|W(G)| \ge 2^{|\pi(n)|},$

If n is not a nilpotent number, then $\mathcal{K}_{(n)}$ has nonnilpotency property. So, there exists a nonnilpotent group T in $\mathcal{K}_{(n)}$, such that for every group G in $\mathcal{K}_{(n)}$, we have

$$|W(T)| \leq |W(G)|.$$

Hence

$$|W(T)| = \min\left\{ |W(G)| \mid G \in \mathcal{K}_{(n)} \right\},\$$

Therefore, the proof is completed

References

- H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs, Sums of element orders in finite groups, Commun. Algebra, 37 (2009), no. 9, 2978 – 2980.
- S. Fouladi, R. Orfi, General linear groups as automorphism groups, Intern. J. Algebra, 5 (2011), no. 27, 1327 - 1335.
- [3] N.D. Gupta and V.B. Mazurov, On groups with small orders of elements, Bull. Australian Math. Soc., 6 (1999), 197 – 205.
- [4] F. Levi, B.L. Waerden, Uber eine besondere Klasse von Gruppen, Abhandlungen Math. Seminar Univ. Hamburg, 9 (1932), 154 – 158.
- [5] D.V. Lytkina, Structure of a group with elements of order at most, Siberian Math. J., 48 (2007), 283 – 287.
- [6] B.H. Neumann, Groups whose elements have bounded orders, J. London Math. Soc., 12 (1937), 195 - 198.
- [7] P.S. Novikov, S.I. Adjan, Infinite periodic groups I, Mathematics of the USSR-Izvestiya., 2 (1968), no. 1, 209 – 236.
- [8] J. Pakianathan, K. Shankar, *Nilpotent numbers*, Amer. Math. Monthly, 107 (2000), no. 7, 631 – 634.
- [9] I.N. Sanov, Solution of Burnside's problem for exponent 4, Leningrad Math. J., 10 (1940), 166 - 170.

Received December 23, 2021

Department of Mathematics and Statistics University of Birjand Birjand, Iran E-mail: mnasrabadi@birjand.ac.ir