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Translatable isotopes of translatable quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We determine the structure of translatable isotopes of translatable quasi-
groups. Necessary and sufficient conditions are found for a bijection between two such
isotopes to be an isomorphism. It is also proved that in a left cancellative, k-translatable
magma, the value of k is unique.

1. Introduction

This paper is motivated by the following question: What is the structure of
translatable isotopes of a left cancellative translatable magma? In Theorem
3.1 below we start with a quasigroup that is k-translatable with respect to
the natural order. The elements of a quasigroup (Q, ·) that is translatable
with respect to a particular ordering of Q can be re-labelled so that (Q, ·)
is translatable with respect to the natural ordering, so that starting with
the natural ordering is no limitation. We then determine all bijections α
and β on Q such that (Q, ∗), defined by l′ ∗m′ = αl′ ·βm′, is h-translatable
with respect to the ordering 1′, 2′, 3′, . . . , n′ of Q. This ordering is arbitrary,
except for the fact that 1′ = 1, the first element of the natural ordering.
Using perhaps repeated applications of Lemma 2.6 below, such an ordering
is always possible.

That is, we have determined the form of all h-translatable isotopes of any
k-translatable quasigroup. As a Corollary, it follows that a k-translatable
quasigroup of order n has h-translatable isotopes of every value relatively
prime to n. In addition, such translatable isotopes exist for every possible
ordering of Q.

We also give a correct proof of the fact that a left cancellative k-
translatable magma is translatable for a unique value of k and explain why
the proof of this given in [4], Theorem 3.3, is not valid.
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2. Preliminary results, definitions and notation

.
All magmas (groupoids) considered here are of finite order n. That

is, Q = {1, 2, . . . , n} and 1, 2, 3, . . . , n is the natural ordering. We denote
{1, 2, . . . , n} by {1, n}. The value of t modulo n is denoted by [t]n. If
i ≡ j(modn) we write [i]n = [j]n. Recall that t ∈ {1, n} is relatively prime
to n if and only if there exists t̃ ∈ {1, n} such that [t̃t]n = 1, if and only if
[tx]n = [ty]n implies x = y for all x, y ∈ {1, n}. We denote this by (t, n) = 1.

Definition 2.1. (cf. [2]) A finite magma is called k-translatable (for fixed
k, 1 6 k < n) if its Cayley table is obtained by the following rule: If the
first row of the table is a1, a2, . . . , an then the qth row is obtained from
the (q − 1)th row by taking the last k entries in the (q − 1)th row and
inserting them as the first k entries of the qth row and by taking the first
(n− k) entries from the (q− 1)th row and inserting them as the last (n− k)
entries of the qth row, where q ∈ {2, 3, . . . , n}. Then, the (ordered) sequence
a1, a2, . . . , an is called a k-translatable sequence of Q with respect to the
natural ordering 1, 2, 3, . . . , n. A magma is called translatable if it has a
k-translatable sequence for some k ∈ {1, 2, . . . , n− 1}.

Example 2.2. Consider the following magma represented by three Cayley
tables with different orderings.

1 2 3 4 5
1 2 5 3 4 1
2 3 4 1 2 5
3 1 2 5 3 4
4 5 3 4 1 2
5 4 1 2 5 3

4 2 3 1 5
4 1 3 4 5 2
2 2 4 1 3 5
3 3 2 5 1 4
1 4 5 3 2 1
5 5 1 2 4 3

4 2 5 3 1
4 1 3 2 4 5
2 2 4 5 1 3
5 5 1 3 2 4
3 3 2 4 5 1
1 4 5 1 3 2

Notice that (Q, ·) is 3-translatable with respect to the natural ordering
and with respect to the ordering 4, 2, 5, 3, 1. But it is not translatable with
respect to the ordering 4, 2, 3, 1, 5.

Example 2.3. The magma (Q, ·), where Q = {1, 2, 3, 4} and x · y = 1, is
k-translatable for every k ∈ {1, 2, 3, 4}. Its k-translatable sequence has the
form 1, 1, 1, 1.

The following lemmas are stated without proof, as the proofs are else-
where, as referenced.
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Lemma 2.4. (cf. [2, Lemma 2.5]) Let a1, a2, . . . , an be the first row of the
Cayley table of the magma (Q, ·) of order n. Then (Q, ·) is k-translatable
with respect to the natural ordering if and only if for all i, j ∈ {1, n} one of
the following (equivalent) conditions is satisfied:

(i) i · j = a[k−ki+j]n,

(ii) i · j = [i+ 1]n · [j + k]n,

(iii) i · [j − k]n = [i+ 1]n · j.

Lemma 2.5. Suppose that Q = {1′, 2′, . . . , n′} is a set of order n. In the
magma (Q, ·), let ai = 1′ · i′ for all i ∈ {1, n}. Then (Q, ·) is k-translatable
with respect to the ordering 1′, 2′, . . . , n′ if and only if for all i, j ∈ {1, n}
one of the following (equivalent) conditions is satisfied:

(i) i′ · j′ = a[k−ki+j]n,

(ii) i′ · j′ = [i+ 1]′n · [j + k]′n,

(iii) i′ · [j − k]′n = [i+ 1]′n · j′.

Note that in Lemma 2.5, i′ ·j′ 6= a[k−ki′+j′]n . This is because [k−ki+j]n
marks the position of the entry a[k−ki+j]n . For example, in the third Cayley
table in Example 2.2, (Q, ·) is 3-translatable with respect to the ordering
1′, 2′, 3′, 4′, 5′ where 1′ = 4, 2′ = 2, 3′ = 5, 4′ = 3 and 5′ = 1. Then,
1′ · 2′ = 4 · 2 = 3 = 4′ 6= 2 = a3 = a[−2]5 = a[3−(3·4)+2]5 = a[3−3(1′)+2′]5 while
1′ · 2′ = 3 = a2 = a[3−3(1)+2]5 .

Lemmas 2.4 and 2.5 above will be applied throughout the rest of the
paper, at times without reference. Lemma 2.5 accounts, in part, for the
error in the proof of the fact that the value of the translatability of a left
cancellative translatable magma is unique, in [4], Theorem 3.3. An error in
the proof there is that aj′′ = 1 · j′′ = 1′′ · j′′ = cj 6= cj′′ , because as we have
just seen, j′′ is not necessarily equal to j for all j ∈ {1, n}, except in the
natural ordering.

We now list some previously proved results that, along with the proof of
the converse of Lemma 2.7 from [2] will be used as lemmas to give a valid
proof that the value of translatability of left cancellative magmas is unique.

Lemma 2.6. (cf. [2, Lemma 2.7]) Let (Q, ·) be a k-translatable magma
with respect to the natural ordering 1, 2, . . . , n, with k-translatable sequence
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a1, a2, . . . , an. Then (Q, ·) is k-translatable with respect to the ordering
n, 1, 2, . . . , n− 2, n− 1, with k-translatable sequence

ak, ak+1, . . . , an−1, an, a1, a2, . . . , ak−1.ak−1.

Lemma 2.7. (cf. [4, Lemma 2.6]) Let (Q, ·) be a naturally ordered k-trans-
latable magma of order n with k-translatable sequence a1, a2, . . . , an and
suppose that (t, n) = 1. Then (Q, ·) is k-translatable with respect to the
ordering

1, [1 + t]n, [1 + 2t]n, [1 + 3t]n, . . . , [1− 2t]n, [1− t]n
with k-translatable sequence

a1, a[1+t]n , a[1+2t]n , . . . , a[1−2t]n , a[1−t]n .

The following result, the converse of Lemma 2.7, is new.

Lemma 2.8. A magma (Q, ·) of order n is a k-translatable with respect
to the natural ordering if and only if it is k-translatable with respect to the
ordering 1, [1 + t]n, [1 + 2t]n, . . . , [1− 2t]n, [1− t]n for any t relatively prime
to n.

Proof. (⇒). This is Lemma 2.7.
(⇐). Let the magma (Q, ·) be k-translatable with respect to the ordering

1′, 2′, 3′, . . . , n′, where i′ = [1 + (i − 1)t]n for all i ∈ {1, n} and where
(t, n) = 1.

Define tq = [(q − 1)t̃ ]n for any q ∈ {1, n}. Note that [1 + tqt ]n = q =

[tq + 1]′n. Then, for all i, j ∈ {1, n}, by Lemma 2.5(iii)

[i+ 1]n · [j + k]n = [1 + (ti + t̃ )t]n · [1 + (tj + t̃+ tk)t]n

= [ti + t̃+ 1]′n · [tj + t̃+ tk + 1]′n
= [ti + 1]′n · [tj + t̃+ tk + 1− t̃k]′n
= i · [1 + (tj + t̃+ tk − t̃k)t]n = i · j.

So, by Lemma 2.4(ii), (Q, ·) is k-translatable with respect to the natural
ordering.

From Lemma 2.5 (i) it follows that if a k-translatable magma (Q, ·) of
order n is left cancellative, then all elements of its k-translatable sequence
(consequently, elements in each row of its Cayley table) are different because
ϕi(x) = i·x is a bijection. But, in general, such a magma is not a quasigroup.
It is a quasigroup if and only if (k, n) = 1. A quasigroup of order n can be
k-translatable only for (k, n) = 1 [2, Lemma 2.15].
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Corollary 2.9. If (Q, ·) is a k-translatable quasigroup, then (k, n) = 1.

Theorem 2.10. A left cancellative magma (Q, ·) can be k-translatable only
for one value of k.

Proof. Suppose that (Q, ·) is k-translatable of order n. Then, by a renu-
meration of the elements of Q, we can consider (Q, ·) as k-translatable
with respect to the natural ordering. Suppose that (Q, ·) is h-translatable
with respect to some ordering. Then using Lemma 2.6, perhaps repeatedly,
(Q, ·) is h-translatable with respect to some ordering 1′, 2′, . . . , n′, where
1′ = 1. Suppose that (Q, ·) has the k-translatable sequence a1, a2, . . . , an
with respect to the natural ordering and that (Q, ·) has the h-translatable
sequence c1, c2, . . . , cn with respect to the ordering 1, 2′, 3′, . . . , n′. Then,
for any i ∈ Q, by Lemma 2.4 (i) and Lemma 2.5 (i),

ai′ = 1 · i′ = 1′ · i′ = ci. (1)

For i ∈ Q, define si = i′. Then, s1 = 1′ = 1 and for any i, j ∈ Q, by the

definition of h-translatability i′ · j′ = si · sj = a′[k−ksi+sj ]n = c[h−hi+j]n
(1)
=

a′[h−hi+j]n , and, since (Q, ·) is left cancellative, we have

[k − ksi + sj ]n = [h− hi+ j]′n. (2)

Then, for any i ∈ Q, [h + i]′n = [h − hh̃ + i + 1]′n
(2)
= [k − ksh̃ + si+1]n =

[h− hn+ i]′n
(2)
= [k − ksn + si]n. So, for all i ∈ {1, n},

[s[i+1]n − si]n = [k(sh̃ − sn)]n. (3)

It is then straightforward to prove by induction on i that

si = [1 + (i− 1)k(sh̃ − sn)]n. (4)

Since {s1, s2, . . . , sn} = {1′, 2′, . . . , n′} = {1, 2, . . . , n}, (k(sh̃ − sn), n) = 1
and the ordering 1′, 2′, . . . , n′ is of the form in our Lemma 2.8, with t =
[k(sh̃− sn)]n. Therefore, by Lemma 2.8, (Q, ·) is both h and k-translatable
with respect to the natural ordering. Applying Lemma 2.3 from [2] we
obtain h = k.
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3. Translatable isotopes of a translatable magma

A magma (Q, ∗) is an isotope of the magma (Q, ·) if there are bijections α, β
and γ of Q such that γ(i∗j) = αi ·βj. If γ is the identity map, then (Q, ∗) is
called a principal isotope of (Q, ·). One can prove (see for example [1]) that
every isotope of the magma (Q, ·) is isomorphic to a principal isotope of this
magma. Therefore, although our results on isotopes of translatable magma
are actually results on the principal isotopes of a translatable magma, up
to isomorphism they are results on all isotopes.

Theorem 3.1. Suppose that a quasigroup (Q, ·) of order n is k-translatable
with respect to the natural ordering of Q. Then (Q, ∗) is an isotope of (Q, ·)
and is h-translatable with respect to the ordering 1, 2′, 3′, . . . , n′ if and only if
there exist bijections α and β of Q and c, d ∈ {1, n} such that αc′ = n = βd′

and

(i) l′ ∗m′ = αl′ · βm′ for all l,m ∈ {1, n},

(ii) α([c+ i]′n) = iα([c+ 1]′n) for all i ∈ {1, n},

(iii) β([d+ ih]′n) = kiα([c+ 1]′n) for all i ∈ {1, n}, and

(iv) (α([c+ 1]′n), n) = 1.

Proof. (⇒). Let a1, a2, . . . , an be the k-translatable sequence of a quasi-
group (Q, ·). Then since (Q, ·) is left cancellative,

al = am if and only if l = m. (5)

Also, by Lemma 2.4 (i), l · m = a[k−kl+m]n for all l,m ∈ {1, n}. Since
(Q, ∗) is an isotope of (Q, ·), by definition there exist bijections α and β of
Q such that (i) is valid. Hence, l′ ∗m′ = αl′ · βm′ = a[k−k(αl′)+βm′]n for all
l,m ∈ {1, n}.

Since α and β are bijections of Q there exist c, d ∈ {1, n} such that
αc′ = n = βd′. Thus, for all i ∈ {1, n}, using h-translatability of (Q, ∗), by
Lemma 2.5(ii) we obtain

ak = n·n = αc′ ·βd′ = c′∗d′ = [c+ i]′n∗[d+ ih]′n = α([c+ i]′n) · β([d+ ih]′n)

= a[k−kα([c+i]′n)+β([d+ih]′n)]n

and so by (5),
kα([c+ i]′n) = β([d+ ih]′n) (6)
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for all i ∈ {1, n}.
Also,

[c+ 1]′n ∗ d′ = α([c+ 1]′n) · βd′ = a[k−kα([c+1]′n)]n
= [c+ 1 + i]′n ∗ [d+ ih]′n

= a[k−kα([c+1+i]′n)+β([d+ih]
′
n)

and so by (5),

kα([c+ 1 + i]′n)− kα([c+ 1]′n) = β([d+ ih]′n)
(6)
= kα([c+ i]′n). (7)

By induction on i we now prove (ii), that α([c+ i]′n) = iα([c+ 1]′n) for
all i ∈ {1, n}. Clearly, the statement is true for i = 1. If the statement is
true for all t 6 i− 1 then α([c+ i− 1]′n) = (i− 1)α([c+ 1]′n). Then by (7)
for i− 1 we have that

kα([c+ i]′n)− kα([c+ 1]′n) = kα([c+ i− 1]′n)

and so kα([c+ i]′n) = kiα([c+ 1]′n). Since (k, n) = 1,

α([c+ i]′n) = iα([c+ 1]′n) (8)

for all i ∈ {1, n}.
Now (iii) follows from (6) and (8), and (iv) follows from (8), the fact

that α is a bijection of Q and the fact that Q = {1, 2′, 3′, . . . , n′}.
(⇐). Clearly, (Q, ∗) is an isotope of (Q, ·). We need only prove therefore

that (Q, ∗) is h-translatable with respect to the ordering 1, 2′, 3′, . . . , n′.
For any l,m ∈ {1, n}, l = [c+ il]n and m = [d+ imh]n for some il, im ∈

{1, n}. Then, [l+ 1]′n ∗ [m+h]′n = α([c+ il + 1]′n) ·β([d+ (im + 1)h]′n) = aw,
where,

w = [k − kα([c+ il + 1]′n) + β([d+ (im + 1)h]′n]n

= [k − k(il + 1)α([c+ 1]′n) + k(im + 1)α([c+ 1]′n)]n by (ii), (iii)

= [k − kilα([c+ 1]′n) + kimα([c+ 1]′n)]n

= [k − kilα([c+ 1]′n) + β([d+ imh]′n)]n) by (iii)

= [k − kαl′ + βm′]n. by (ii)

So,

[l + 1]′n ∗ [m+ h]′n = aw = a[k−kαl′+βm′]n = αl′ · βm′ = l′ ∗m′

and, by Lemma 2.5 (ii), (Q, ∗) is h-translatable with respect to the ordering
1, 2′, 3′, . . . , n′.
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Corollary 3.2. A k-translatable quasigroup of order n has h-translatable
isotopes for all values of h relatively prime to n. It has such isotopes for
every ordering.

Corollary 3.3. (Zn, ∗) is an h-translatable isotope of (Zn,+) with respect to
the ordering 1, 2′, 3′, . . . , n′ if and only if there exist bijections α and β of Zn
and c, d ∈ Zn such that αc′ = 0 = βd′, α([c+ i]′n) = iα([c+ 1]′n) = −β([d+
ih]′n) for all i ∈ {1, n}, (α([c+ 1]′n), n) = 1 = (h, n) and l′ ∗m′ = αl′ · βm′
for all l,m ∈ Zn.

Corollary 3.4. Suppose that (Q, ·) is a k-translatable quasigroup with re-
spect to the natural ordering, with k-translatable sequence a1, a2, . . . , an.
Suppose also that (Q, ∗) is an h-translatable quasigroup with respect to the
ordering 1, 2′, 3′, . . . , n′. Then (Q, ∗) is an h-translatable isotope of (Q, ·) if
and only if there exist c, d, t ∈ {1, n} with (t, n) = 1 and for all q ∈ {1, n},
1∗q′ = axq , where xq = [r+(q−1)h̃kt]n and r = [k+kct−kt+(1−d)h̃kt]n.
Also, (Q, ∗) is an h-translatable idempotent isotope of (Q, ·) if and only if
there exist c, d, t ∈ {1, n} with (t, n) = 1 such that q = a[k−kct+(q−d)h̃kt−ktq]n
for all q ∈ {1, n}.

Proof. (⇒). By Theorem 3.1, there exist bijections α and β of Q and
c, d ∈ {1, n} such that αc′ = n = βd′ and (i), (ii), (iii) and (iv) of Theorem
3.1 are valid. Let t = α([c+ 1]′n).

For any m ∈ {1, n} there exists im ∈ {1, n} such that m = [d + imh]n
and [m+ 1]n = [d+ (im + h̃)h]n. Therefore,

β([m+ 1]′n)
(iii)
= [k(im + h̃)t]n = [kimt]n + [kh̃t]n = βm′ + [kh̃t]n.

By Theorem 3.1 again, for all l,m ∈ {1, n}, we have l′ ∗m′=αl′ · βm′=
a[k−k(αl′)+βm′]n . Therefore, for any q ∈ {1, n}, 1∗q′ = 1′∗q′ = α1·βq′ = axq ,
where

xq = [k − kα1 + βq′]n = [k − kα1 + β1 + (q − 1)h̃kt]n = [r + (q − 1)h̃kt]n

for r = [k − kα1 + β1]n, whence, applying (ii) and (iii), we obtain

r = [k − k(1− c)t+ (1− d)h̃kt]n = [k + kct− kt+ (1− d)h̃kt]n.

(⇐). For all i ∈ {1, n} we define α([c + i]′n) = [it]n and β([d + i]′n) =
[ih̃kt]n. Then α and β are bijections of Q. For any q ∈ {1, n}, define
bq = aw, where w = [r + (q − 1)h̃kt]n. That is, b1, b2, . . . , bn is the h-
translatable sequence of (Q, ∗) with respect to the ordering 1, 2′, 3′, . . . , n′.
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By Lemma 2.5 (i), for all l,m ∈ {1, n}, l′ ∗ m′ = b[h−hl+m]n = ax, where
x = [r + (h − hl + m − 1)h̃kt]n. Since r = [k + kct − kt + (1 − d)h̃kt]n,
x = [k + kct − ktl − dh̃kt + mh̃kt]n and l′ ∗m′ = b[h−hi+m]n = ax. Then,
since for any m ∈ {1, n}, βm′ = β([d+ (m− d)]′n) = [(m− d)h̃kt]n we have
αl′ ·βm′ = ay, where y = [k−kαl′+βm′]n = [k−k(l−c)t+(m−d)h̃kt]n = x.
Hence, l′ ∗m′ = ax = ay = αl′ · βm′ and (Q, ∗) is an h-translatable isotope
of (Q, ·).

The last sentence in the statement of Corollary 3.4 follows from the fact
that (Q, ∗) is idempotent if and only if q = q ∗ q = ax[h−hq+q]n

.

Example 3.5. The set Q8 = {1, 2, 3, 4, 5, 6, 7, 8} with the operation defined
by table

· 4 8 1 3 2 5 7 6

4 6 5 1 8 2 4 3 7
8 8 2 4 3 7 6 5 1
1 3 7 6 5 1 8 2 4
3 5 1 8 2 4 3 7 6
2 2 4 3 7 6 5 1 8
5 7 6 5 1 8 2 4 3
7 1 8 2 4 3 7 6 5
6 4 3 7 6 5 1 8 2

is a 5-translatable quasigroup. We can re-label the elements ofQ8 as follows:
4 becomes 1, 8 becomes 2, 1 becomes 3, 3 becomes 4, 2 becomes 5, 5 becomes
6, 7 stays as 7 and 6 becomes 8. Then, with this new labelling, (Q8, ·) is
5-translatable with respect to the natural ordering, as follows.

· 1 2 3 4 5 6 7 8

1 8 6 3 2 5 1 4 7
2 2 5 1 4 7 8 6 3
3 4 7 8 6 3 2 5 1
4 6 3 2 5 1 4 7 8
5 5 1 4 7 8 6 3 2
6 7 8 6 3 2 5 1 4
7 3 2 5 1 4 7 8 6
8 1 4 7 8 6 3 2 5

Its translatable sequence has the form 8, 6, 3, 2, 5, 1, 4, 7.
Using Corollary 3.4, we now construct an isotope (Q8, ∗) of (Q8, ·) that

is 3-translatable with respect to the ordering 1, 2′, 3′, . . . , n′.
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We have k = 5 and h = 3 = h̃. We choose c = 4 and d = 7 = t =
α([4 + 1]′8). Then we calculate that r = [k + kct − kt + (1 − d)h̃kt]8 =
8. Then, as in the proof of Corollary 3.4 (⇐), for all l,m ∈ {1, 8} is
l′ ∗m′ = b[3−3l+m]8 = a[8+(3−3l+m−1)(105)]8 = a[3−3l+m−1]8 . This gives the
following 3-translatable sequence for (Q8, ∗), with respect to the ordering
1, 2′, 3′, . . . , 8′: a8, a7, a6, a5, a4, a3, a2, a1 or 7, 8, 6, 3, 2, 5, 1, 4. This gives
the following Cayley table for the 3-translatable isotope (Q8, ∗) of (Q8, ·).

∗ 1 2′ 3′ 4′ 5′ 6′ 7′ 8′

1 7 8 6 3 2 5 1 4
2′ 5 1 4 7 8 6 3 2
3′ 6 3 2 5 1 4 7 8
4′ 4 7 8 6 3 2 5 1
5′ 2 5 1 4 7 8 6 3
6′ 8 6 3 2 5 1 4 7
7′ 1 4 7 8 6 3 2 5
8′ 3 2 5 1 4 7 8 6

According to Theorem 3.1, the mappings α and β that satisfy l′ ∗ m′ =
αl′ · βm′, for all l,m ∈ {1, 8}, are: α1′ = α1 = 3, α2′ = 2, α3′ = 1, α4′ = 8,
α5′ = 7, α6′ = 6, α7′ = 5, α8′ = 4, and β1′ = 2, β2′ = 3, β3′ = 4, β4′ = 5,
β5′ = 6, β6′ = 7, β7′ = n, β8′ = 1.

Using Lemma 2.6 we can see that 3-translatable isotopes of (Q8, ·) exist
for every ordering of Q8.

Example 3.6. Consider again the 5-translatable quasigroup of Example
3.5, with the following Cayley table:

· 1 2 3 4 5 6 7 8

1 8 6 3 2 5 1 4 7
2 2 5 1 4 7 8 6 3
3 4 7 8 6 3 2 5 1
4 6 3 2 5 1 4 7 8
5 5 1 4 7 8 6 3 2
6 7 8 6 3 2 5 1 4
7 3 2 5 1 4 7 8 6
8 1 4 7 8 6 3 2 5

Consider also a quasigroup (Q8, ?) with ordering 5, 3, 8, 1, 7, 2, 6, 4 and Cay-
ley table as follows:
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? 5 3 8 1 7 2 6 4

5 8 3 6 5 4 1 7 2
3 3 7 4 6 2 8 5 1
8 6 4 8 1 3 5 2 7
1 5 6 1 2 8 7 4 3
7 4 2 3 8 7 6 1 5
2 1 8 5 7 6 2 3 4
6 7 5 2 4 1 3 6 8
4 2 1 7 3 5 4 8 6

Is the quasigroup (Q8, ?) a translatable isotope of (Q8, ·)? If it is trans-
latable then it must be 7-translatable, as all other possible values of trans-
latability, 1, 3 and 5, do not yield commutative quasigroups.

By (perhaps repeated) application of Lemma 2.6, if (Q8, ?) is 7-translata-
ble then it is 7-translatable with respect to an ordering 1, 2′, 3′, 4′, 5′, 6′, 7′, 8′,
with 7-translatable sequence 2, b2, b3, b4, b5, b6, b7, b8 with {b3, b5, b7} =
{6, 7, 8}.

Assuming that 2′ = 6 and using Lemma 2.4 (ii) and (iii), we can cal-
culate that 3′ = 3, 4′ = 5, 5′ = 2, 6′ = 4, 7′ = 7 and 8′ = 8. Using this
ordering, 1, 6, 3, 5, 2, 4, 7, 8 and the Cayley table given above for (Q8, ?), we
can calculate that, in fact (Q8, ?), is 7-translatable, with 7-translatable se-
quence 2, 4, 6, 5, 7, 3, 8, 1 or a4, a7, a2, a5, a8, a3, a1, a6. Then, by Corollary
3.4, we see that (Q8, ?) is not a 7-translatable isotope of (Q8, ·). That is
because the subscripts of the a’s in its translatable sequence must increase
successively by the same value of [7̃ ·5t]8 = [35t]8 = [3t]8. Although the sub-
scripts start increasing by a value of 3, this does not continue when moving
from b6 to b7.

4. Translatability and isomorphism

It is known that isomorphism preserves k-translatability; that is, if (Q, ·)
is k-translatable and isomorphic to (Q, ∗) then (Q, ∗) is k-translatable (cf.
[3, Theorem 8.14]). However, k-translatable quasigroups of the same or-
der are not necessarily isomorphic. An example of such quasigroups are 3-
translatable quasigroups defined by the following tables. The first is without
idempotents, in the second - all elements are idempotent. So, they cannot
be isomorphic.



204 W.A. Dudek and R.A.R. Monzo

· 1 2 3 4 5
1 2 4 3 5 1
2 3 5 1 2 4
3 1 2 4 3 5
4 4 3 5 1 2
5 5 1 2 4 3

· 1 2 3 4 5
1 1 3 5 2 4
2 5 2 4 1 3
3 4 1 3 5 2
4 3 5 2 4 1
5 2 1 5 3 5

So, when are two translatable quasigroups of the same order isomor-
phic? As already mentioned, we know by [3, Theorem 8.14] that if they
are isomorphic then they must have equal value of translatability. Two
idempotent, k-translatable quasigroups of the same order are isomorphic
[2, Theorem 2.12]. The general problem remains. If (Q, ·) and (S, ∗) are
both k-translatable quasigroups of the same order then when are they iso-
morphic?

Theorem 4.1. Suppose that (Q, ·) and (S, ∗) are k-translatable quasigroups
of the same order n. If (Q, ·) is k-translatable with respect to the natural
ordering, with k-traslatable sequence a1, a2, a3, . . . , an and (S, ∗) is k-trans-
latable with respect to the ordering 1′, 2′, 3′, . . . , n′, with k-translatable se-
quence b′1, b

′
2, b
′
3 . . . , b

′
n. Then Ψ : Q → S defined by Ψi = (si)

′, i ∈ {1, n},
is an isomorphism if and only if

(i) si = [sn + it]n for all i ∈ {1, n}, where t = [k(s1 − s[1−k̃]n)]n,
(t, n) = 1 and

(ii) s′aj = b′[r+jt]n for all j ∈ {1, n}, where r = [k(1− sn − t) + sn]n.

Proof. (⇒). By Lemma 2.4 (i) and Lemma 2.5 (i), i · j = a[k−ki+j]n and
i′ ∗ j′ = b′[k−ki+j]n for all i, j ∈ {1, n}. Since Ψ is an isomorphism, for all
i, j ∈ {1, n}, Ψa[k−ki+j]n = Ψ(i · j) = Ψi ∗ Ψj = s′i ∗ s′j = b[k−ksi+sj ]n . But
1·[k−ki+j]n = a[k−ki+j]n , Ψa[k−ki+j]n = b′[[k−ksi+sj ]n = Ψ(1·[k−ki+j]n) =

Ψ1 ∗Ψ[k − ki+ j]n = s′1 ∗ s′[k−ki+j]n = b′[k−ks1+s[k−ki+j]n ]n
and so

[k(s1 − si)]n = [s[k−ki+j]n − sj ]n,
which for i = [1− k̃]n gives

[k(s1 − s[1−k̃]n)]n = [s[j+1]n− sj ]n,

for all j ∈ {1, n}.
The last equation for t = [k(s1 − s[1−k̃]n)]n implies t = [s1 − sn]n =

[s2 − s1]n = . . . = [sn − sn−1]n. Hence

si = [sn + it]n (9)
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and S = {s1, s2, . . . , sn} for (t, n) = 1.
Also, Ψ(i · j) = Ψa[k−ki+j]n = s′a[k−ki+j]n

and Ψi ∗ Ψj = s′i ∗ s′j =

b′[k−ksi+sj ]n
(9)
= b′[k−ksn−kit+sn+jt]n . Therefore, s

′
a[k−ki+j]n

= b′[k−ksn−kit+sn+jt]n .
Hence, when i = 1, we have

s′aj = b′[k−ksn−kt+sn+jt]n = b′[k(1−sn−t)+sn+jt]n = b′[r+jt]n

for all j ∈ {1, n}, where r = [k((1− sn − t) + sn]n. So, we have proved (i)
and (ii), thereby proving necessity.

(⇐). Assume that (i) and (ii) are valid. Let j = [k − kl +m]n for any
l,m ∈ {1, n}. By (ii), s′a[k−ki+m]n

= b′[r+(k−kl+m)t]n
. Since r = [k(1 − sn −

t) + sn]n, [r + (k − kl + m)t]n = [k − ksn + sn − klt +mt]n = [k − k(sn +

lt) + (sn + mt)]n
(i)
= [k − ksl + sm]n and so s′a[k−kl+m]n

= b′[k−ksl+sm]n
and

Ψ(l ·m) = Ψa[k−kl+m]n = s′a[k−kl+m]n
= b′[k−ksl−sm]n

= s′l ∗ s′m = Ψl ∗ Ψm

for any l,m ∈ {1, n}. Hence (Q, ·) and (S, ∗) are isomorphic.

Notice that, given the k-translatable quasigroups (Q, ·) and (Q, ∗), given
the k-translatable sequence a1, a2, . . . , an of Q and a given t relatively prime
to n, by (i) and (ii) every sn ∈ Q determines a k-translatable sequence
b′1, b

′
2, . . . , b

′
n for which (Q.·) and (Q, ∗) are isomorphic.

Example 4.2. Let (Q, ·), where Q = {1, 2, 3, 4, 5}, be a 2-translatable
quasigroup with respect to the natural ordering, with 2-translatable se-
quence 3, 1, 5, 2, 4. Let a quasigroup (S, ∗) be 2-translatable with respect
to the ordering b′1, b

′
2, b
′
3, b
′
4, b
′
5. Let s5 = 5 and t = 3, with Ψi = (si)

′,
i ∈ {1, 5} and s1 = 3, s2 = 1, s3 = 4, s4 = 2, s5 = 5. Suppose that
b1 = 3, b2 = 1,b3 = 2, b4 = 4, b5 = 5 Then, by Theorem 4.1, Ψ is not an
isomorphism because although (i) is satisfied, sa5 = s4 = 2 6= bx, where
x = [k(1 − s5 − t) + s6 + 5t]5 = 1 and so, 2 6= b1 = 3. Thus, (ii) is not
satisfied and Ψ is not an isomorphism. However, if we consider the mapping
when s5 = 2 and t = 3, then s1 = 5, s2 = 3, s3 = 1, s4 = 4 and this satisfies
(i) and (ii). So, (Q, ·) and (S, ∗) are isomorphic, with that mapping as the
isomorphism; namely, 1 7→ 5′, 2 7→ 3′, 3 7→ 1′, 4 7→ 4′, 5 7→ 2′.

Example 4.3. Here are the Cayley tables of the 2-translatable quasigroups
of Example 4.2.
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· 1 2 3 4 5
1 3 1 5 2 4
2 2 4 3 1 5
3 1 5 2 4 3
4 4 3 1 5 2
5 5 2 4 3 1

∗ 1′ 2′ 3′ 4′ 5′

1′ b′1 b′2 b′3 b′4 b′5
2′ b′4 b′5 b′1 b′2 b′3
3′ b′2 b′3 b′4 b′5 b′1
4′ b′5 b′1 b′2 b′3 b′4
5′ b′3 b′4 b′5 b′1 b′2

Using Theorem 4.1, we can determine all 2-translatable sequences b′1, b′2,
b′3, b

′
4, b
′
5 of (S, ∗) such that (Q, ·) and (Q, ∗) are isomorphic.

Since s5 ∈ {1, 5} and t ∈ {1, 4} there are 20 such 2-translatable se-
quences. Below we present these sequences for t = 2.

s5 t r s1 s2 s3 s4 b1 b2 b3 b4 b5 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5
1 2 2 3 5 2 4 3 4 1 2 5 3′ 5′ 2′ 4′ 1′

2 2 1 4 1 3 5 5 2 3 1 4 4′ 1′ 3′ 5′ 2′

3 2 5 5 2 4 1 3 4 2 5 1 5′ 2′ 4′ 1′ 3′

4 2 4 1 3 5 2 5 3 1 2 4 1′ 3′ 5′ 2′ 4′

5 2 3 2 4 1 3 4 2 3 5 1 2′ 4′ 1′ 3′ 5′

We can check that the quasigroups in the table above are actually iso-
morphic to (Q, ·) by using the mapping Ψ and re-ordering (S, ∗) accordingly.
In this sense, Ψ can be considered to be a mapping that re-orders S, giving
it a 2-translatable Cayley table that is more clearly isomorphic to (Q, ·).
For example, for s5 = 3, t = 2 and r = 5 we have the following:

· 1 2 3 4 5
1 3 1 5 2 4
2 2 4 3 1 5
3 1 5 2 4 3
4 4 3 1 5 2
5 5 2 4 3 1

∗ 1′ 2′ 3′ 4′ 5′

1′ 3′ 4′ 2′ 5′ 1′

2′ 5′ 1′ 3′ 4′ 2′

3′ 4′ 2′ 5′ 1′ 3′

4′ 1′ 3′ 4′ 2′ 5′

5′ 2′ 5′ 1′ 3′ 1′

∗ 5′ 2′ 4′ 1′ 3′

5′ 4′ 5′ 3′ 2′ 1′

2′ 2′ 1′ 4′ 5′ 3′

4′ 5′ 3′ 2′ 1′ 4′

1′ 1′ 4′ 5′ 3′ 2′

3′ 3′ 2′ 1′ 4′ 5′

It is not at all obvious that the first and second quasigroups above are
isomorphic. Whereas, using the mapping ψ that takes 1 7→ 5′, 2 7→ 2′,
3 7→ 4′, 4 7→ 1′ and 5 7→ 3′, it is clear that the first and third Cayley tables
are exactly the same, except for this re-labelling.

Definition 4.4. Suppose that (Q, ·) is a k-translatable quasigroup with re-
spect to the natural ordering, with k-translatable sequence a1, a2, . . . , an. If
(Q, ∗) is an h-translatable quasigroup with respect to the ordering 1, 2′, . . . , n′

and is also an isotope of (Q, ·), then we write
(Q, ∗) = (Q, ∗, h, i′, ·, k, c, d, t, a1, a2, . . . , an),
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where c, d and t are as in Corollary 3.4. If (Q, ∗) is h-translatable with
respect to the natural ordering then we write

(Q, ∗) = (Q, ∗, h, i′ = i, ·, k, c, d, t, a1, a2, . . . , an).

Corollary 4.5. Suppose that (Q, ∗) = (Q, ∗, h, i′ = i, ·, k, c, d, t, a1, a2, . . . , an),
(Q, •) = (Q, •, h, i′, ·, k, e, f, u, a1, a2, . . . , an) and Φ : (Q, ∗) → (Q, •) is de-
fined by Ψi = (si)

′, i∈{1, n}. Then Ψ is an isomorphism if and only if

(1) si = [sn + iv]n for all i ∈ {1, n}, where v = [h(s1 − s[1−h̃]n)]n
and (v, n) = 1, and

(2) Ψ a[x+(j−d)h̃kt]n = a[y+(r+jv−f)h̃ku]n for all j ∈ {1, n}, where
x = [k+kct−kt]n, y = [k+keu−ku]n and r = [h(1−sv−v)+sn]n.

Proof. (⇒). By Theorem 4.1, (i) of Corollary 4.5 is valid. By Corollary
3.4, the jth entry in the h-translatable sequences of (Q, ∗) and (Q, •) is
a[x+(j−d)h̃kt]n and a[y+(j−f)h̃ku]n respectively, where x = [k+ kct− kt]n and
y = [k + keu − ku)]n. Note that the h-translatable sequence of (Q, •),
b′1, b

′
2, . . . , b

′
n, satisfies b′j = a[y+(j−f)h̃ku]n . Then, Theorem 4.1 (ii) implies

(sa[x+(j−d)h̃kt]n
)′ = (b[r+jn]n)′, where r = [h(1 − sv − v) + sv]n. Therefore,

(ii) of Corollary 4.5 is valid.
(⇐). This follows from (⇐) of Theorem 4.1.

Example 4.6. Let (Q, ·) be the quasigroup determined by the following
Cayley table.

· 1 2 3 4 5
1 3 1 4 5 2
2 4 5 2 3 1
3 2 3 1 4 5
4 1 4 5 2 3
5 5 2 3 1 4

Then (Q, ·) is 3-translatable with respect to the natural ordering, with 3-
translatable sequence a1 = 3, a2 = 1, a3 = 4, a3 = 5 and a5 = 2. Using
Corollary 3.4, we now construct a quasigroup (Q, ∗) that is 3-translatable
with respect to the natural ordering, is an isotope of (Q, ·) and is not iso-
morphic to (Q, ·).

Firstly, we want 5 ∗ 5 = 5. This ensures that (Q, ∗) and (Q, ·) are not
isomorphic, because (Q, ·) has no idempotent elements. Now, since we want
(Q, ∗) to be 3-translatable with respect to the natural ordering, in Corollary
3.4 we have q′ = q for all q ∈ {1, 5}.
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Then, since we want h = k, 1 ∗ q′ = 1 ∗ q = axq , where xq = [r + (q −
1)k̃kt]5 = [r + (q − 1)t]5 and r = [k − kct − kt + (1 − d)k̃kt]5. Choosing
c = 5 and d = 1 we get r = [3 − 3t]5 and xq = [3 − 3t + (q − 1)t] − 5.
But, since (Q, ∗) is 3-translatable and 5 ∗ 5 = 5, by Corollary 3.4, we have
1 ∗ 3′ = 1 ∗ 3 = ax3 = 5 = a4. Hence, x3 = 4 = [3− 3t+ (3− 1)t]5 = [3− t]5
and t = [−1]5 = 4 and r = [3− 3t]5 = 1.

This gives xq = [1 + (q − 1)4]5 and so, x1 = 1, x2 = 5, x4 = 3 and
x5 = 2. Therefore, by Corollary 3.4 again, the 3-translatable sequence of
Q, ∗) is a1, a5, a4, a3, a2 or 3, 2, 5, 4, 1. This gives the following Cayley table
for (Q, ∗).

∗ 1 2 3 4 5
1 3 2 5 4 1
2 5 4 1 3 2
3 1 3 2 5 4
4 2 5 4 1 3
5 4 1 3 2 5

Using (⇐) of Corollary 3.4, we see that α([c+ i]′5) = αi′ = αi = [it]5 =
[4i]5 = β([1 + i]′5) = β[i + 1]5. This gives α1 = 4 = β2, α2 = 3 = β3,
α3 = 2 = β4, α4 = 1 = β5 and α5 = 5 = β1. One easily checks that
i ∗ j = αi · βj for all i, j ∈ {1, 5}. Therefore, (Q, ∗) is the required 3-
translatable isotope of (Q, ·).
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