# Generalized Green's relations and $G V$-ordered semigroups 

Shauli Sadhya and Kalyan Hansda


#### Abstract

In this paper an extensive study of the concepts of generalized Green's relations and $G V$-semigroups without order to ordered semigroups have been given. Our approach allows one to see the nature of generalized Green's relations in the class of $G V$-ordered semigroups. Moreover we show that an ordered semigroup $S$ is a $G V$-ordered semigroup if and only if $S$ is a complete semilattice of completely $\pi$-regular and Archimedean ordered semigroups.


## 1. Introduction and preliminaries

An ordered semigroup S is a partially ordered set $(S, \leqslant)$ and at the same time a semigroup $(S, \cdot)$ such that for all $a, b$ and $c \in S, a \leqslant b$ implies $a c \leqslant b c$ and $c a \leqslant c b$. It is denoted by $(S, \cdot, \leqslant)$. For an ordered semigroup S and $H \subseteq S$, denote the downward closure of $H$ by $(H]=\{t \in S: t \leqslant h$, for some $h \in H\}$. Throughout this paper $S$ will stand for an ordered semigroup unless otherwise stated.

An ordered semigroup $S$ is said to be Archimedean if for every $a, b \in S$ there exists $n \in \mathbb{N}$ such that $a^{n} \in(S b S]$. A nonempty subset $I$ of $S$ is said to be a left (resp. right) ideal of $S$, if $S I \subseteq I$ (resp. $I S \subseteq I$ ) and ( $I] \subseteq I$. If $I$ is both a left and right ideal, then it is called an ideal of $S$. We call $S$ a (resp. left, right) simple ordered semigroup if it does not contain any proper (resp. left, right) ideal. We denote by $R(x), L(x), I(x)$ the right ideal, left ideal, ideal of $S$, respectively, generated by $x(x \in S)$, where $R(x)=(x \cup x S], L(x)=(x \cup S x]$, $I(x)=(x \cup x S \cup S x \cup S x S]$ for all $x \in S$. For an ordered semigroup $(S, \cdot \cdot \leqslant)$, we denote $S^{1}=S \cup\{1\}$, where 1 is a symbol, such that $1 a=a, a 1=a$ for each $a \in S$ and $1 \cdot 1=1$. An ordered semigroup $S$ is said to be regular (resp. completely regular) ordered semigroup if for every $a \in S, a \in(a S a]$ (resp. $\left.a \in\left(a^{2} S a^{2}\right]\right)$. An ordered semigroup $S$ is called $\pi$-regular (resp. completely $\pi$-regular) if for every $a \in S$ there is $m \in \mathbb{N}$ such that $a^{m} \in\left(a^{m} S a^{m}\right]$ (resp. $\left.a^{m} \in\left(a^{2 m} S a^{2 m}\right]\right)$. The set of all regular, completely regular and $\pi$-regular elements in an ordered semigroup $S$ are denoted by $R e g_{\leqslant}(S), G r_{\leqslant}(S)$ and $\pi R e g_{\leqslant}(S)$ respectively.

The class of completely regular ordered semigroups is a subclass of the class of regular ordered semigroups. Galbiati and Veronesi [3] studied class of semigroups

[^0](without order), where these two notion coincides. These semigroups are named after them as $G V$-semigroups. In this paper we extend the notion of $G V$-semigroups to ordered semigroups.

In a semigroup (without a partial order) Green's relations use to play a significant role to study regular semigroups. Following L. Marki, O. Steinfeld [10] and J.L. Galbiati, M.L. Veronesi [3] we generalized Green-Kehayopulu relations [7], to study $\pi$-regular, completely $\pi$-regular and $G V$-ordered semigroups.

Due to Kehayopulu [7] Green's relations on a regular ordered semigroup given as follows: $a \mathcal{L} b$ if $L(a)=L(b), a \mathcal{R} b$ if $R(a)=R(b), a \mathcal{J} b$ if $I(a)=I(b), \mathcal{H}=\mathcal{L} \cap \mathcal{R}$.

These four relations $\mathcal{L}, \mathcal{R}, \mathcal{J}$, and $\mathcal{H}$ are equivalence relations.
A congruence $\rho$ on $S$ is called asemilattice congruence if for every $a, b \in$ $S, a \rho a^{2}$ and $a b \rho b a$. By a complete semilattice congruence we mean a semilattice congruence $\sigma$ on $S$ such that for $a, b \in S, a \leqslant b$ implies that $a \sigma a b$. If $\sigma$ is a semilattice congruence on $S$, then $(x)_{\sigma}$ is a subsemigroup for any $x \in S$. An ordered semigroup $S$ is called a complete semilattice of subsemigroups of type $\tau$ if there exists a complete semilattice congruence $\rho$ such that each $\rho$-congruence class $(x)_{\rho}$ is a type $\tau$ subsemigroup of $S$. Equivalently [9], there exist a semilattice $Y$ and a family of subsemigroups $\left\{S_{\alpha}\right\}_{\alpha \in Y}$ of type $\tau$ of $S$ such that:

1. $S_{\alpha} \cap S_{\beta}=\phi$ for any $\alpha, \beta \in Y$ with $\alpha \neq \beta$,
2. $S=\bigcup_{\alpha \in Y} S_{\alpha}$,
3. $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$ for any $\alpha, \beta \in Y$,
4. $S_{\beta} \cap\left(S_{\alpha}\right] \neq \phi$ implies $\beta \preceq \alpha$, where $\preceq$ is the order of the semilattice $Y$ defined by $\preceq:=\{(\alpha, \beta) \mid \beta=\alpha \beta(\beta \alpha)\}$.
An element $e \in S$ is called an ordered idempotent [5] if $e \leqslant e^{2}$. We denote the set of all ordered idempotents of an ordered semigroup $S$ by $E_{\leqslant}(S)$. An element $b \in S$ is inverse of $a \in S$ if $a \leqslant a b a$ and $b \leqslant b a b$. We denote the set of all ordered inverses of an element $a$ of an ordered semigroup $S$ by $V_{\leqslant}(a)$.

The zero of an ordered semigroup ( $S, \cdot, \leqslant$ ) is an element of $S$, usually denoted by 0 , such that $0 \leqslant x$ and $0 . x=x .0=0$ for all $x \in S$. An ordered semigroup $S$ with 0 is called nil if for every $a \in S$ there is $n \in \mathbb{N}$ such that $a^{n}=0$.

Cao and $\mathrm{Xu}[4]$ defined a nil-extension of an ordered semigroup as follows:
Let $I$ be an ideal of an ordered semigroup $S$. Then $(S / I, \cdot, \preceq)$ is called the Rees factor ordered semigroup of $S$ modulo $I$, and $S$ is called an ideal extension of $I$ by the ordered semigroup $S / I$. Moreover $S$ is said to be a nil-extension of $I$ if $(S / I, \cdot \preceq)$ is a nil ordered semigroup.

## 2. Main results

Let $S$ be a $\pi$-regular ordered semigroup. Following Galbiati and Veronesi [3], let us define the relations $\mathcal{L}^{*}, \mathcal{R}^{*}, \mathcal{J}^{*}, \mathcal{H}^{*}$ by: For $a, b \in S$,

$$
\begin{aligned}
& a \mathcal{L}^{*} b \text { if and only if } a^{m} \mathcal{L} b^{n} \\
& a \mathcal{R}^{*} b \text { if and only if } a^{m} \mathcal{R} b^{n} \\
& a \mathcal{J}^{*} b \text { if and only if } a^{m} \mathcal{J} b^{n} \text { and } \mathcal{H}^{*}=\mathcal{L}^{*} \cap \mathcal{R}^{*}
\end{aligned}
$$

where $m, n$ are the smallest positive integers such that $a^{m}, b^{n} \in \operatorname{Re} g_{\leqslant}(S)$. These four relations are equivalence relations on $S$.

We denote $\mathcal{L}^{*}(a), \mathcal{R}^{*}(a), \mathcal{H}^{*}(a)$, and $\mathcal{J}^{*}(a)$ respectively the $\mathcal{L}^{*}, \mathcal{R}^{*}, \mathcal{H}^{*}$, and $\mathcal{J}^{*}$ classes containing an element $a$ of $S$.

Lemma 3.1. Let $S$ be a $\pi$-regular ordered semigroup. Every $\mathcal{L}^{*}\left(\mathcal{R}^{*}, \mathcal{J}^{*}\right)$-class contains at least one ordered idempotent.

Proof. Let $L$ be a $\mathcal{L}^{*}$-class and $a \in L$. Let $m$ be the smallest positive integer such that $a^{m} \leqslant a^{m} x a^{m}$, for some $x \in S$. This implies $x a^{m} \leqslant\left(x a^{m}\right)^{2}$. Therefore $x a^{m} \in E_{\leqslant}(S)$. We have to show that $a \mathcal{L}^{*} x a^{m}$. Let $y=x a^{m}$. Now $a^{m} \leqslant$ $a^{m} x a^{m} \leqslant a^{m} x a^{m} x a^{m} \leqslant a^{m}\left(x a^{m}\right)^{2}$, so that for every $r \in \mathbb{N}, a \leqslant a^{m}\left(x a^{m}\right)^{r}$. Let $a^{m} \leqslant a^{m}\left(x a^{m}\right)^{r_{1}}$, where $r_{1}$ is the smallest positive integer such that $\left(x a^{m}\right)^{r_{1}} \in$ $R e g_{\leqslant}(S)$. Now $y^{r_{1}}=x a^{m} \ldots x a^{m} x a^{m}\left(r_{1}\right.$ times $)=\left(x a^{m} \ldots x\right) a^{m}=p a^{m}$ where $p=x a^{m} \ldots x \in S$. Therefore $a^{m} \mathcal{L} y^{r_{1}}$. Therefore $y \mathcal{L}^{*}(a)$. This implies $x a^{m} \in L$. Therefore $L$ contains an ordered idempotent.

Proposition 3.2. Let $S$ be a r-regular ordered semigroup and $a, b \in S$. Then the following statements hold in $S$ :
(1) $a \mathcal{L}^{*} b$ if and only if there exists $a^{\prime} \in V_{\leqslant}\left(a^{p}\right)$ and $b^{\prime} \in V_{\leqslant}\left(b^{q}\right)$ such that $a^{\prime} a^{p} \mathcal{L} b^{\prime} b^{q}$ where $p, q$ are the smallest positive integers such that $a^{p}, b^{q} \in$ $R e g_{\leqslant}(S)$.
(2) $a \mathcal{R}^{*} b$ if and only if there exists $a^{\prime} \in V_{\leqslant}\left(a^{p}\right)$ and $b^{\prime} \in V_{\leqslant}\left(b^{q}\right)$ such that $a^{p} a^{\prime} \mathcal{R} b^{q} b^{\prime}$ where $p, q$ are the smallest positive integers such that $a^{p}, b^{q} \in$ $R e g_{\leqslant}(S)$.
(3) $a \mathcal{H}^{*} b$ if and only if there exists $a^{\prime \prime} \in V_{\leqslant}\left(a^{m}\right)$ and $b^{\prime \prime} \in V_{\leqslant}\left(b^{n}\right)$ such that $a^{\prime \prime} a^{m} \mathcal{L} b^{\prime \prime} b^{n}$ and $a^{m} a^{\prime \prime} \mathcal{R} b^{n} b^{\prime \prime}$ where $m, n$ are the smallest positive integers such that $a^{m}, b^{n} \in \operatorname{Reg}_{\leqslant}(S)$.

Proof. We proof only the last condition. Two first conditions follows similarly.
(3): Let $a \mathcal{H}^{*} b$. Then $a^{m} \mathcal{H} b^{n}$ where $m, n$ are the smallest positive integer such that $a^{m}, b^{n} \in \operatorname{Reg} g_{\leqslant}(S)$. Since $a^{m} \in \operatorname{Reg}_{\leqslant}(S)$ there exists $a^{\prime} \in S$ such that $a^{m} \leqslant a^{m} a^{\prime} a^{m}$. Clearly $a^{m} a^{\prime}, a^{\prime} a^{m} \in E_{\leqslant}(S)$. Let $e=a^{\prime} a^{m}$ and $f=a^{m} a^{\prime}$. Then $e \mathcal{L} a^{m}$ and $f \mathcal{R} a^{m}$. So that $e \mathcal{L}^{*} a \mathcal{L}^{*} b$ and $f \mathcal{R}^{*} a \mathcal{R}^{*} b$. Since $b^{n} \in \operatorname{Reg}_{\leqslant}(S)$ then
there exists $b^{\prime} \in S$ such that $b^{n} \leqslant b^{n} b^{\prime} b^{n}$. Let $e_{1}=b^{\prime} b^{n}$ and $f_{1}=b^{n} b^{\prime}$. Then $e_{1}, f_{1} \in E_{\leqslant}(S)$. Clearly $e_{1} \mathcal{L}^{*} b \mathcal{L}^{*} a$ and $f_{1} \mathcal{R}_{b}^{*} \mathcal{R}_{a}^{*}$. Since $e \mathcal{L}^{*} a$ we have $e \leqslant x_{1} a^{m}$ for some $x_{1} \in S^{1}$. Also $a^{m} \leqslant a^{m} e$ and $a^{m} \leqslant f a^{m}$. Say $a^{\prime \prime}=e x_{1} f$. Then $a^{m} \leqslant$ $a^{m} e \leqslant a^{m} x_{1} a^{m} \leqslant a^{m} e x_{1} a^{m} \leqslant a^{m} e x_{1, \prime} f a^{m} \leqslant a^{m} a^{\prime \prime} a^{m}$ and $a^{\prime \prime}=e x_{1} f \leqslant e\left(e x_{1} f\right) \leqslant$ $e(e) a^{\prime \prime} \leqslant e\left(x_{1} a^{m}\right) a^{\prime \prime} \leqslant\left(e x_{1}\right)\left(f a^{m}\right) a^{\prime \prime} \leqslant\left(e x_{1} f\right) a^{m} a^{\prime \prime}=a^{\prime \prime} a^{m} a^{\prime \prime}$. Therefore $a^{\prime \prime} \in$ $V_{\leqslant}\left(a^{m}\right)$. Therefore $e \mathcal{L} a^{\prime \prime} a^{m}$.

Also $e_{1} \mathcal{L}^{*} b$ gives $e_{1} \leqslant x_{2} b$ for some $x_{2} \in S^{1}$. Also $b^{n} \leqslant b^{n} e_{1}$ and $b^{n} \leqslant f_{1} b^{n}$. Take $b^{\prime \prime}=e_{1} x_{2} f_{1}$. Now $b^{n} \leqslant b^{n} e_{1} \leqslant b^{n} x_{2} b^{n} \leqslant\left(b^{n} e_{1}\right) x_{2} b^{n} \leqslant b^{n} e_{1} x_{2}\left(f_{1} b^{n}\right) \leqslant$ $b^{n}\left(e_{1} x_{2} f_{1}\right) b^{n} \leqslant b^{n} b^{\prime \prime} b^{n}$ and $b^{\prime \prime}=e_{1} x_{2} f_{1} \leqslant e_{1}\left(e_{1} x_{2} f_{1}\right) \leqslant e_{1} e_{1} b^{\prime \prime} \leqslant e_{1}\left(x_{2} b^{n}\right) b^{\prime \prime} \leqslant$ $e_{1} x_{2} f_{1} b^{n} b^{\prime \prime} \leqslant b^{\prime \prime} b^{n} b^{\prime \prime}$. Therefore $b^{\prime \prime} \in V_{\leqslant}\left(b^{n}\right)$. Therefore $e_{1} \mathcal{L} b^{\prime \prime} b^{n}$. Thus $a^{\prime \prime} a^{m} \mathcal{L} e \mathcal{L} a^{m}$ $\mathcal{L} b^{n} \mathcal{L} e_{1} \mathcal{L} b^{\prime \prime} b^{n}$. Similarly $a^{m} a^{\prime \prime} \mathcal{R} b^{n} b^{\prime \prime}$. Hence the proof.

Conversely assume that the given conditions hold in $S$. Since $a^{m} a^{\prime \prime} \mathcal{R} b^{n} b^{\prime \prime}$ and $a^{\prime \prime} a^{m} \mathcal{L} b^{\prime \prime} b^{n}$ for some $a^{\prime \prime} \in V_{\leqslant}\left(a^{m}\right), b^{\prime \prime} \in V_{\leqslant}\left(b^{n}\right)$, then there are $x, y, z, w \in S^{1}$ such that $a^{m} a^{\prime \prime} \leqslant\left(b^{n} b^{\prime \prime}\right) x, b^{n} b^{\prime \prime} \leqslant\left(a^{m} a^{\prime \prime}\right) y, a^{\prime \prime} a^{m} \leqslant z\left(b^{\prime \prime} b^{n}\right)$ and $b^{\prime \prime} b^{n} \leqslant w\left(a^{\prime \prime} a^{m}\right)$. Since $a^{\prime \prime} \in V_{\leqslant}\left(a^{m}\right)$, we have $a^{m} \leqslant a^{m} a^{\prime \prime} a^{m} \leqslant\left(b^{n} b^{\prime \prime} x\right) a^{m} \leqslant b^{n} u$, where $u=$ $b^{\prime \prime} x a^{m} \in S$. Again $a^{m} \leqslant a^{m} a^{\prime \prime} a^{m} \leqslant a^{m}\left(z b^{\prime \prime} b^{n}\right) \leqslant w_{1} b^{n}$ where $w_{1}=a^{m} z b^{\prime \prime} \in S$. Similarly taking $b^{\prime \prime} \in V_{\leqslant}\left(b^{n}\right)$ it can shown that $b^{n} \leqslant a^{m} w_{2}$ and $b^{n} \leqslant w_{3} a^{m}$ for some $w_{2}, w_{3} \in S$. Therefore $a^{m} \mathcal{H} b^{n}$ and hence $a \mathcal{H}^{*} b$.

We now generalize the concept of $G V$-semigroups (without order) to ordered semigroups. Some interesting interplays between $G V$-ordered semigroups and generalized Green's relations have been given here.

Definition 3.3. An ordered semigroup $S$ is said to be a $G V$-ordered semigroup if $S$ is $\pi$-regular and $R e g_{\leqslant}(S)=G r_{\leqslant}(S)$.

Example 3.4. The set $S=\{a, b, c, d\}$ with respect to the multiplication ${ }^{\prime} .{ }^{\prime}$ and the order ${ }^{\prime} \leqslant$ ' defined below forms a $G V$-ordered semigroup.

| $\cdot$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $a$ | $a$ | $a$ | $a$ |
| $b$ | $b$ | $b$ | $b$ | $b$ |
| $c$ | $b$ | $b$ | $c$ | $b$ |
| $d$ | $a$ | $b$ | $b$ | $d$ |

$\leqslant_{s}=\{(a, a),(a, b),(b, b),(c, b),(c, c),(d, b),(d, d)\}$.
For an $e \in E_{\leqslant}(S)$, Bhuniya and Hansda [1] introduced the set

$$
G_{e}=\{a \in S: a \leqslant e a, a \leqslant a e \text { and } e \leqslant z a, e \leqslant a z \text { for some } z \in S\}
$$

They showed that $G_{e}$ is a t-simple subsemigroup in a completely regular ordered semigroup.

Lemma 3.5. Let $S$ be a $G V$-ordered semigroup. Then for every $a \in S$ there exists $e \in E_{\leqslant}(S)$ and $z \in G_{e}$ such that $a^{m} \leqslant a^{m} e, a^{m} \leqslant e a^{m}, e \leqslant z a^{m}$, and $e \leqslant a^{m} z$.

Proof. Let $S$ be a $G V$-ordered semigroup, then $S$ is $\pi$-regular and $\operatorname{Reg}_{\leqslant}(S)=$ $G r_{\leqslant}(S)$. Let $a \in S$. Then $a^{m} \in R e g_{\leqslant}(S)=G r_{\leqslant}(S)$ for some $m \in \mathbb{N}$. Therefore $S$ is a completely $\pi$-regular ordered semigroup. Therefore by [[11], Lemma 3.7] the result follows.

Theorem 3.6. Let $S$ be a $G V$-ordered semigroup. Then $G_{e} \subseteq \mathcal{H}^{*}(e) \subseteq \mathcal{J}^{*}(e)$ for every $e \in E_{\leqslant}(S)$.

Proof. Let $S$ be a $G V$-ordered semigroup and $e \in E_{\leqslant}(S)$. Consider the subsemigroup $G_{e}$ and $a \in G_{e}, y \in V_{\leqslant}(a)$ in $G_{e}$. Therefore $a \leqslant u e, a \leqslant e v, e \leqslant a w, e \leqslant z a$ for some $u, v, w, z \in G_{e}$ and $a \leqslant a y a$. Now $y a \leqslant(y u) e, a y \leqslant e(v y), e \leqslant z a \leqslant$ $(z a) y a, e \leqslant a w \leqslant a y(a w)$. Therefore we have $y a \mathcal{L} e$ and $a y \mathcal{R} e$. Hence yaLee and $a y \mathcal{R} e e$. Therefore we have $a \mathcal{H}^{*} e$, by Proposition 3.2. Hence $a \in \mathcal{H}^{*}(e)$. Therefore $G_{e} \subseteq \mathcal{H}^{*}(e)$.

Next, let $a \in \mathcal{H}^{*}(e)$. Then $a^{n} \mathcal{H} e$ where $n$ is the smallest positive integer such that $a^{n} \in \operatorname{Reg}_{\leqslant}(S)$. Therefore $\mathcal{H}^{*}(e) \subseteq \mathcal{J}^{*}(e)$. Hence the proof.

Corollary 3.7. Let $S$ be a $G V$-ordered semigroup. Then for every $a \in S$ there is $e \in E_{\leqslant}(S)$ such that $a^{m} \in G_{e} \subseteq \mathcal{H}^{*}(e) \subseteq \mathcal{J}^{*}(e)$ for some $m \in \mathbb{N}$.

Proof. This follows from Lemma 3.5 and Lemma 3.6.

Corollary 3.8. Let $S$ be a $G V$-ordered semigroup. Then for every $a \in S$ there exists $e \in E_{\leqslant}(S)$ such that $\mathcal{J}^{*}(a)=\mathcal{J}^{*}(e)$.

Proof. This follows from Corollary 3.7.
Lemma 3.9. Let $S$ be a $G V$-ordered semigroup. Then for all $a \in S, \mathcal{J}^{*}(a)=$ $\mathcal{J}^{*}\left(a^{2}\right)$.

Proof. Let $S$ be a $G V$-ordered semigroup and $a \in S$. Let $m$ be the smallest positive integer such that $a^{m} \in R e g_{\leqslant}(S)=G r_{\leqslant}(S)$. Then there is $x \in S$ such that $a^{m} \leqslant$ $a^{2 m} x a^{2 m}$. Let $k$ be the smallest positive integer such that $a^{2 k} \in \operatorname{Reg} g_{\leqslant}(S)$. Then $k \leqslant m$, as $a^{2 m} \in \operatorname{Reg}_{\leqslant}(S)$. Let $m=k+t$ for some $t \in \mathbb{N}$. So $a^{m} \leqslant a^{2 m} x a^{2 m} \leqslant$ $a^{2 m} x a^{m} a^{m} \leqslant a^{2 m} x a^{2 m} x a^{3 m} \leqslant a^{2 m} x a^{2 k} a^{2 t} x a^{3 m}$. Also $a^{2 k} \leqslant a^{4 k} z a^{4 k}$ for some $z \in S$. This implies $a^{2 k} \leqslant a^{4 k} z a^{4 k} \leqslant a^{2 k} a^{2 k} z a^{4 k} \leqslant a^{2 k} a^{4 k} z a^{4 k} z a^{4 k} \leqslant \ldots \leqslant$ $w a^{m k} u=w a^{m k-m} a^{m} u=w a^{m(k-1)} a^{m} u$ for some $w, u \in S$. Thus $a^{2 k} \in\left(S a^{m} S\right]$. Therefore $a \mathcal{J}^{*} a^{2}$.

Corollary 3.10. Let $S$ be a $G V$-ordered semigroup. Then for all $a \in S, \mathcal{J}^{*}(a)=$ $\mathcal{J}^{*}\left(a^{m}\right)$ for all $m \in \mathbb{N}$.

Lemma 3.11. Let $S$ be a $G V$-ordered semigroup. Then for all $a, b \in S, \mathcal{J}^{*}(a b)=$ $\mathcal{J}^{*}(b a)$.

Proof. Let $S$ be a $G V$-ordered semigroup and $a, b \in S$. Let $m, t$ be the smallest positive integers such that $(b a)^{t},(a b)^{m} \in \operatorname{Reg}_{\leqslant}(S)$. Now $\left(S(b a)^{t} S\right]=\left(S(b a)^{2 t} S\right]$ as $S$ is a $G V$-ordered semigroup. Also $\left(S(b a)^{2 t} S\right] \subseteq\left(S(a b)^{t} S\right]$. If $t \geq m$, then $\left(S(b a)^{t} S\right] \subseteq\left(S(a b)^{t} S\right] \subseteq\left(S(a b)^{m} S\right]$. If $t \leqslant m$, then $(b a)^{t} \leqslant(b a)^{2 t} x(b a)^{2 t} \leqslant$ $(b a)^{2 t} x(b a)^{3 t} x(b a)^{t} x(b a)^{\overline{3 t}}$. Proceed on we get $(b a)^{t} \in\left(S(b a)^{r t} S\right]$ for all $r \in \mathbb{N}$. In particular $r=m+1 .\left(S(b a)^{t} S\right] \subseteq\left(S(b a)^{(m+1) t} S\right] \subseteq\left(S(b a)^{(m+1) t-(m+1)}(b a)^{(m+1)} S\right]$ $\subseteq\left(S(b a)^{(m+1)(t-1)}(b a)^{m+1} S\right] \subseteq\left(S(b a)^{m+1} S\right] \subseteq\left(S(a b)^{m} S\right]$. Similarly we can prove that $\left(S(a b)^{m} S\right] \subseteq\left(S(b a)^{t} S\right]$. Therefore $a b \mathcal{J}^{*} b a$.

Lemma 3.12. Let $S$ be a $G V$-ordered semigroup. Then $a \mathcal{H}^{*} a^{n}$ where $n$ is the smallest positive integer such that $a^{n} \in R e g_{\leqslant}(S)$.

Proof. Let $S$ be a $G V$-ordered semigroup and $a \in S$. Let $n$ be the smallest positive integer such that $a^{n} \in R e g_{\leqslant}(S)=G r_{\leqslant}(S)$, as $S$ is a $G V$-ordered semigroup. Then there exists $a^{\prime} \in S$ such that $a^{n} \leqslant a^{2 n} a^{\prime} a^{2 n} \leqslant \ldots \leqslant a^{k n} x a^{k n}$, for some $x \in S$ and for all $k \in \mathbb{N}$. Let $r$ be the smallest positive integer such that $\left(a^{n}\right)^{r} \in \operatorname{Re} g_{\leqslant}(S)$. Then there exists $a^{\prime \prime} \in S$ such that $\left(a^{n}\right)^{r} \leqslant\left(a^{n}\right)^{r} a^{\prime \prime}\left(a^{n}\right)^{r} \leqslant y_{1} a^{n}$, where $y_{1}=$ $\left(a^{n}\right)^{r} a^{\prime \prime} a^{n r-n} \in S$. Similarly $\left(a^{n}\right)^{r} \leqslant a^{n} y_{2}$. Also we have $a^{n} \leqslant a^{r n} y_{3}, a^{n} \leqslant y_{4} a^{r n}$ for some $y_{3}, y_{4} \in S$. Therefore $a^{n} \mathcal{H}\left(a^{n}\right)^{r}$, that is, $a \mathcal{H}^{*} a^{n}$.

In the following theorem the class of $G V$-ordered semigroups have been characterized by their subsemigroups which are both Archimedean and completely $\pi$-regular.

Theorem 3.13. Let $S$ be an ordered semigroup. Then the following conditions are equivalent:
(1) $S$ is a $G V$-ordered semigroup,
(2) $S$ is completely $\pi$-regular and every $\mathcal{H}^{*}$-class of $S$ contains an ordered idempotent,
(3) $S$ is a complete semilattice of completely $\pi$-regular and Archimedean ordered semigroups,
(4) For all $a, b \in S$, there exist $n \in \mathbb{N}$ such that $(a b)^{n} \in\left((a b)^{n+1} S a(a b)^{n+1}\right]$,
(5) For all $a, b \in S$, there exist $n \in \mathbb{N}$ such that $(a b)^{n} \in\left((a b)^{n+1} b S(a b)^{n+1}\right]$.

Proof. (1) $\Rightarrow(2)$ : Let $S$ be a $G V$-ordered semigroup. Consider a $\mathcal{H}^{*}$-class $H^{*}$ and $a \in H^{*}$. Let m be the smallest positive integer such that $a^{m} \in \operatorname{Re} g_{\leqslant}(S)=G r_{\leqslant}(S)$. Then there exists $x \in S$ such that $a^{m} \leqslant a^{2 m} x a^{2 m}$. Let $e=a^{2 m} x a^{2 m} x a^{2 m}$. Then $e=a^{2 m} x a^{2 m} x a^{2 m} \leqslant a^{2 m} x a^{m} a^{m} x a^{2 m} \leqslant\left(a^{2 m} x a^{2 m} x a^{2 m}\right), \quad a^{m} x a^{2 m} \leqslant$ $e\left(a^{2 m} x a^{2 m} x a^{2 m}\right)=e^{2}$. Thus $e \in E_{\leqslant}(S)$.

Now $a^{m} \leqslant a^{2 m} x a^{2 m} \leqslant a^{m}\left(a^{2 m} x a^{2 m} x a^{2 m}\right)=a^{m} e$ and $a^{m} \leqslant a^{2 m} x a^{2 m} \leqslant$ $\left(a^{2 m} x a^{2 m} x a^{2 m}\right) a^{m}=e a^{m}$. Also $e=a^{2 m} x a^{2 m} x a^{2 m}=\left(a^{2 m} x a^{2 m} x a^{m}\right) a^{m}=$ $y a^{m}$ and $e=a^{m}\left(a^{m} x a^{2 m} x a^{2 m}\right)=a^{m} z$ for some $y=a^{2 m} x a^{2 m} x a^{m}$ and $z=$
$a^{m} x a^{2 m} x a^{2 m} \in S$. Therefore $a^{m} \leqslant a^{m} e \leqslant a^{m} e^{n}, a^{m} \leqslant e a^{m} \leqslant e^{n} a^{m}$ for some $n \in \mathbb{N}$. And $e^{n}=e \ldots e(\mathrm{n}$ times $)=\left(y a^{m} \ldots y\right) a^{m}, e^{n}=e \ldots e(\mathrm{n}$ times $) \leqslant$ $a^{m}\left(z \ldots a^{m} z\right)$. Therefore $e^{n} \mathcal{H} a^{m}$. Hence $e \mathcal{H}^{*} a$ and therefore $e \in H^{*}(a)$. Therefore $\mathcal{H}^{*}$-class contains an ordered idempotent. Since $S$ is a $G V$-ordered semigroup, therefore it is completely $\pi$-regular.
$(2) \Rightarrow(3)$ : Let $a \in S$. Consider an $\mathcal{H}^{*}$-class $H^{*}(a)$. Then there exists an ordered idempotent $e \in H^{*}(a)$. Therefore $e^{n} \leqslant x a^{m}, e^{n} \leqslant a^{m} y, a^{m} \leqslant u e^{n}, a^{m} \leqslant$ $e^{n} v$ for some $x, y, u, v \in S^{1}$ and $m$ is the smallest positive integer such that $a^{m} \in \operatorname{Reg}_{\leqslant}(S)$. Since $S$ is completely $\pi$-regular, $\left(a^{m}\right)^{k} \leqslant\left(\left(a^{m}\right)^{k+p} y_{2}\left(a^{m}\right)^{k+p}\right)$ for all $p \in \mathbb{N}$ and for some $y_{2} \in S, k \in \mathbb{N}$. Now $e \leqslant e^{n} \leqslant x a^{m} \leqslant x a a^{m-1}$. So $a \mid e$. Therefore $e \leqslant x_{1} a y_{1}$ for some $x_{1}, y_{1} \in S^{1}$. $e \leqslant e^{2} \leqslant x_{1} a y_{1} e \leqslant$ $x_{1} a y_{1} e^{n} e^{n} \leqslant x_{1} a y_{1} e^{n} a^{m} y \leqslant \ldots \leqslant x_{1} a y_{1}\left(a^{m}\right)^{k} y_{5}$ for some $y_{5} \in S$. Therefore we have $e \leqslant x_{1} a y_{1} a^{m k+p m} y_{2} a^{m k+p m} y_{5} \leqslant x_{1} a y_{1} a^{m k+p m-2} a^{2} y_{2} a^{m k+p m} y_{5}$. Therefore $a^{2} \mid e$. Thus $S$ is a $\pi$-regular ordered semigroup and for all $a \in S, e \in E_{\leqslant}(S)$, $a \mid e$ implies $a^{2} \mid e$. Therefore by [[2], Theorem 4.1], $S$ is a complete semilattice $Y$ of ordered semigroups $\left\{S_{\alpha}\right\}_{\alpha \in Y}, S_{\alpha}$ is a nil-extension of simple and $\pi$-regular ordered semigroups $\left\{K_{\alpha}\right\}_{\alpha \in Y}$. Hence $S$ is a complete semilattice $Y$ of Archimedean and $\pi$-regular ordered semigroups $\left\{S_{\alpha}\right\}_{\alpha \in Y}$ by [[4], Theorem 3.8]. Since $S$ is completely $\pi$-regular, therefore $S_{\alpha}$ is also completely $\pi$-regular by [[4], Theorem 2.4]. Hence $S$ is a complete semilattice of completely $\pi$-regular and Archimedean ordered semigroup.
$(3) \Rightarrow(1)$ : Let $S$ is a complete semilattice $Y$ of completely $\pi$-regular and Archimedean ordered semigroups $S_{\alpha}, S_{\alpha} \in Y$. Then $S$ is $\pi$-regular. Let $a \in$ $R e g_{\leqslant}(S)$. Then $a \in S_{\alpha}$ for some $\alpha \in Y$. Now $a \leqslant a x a$ for some $x \in S_{\beta}$. Therefore axa $\in S_{\alpha} S_{\beta} S_{\alpha} \subseteq S_{\alpha \beta}$. Therefore $a \in\left(S_{\alpha \beta}\right]$. Hence $S_{\alpha} \cap\left(S_{\alpha \beta}\right] \neq \phi$, that is $\alpha \leqslant \alpha \beta$. Therefore $\alpha=\alpha(\alpha \beta)=\alpha^{2} \beta=\alpha \beta$. Therefore $S_{\alpha}=S_{\alpha \beta}$. Again $a \leqslant a x a \leqslant a(x a x) a$. Now $y=x a x \in S_{\beta} S_{\alpha} S_{\beta} \subseteq S_{\beta \alpha}=S_{\alpha \beta}=S_{\alpha}$. Therefore $a \in \operatorname{Reg}_{\leqslant}\left(S_{\alpha}\right)$. Now let $\sigma$ be the semilattice congruence. Then $a \in$ $(a]_{\sigma}=\left((a y a)_{\sigma}\right]=\left(\left(a^{2} y\right)_{\sigma}\right]=\left(\left(a^{2}\right)_{\sigma}(y)_{\sigma}\right] \subseteq L R e g_{\leqslant}(a)_{\sigma} \subseteq L R e g_{\leqslant}(S)$. Similarly $a \in R \operatorname{Reg}_{\leqslant}(S)$. Therefore $a \in G r_{\leqslant}(S)$. Hence $S$ is a $G V$-ordered semigroup.
$(3) \Rightarrow(4)$ : Let $S$ be a complete semilattice $Y$ of completely $\pi$-regular and Archimedean ordered semigroups $S_{\alpha}, \alpha \in Y$. Now each $S_{\alpha}$ is a nil-extension of simple and completely $\pi$-regular ordered semigroup $K_{\alpha}, \alpha \in Y$. Let $a, b \in S$. Then $a \in S_{\alpha}, b \in S_{\beta}$ for some $\alpha, \beta \in Y$. Therefore $a b, b a \in S_{\alpha \beta}$. Hence $(a b)^{n},(b a)^{m} \in$ $K_{\alpha \beta}$ for some $n, m \in \mathbb{N}$. Since $K_{\alpha \beta}$ is ideal, therefore $(a b)^{n},(a b)^{n+1}(b a)^{m}(a b)^{n+1} \in$ $K_{\alpha \beta}$. Again since $K_{\alpha \beta}$ is simple, $(a b)^{n} \leqslant(a b)^{n+1}(b a)^{m}(a b)^{n+1} x(a b)^{n+1}(b a)^{m}(a b)^{n+1}$ for some $x \in K_{\alpha \beta}$. Therefore $(a b)^{n} \in\left((a b)^{n+1} S a(a b)^{n+1}\right]$.
(4) $\Rightarrow$ (3): Clearly $S$ a is completely $\pi$-regular ordered semigroup by the given condition. Assume $a, b \in S$. Then $(a b)^{n} \in\left((a b)^{n+1} S a(a b)^{n+1}\right]$, that is, $(a b)^{n} \in\left(S a^{2} S\right]$ for some $n \in \mathbb{N}$. Therefore by [[12], Lemma 3.5], $S$ is a complete semilattice of Archimedean ordered semigroup. Hence $S$ is a complete semilattice of completely $\pi$-regular and Archimedean ordered semigroup.
$(3) \Leftrightarrow(5)$ : This is similar to the proof of $(3) \Leftrightarrow(4)$.

Acknowledgements. I express my deepest gratitude to the editor of the journal Professor Wieslaw A. Dudek for communicating the paper and to the referee of the paper for their important valuable comments.

## References

[1] A.K. Bhuniya and K. Hansda, On completely regular and Clifford ordered semigroups, Afr. Mat., 31 (2020), 1029 - 1045
[2] A.K. Bhuniya and K. Hansda, Nil extensions of simple regular ordered semigroups, Asian-Eur. J. Math., 14 (2021), Article ID 2150044 (15 pages).
[3] S. Bogdanović, Semigroups with a System of Subsemigroups, Novi Sad Univ. Press, Novi Sad, (1985).
[4] Y. Cao and X. Xu, Nil-extensions of simple po-semigroups, Commun. Algebra, 28 (2000), 2477 - 2496.
[5] K. Hansda, Regularity of subsemigroups generated by ordered idempotents, Quasigroups and Related Systems, 22 (2014), 217 - 222.
[6] N. Kehayopulu, Remark in ordered semigroups, Math. Japon., 35 (1990), 1061 1063.
[7] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, Intern. J. Math. and Math. Sci., (2006), 1-8, Article ID 61286.
[8] N. Kehayopulu and J.S. Ponizovskii, The chain of right simple semigroups in ordered semigroups, J. Math. Sci., 89 (1998), 1133-1137.
[9] N. Kehayopulu and M. Tsingelis, Semilattices of Archimedean ordered semigroups, Algera Coll., 15 (2008), 527 - 540.
[10] L. Marki and O. Steinfeld, A generalization of Green's relations in semigroups, Semigroup Forum, 7 (1974), $74-85$.
[11] S. Sadhya and K. Hansda, Characterizations of $\pi$ - $t$-simple ordered semigroups by their ordered idempotents, Quasigroups and Related Systems, 27 (2019), 119-126.
[12] Q.S. Zhu, Semilattices of nil-extensions of simple left (right) $\pi$-regular ordered semigroups, Novi Sad J. Math., 46(1) (2016), 27 - 34.

Received February 5, 2021
Department of Mathematics
Visva Bharati University
Santiniketan, Bolpur - 731235
West Bengal, India
e-mail: sadhya.shauli567@gmail.com, kalyan.hansda@visva-bharati.ac.in


[^0]:    2010 Mathematics Subject Classification: 20M10; 06F05
    Keywords and Phrases: Archimedean, $\pi$-regular, completely $\pi$-regular, Green's relations, ordered idempotent, $G V$-ordered semigroup.

