Magnifying elements of some semigroups of partial transformations

Chadaphorn Punkumkerd and Preeyanuch Honyam

Abstract

Let X be a nonempty set and let $P(X)$ denote the semigroup (under the composition) of partial transformations from a subset of X to X and $E(X)$ denote the subsemigroup of $P(X)$ containing surjective partial transformations on X. For a fixed nonempty subset Y of X, let $\overline{P T}(X, Y)=\{\alpha \in P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}$ and $P T_{(X, Y)}=\{\alpha \in P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha=Y\}$ We give necessary and sufficient conditions for elements in semigroups $\overline{P T}(X, Y)$ and $P T_{(X, Y)}$ to be left or right magnifying.

1. Introduction

Let S be a semigroup. An element $a \in S$ is called a left (right) magnifying element if there exist a proper subset M of S such that $S=a M(S=M a)$. Such elements are mentioned in 1963 by E. S. Ljapin [5]. M. Gutan showed in [1] that there exists semigroups containing both strong and non-strong magnifying elements. In [2] he proved that every semigroup containing magnifying elements is factorizable. In [3] he proposed the method of construction of semigroups having good left magnifying elements.

Let $B(X)$ be the set of all binary relations on the set X. Then $P(X)$, where $P(X)=\{\alpha \in B(X) \mid \alpha: A \rightarrow B$ when $A, B \subseteq X\}$, is a semigroup called the semigroup of partial transformations on X. The semigroup of surjective partial transformations on X is denoted by $E(X)$, i.e. $E(X)=\{\alpha \in P(X) \mid \operatorname{ran} \alpha=X\}$. The necessary and sufficient conditions for elements of $P(X)$ to be the left or right magnifying elements were found in [6].
$T(X)=\{\alpha \in P(X) \mid \operatorname{dom} \alpha=X\}$ is a semigroup called the full transformation semigroup on $X . E T(X)=E(X) \cap T(X)$ is a semigroup of surjective full transformations on X.

For a fixed nonempty subset Y of X, let

$$
\bar{T}(X, Y)=\{\alpha \in T(X) \mid Y \alpha \subseteq Y\} \quad \text { and } \quad T_{(X, Y)}=\{\alpha \in T(X) \mid Y \alpha=Y\}
$$

where $Y \alpha=\{y \alpha \mid y \in Y\}$. Then $\bar{T}(X, Y)$ and $T_{(X, Y)}$ are subsemigroups of $T(X)$. $T_{(X, Y)}$ is also a subsemigroup of $\bar{T}(X, Y)$.

[^0]The semigroups $\overline{P T}(X, Y)$ and $P T_{(X, Y)}$ are defined similarly. Namely,

$$
\overline{P T}(X, Y)=\{\alpha \in P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha \subseteq Y\}
$$

and

$$
P T_{(X, Y)}=\{\alpha \in P(X) \mid(\operatorname{dom} \alpha \cap Y) \alpha=Y\},
$$

where $\operatorname{dom} \alpha$ is the domain of α and $(\operatorname{dom} \alpha \cap Y) \alpha=\{z \alpha \mid z \in \operatorname{dom} \alpha \cap Y\}$. Then $\overline{P T}(X, Y)$ and $P T_{(X, Y)}$ are subsemigroups of $P(X) . P T_{(X, Y)}$ also is a subsemigroup of $\overline{P T}(X, Y)$.

The purpose of this paper is providing the necessary and sufficient conditions for elements in semigroups $\overline{P T}(X, Y)$ and $P T_{(X, Y)}$ to be left or right magnifying.

2. Preliminaries

Throughout this paper, the cardinality of a set X is denoted by $|X|$ and $X=A \dot{\cup} B$ means X is a disjoint union of A and B. The proper subset B of a set A is denoted by $B \subset A$.

For $\alpha, \beta \in P(X), \alpha \beta \in P(X)$ is defined by $x(\alpha \beta)=(x \alpha) \beta$ for all $x \in \operatorname{dom}(\alpha \beta)$. The identity map on X, i.e. $i d_{X}$, is the identity element of $\overline{P T}(X, Y)$ and $P T_{(X, Y)}$. The empty function on X, i.e. \emptyset_{X} is a zero element of $\overline{P T}(X, Y)$ but $\emptyset_{X} \notin P T_{(X, Y)}$.

For $\alpha \in P(X)$, we write

$$
\alpha=\binom{X_{i}}{a_{i}}
$$

where the subscript i belongs to some (unmentioned) index set I, the abbreviation $\left\{a_{i}\right\}$ denotes $\left\{a_{i} \mid i \in I\right\}$. Then $\operatorname{ran} \alpha=\left\{a_{i}\right\}$ and $a_{i} \alpha^{-1}=X_{i}$.

For $\alpha \in \overline{P T}(X, Y)$, we write

$$
\alpha=\left(\begin{array}{ccc}
A_{i} & B_{j} & C_{k} \\
a_{i} & b_{j} & c_{k}
\end{array}\right)
$$

where $A_{i} \cap Y \neq \emptyset ; B_{j}, C_{k} \subseteq X \backslash Y ;\left\{a_{i}\right\} \subseteq Y,\left\{b_{j}\right\} \subseteq Y \backslash\left\{a_{i}\right\}$ and $\left\{c_{k}\right\} \subseteq X \backslash Y$.
For $\alpha \in P T_{(X, Y)}$, we write

$$
\alpha=\left(\begin{array}{ll}
A_{i} & B_{j} \\
a_{i} & b_{j}
\end{array}\right)
$$

where $A_{i} \cap Y \neq \emptyset ; B_{j} \subseteq X \backslash Y ;\left\{a_{i}\right\}=Y,\left\{b_{j}\right\} \subseteq X \backslash Y$.
If X is finite, then Y is also finite. So we get $\overline{P T}(X, Y)$ and $P T_{(X, Y)}$ are finite semigroups. Since finite semigroups do not contain left and right magnifying elements (cf. [4]), we will consider only the case when X is an infinite set.

3. Left Magnifying Elements in $\overline{P T}(X, Y)$

Lemma 3.1. If $\alpha \in \overline{P T}(X, Y)$ is a left magnifying element in $\overline{P T}(X, Y)$, then $\operatorname{dom} \alpha=X, \alpha$ is injective and $y \alpha^{-1} \subseteq Y$ for all $y \in Y \cap \operatorname{ran} \alpha$.

Proof. Assume that α is a left magnifying element in $\overline{P T}(X, Y)$. Then there exists a proper subset M of $\overline{P T}(X, Y)$ such that $\alpha M=\overline{P T}(X, Y)$. Since $i d_{X} \in$ $\overline{P T}(X, Y)$, there exists $\beta \in M$ such that $\alpha \beta=i d_{X}$. Thus $X=\operatorname{dom} i d_{X} \subseteq \operatorname{dom} \alpha$ and hence $\operatorname{dom} \alpha=X$. Since $i d_{X}$ is injective, we also have α is injective. Since α is not an empty function, we have $Y \cap \operatorname{ran} \alpha \neq \emptyset$. Let $y \in Y \cap \operatorname{ran} \alpha$ and let $x \in y \alpha^{-1}$. Then $x \alpha=y$ and so $x=x i d_{X}=x \alpha \beta=y \beta \in Y$. So $y \alpha^{-1} \subseteq Y$ for all $y \in Y \cap \operatorname{ran} \alpha$.
Lemma 3.2. If $\alpha \in \overline{P T}(X, Y)$ is a left magnifying element in $\overline{P T}(X, Y)$, then α is not surjective.
Proof. Assume that α is a left magnifying element in $\overline{P T}(X, Y)$ and α is surjective. Then there exists $M \subset \overline{P T}(X, Y)$ such that $\alpha M=\overline{P T}(X, Y)$. By Lemma 3.1, we get $\operatorname{dom} \alpha=X, \alpha$ is injective and $y \alpha^{-1} \subseteq Y$ for all $y \in Y \cap \operatorname{ran} \alpha$. Then

$$
\alpha=\left(\begin{array}{ll}
a_{i} & b_{j} \\
y_{i} & z_{j}
\end{array}\right)
$$

where $\left\{a_{i}\right\}=Y=\left\{y_{i}\right\}$ and $\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}=X=\left\{y_{i}\right\} \dot{\cup}\left\{z_{j}\right\}$. There is

$$
\alpha^{-1}=\left(\begin{array}{ll}
y_{i} & z_{j} \\
a_{i} & b_{j}
\end{array}\right) \in \overline{P T}(X, Y)
$$

such that $\alpha^{-1} \alpha=i d_{X}$. Let $\beta \in \overline{P T}(X, Y)$. Then $\alpha \beta \in \overline{P T}(X, Y)$. Since $\overline{P T}(X, Y)=\alpha M$, we get $\alpha \beta=\alpha \gamma$ for some $\gamma \in M$. So $\beta=i d_{X} \beta=\alpha^{-1}(\alpha \beta)=$ $\alpha^{-1}(\alpha \gamma)=i d_{X} \gamma=\gamma \in M$. Thus $\overline{P T}(X, Y) \subseteq M$ that contradicts with M is a proper subset of $\overline{P T}(X, Y)$. Therefore, α is not surjective.
Theorem 3.3. $\alpha \in \overline{P T}(X, Y)$ is a left magnifying element in $\overline{P T}(X, Y)$ if and only if the following statements hold:

1. $\operatorname{dom} \alpha=X$,
2. $y \alpha^{-1} \subseteq Y$ for all $y \in Y \cap \operatorname{ran} \alpha$ and
3. α is injective but not surjective.

Proof. Assume that α is a left magnifying element in $\overline{P T}(X, Y)$. By the above lemmas, we have $\operatorname{dom} \alpha=X, y \alpha^{-1} \subseteq Y$ for all $y \in Y \cap \operatorname{ran} \alpha$ and α is injective but not surjective.

Conversely, choose $M=\{\delta \in \overline{P T}(X, Y) \mid \operatorname{dom} \delta \neq X\}$ and assume that the conditions 1-3 hold. Then we get $M \subset \overline{P T}(X, Y)$. Let $\beta \in \overline{P T}(X, Y)$. If $\beta=\emptyset_{X}$, then there is $\emptyset_{X} \in M$ such that $\beta=\alpha \emptyset_{X}$. If $\beta \neq \emptyset_{X}$, we let $Y=\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$ when $\operatorname{dom} \beta \cap Y=\left\{a_{i}\right\}$ and $X \backslash Y=\left\{s_{k}\right\} \dot{\cup}\left\{t_{l}\right\}$ when dom, $\beta \cap(X \backslash Y)=\left\{s_{k}\right\}$. Then

$$
\alpha=\left(\begin{array}{llll}
a_{i} & b_{j} & s_{k} & t_{l} \\
y_{i} & z_{j} & u_{k} & v_{l}
\end{array}\right)
$$

where $\left\{y_{i}\right\},\left\{z_{j}\right\} \subseteq Y$ and $\left\{u_{k}\right\},\left\{v_{l}\right\} \subseteq X \backslash Y$. Since α is not surjective, we have $\operatorname{ran} \alpha \neq X$. Define $\gamma:\left\{y_{i}\right\} \cup\left\{u_{k}\right\} \rightarrow X$ by

$$
\gamma=\left(\begin{array}{cc}
y_{i} & u_{k} \\
a_{i} \beta & s_{k} \beta
\end{array}\right) .
$$

Since α is injective, γ is well-defined. Since $(\operatorname{dom} \gamma \cap Y) \gamma=\left\{y_{i}\right\} \gamma=\left\{a_{i} \beta\right\} \subseteq Y$, $\gamma \in \overline{P T}(X, Y)$. But dom $\gamma=\left\{y_{i}\right\} \cup\left\{u_{k}\right\} \subseteq \operatorname{ran} \alpha \neq X$, so $\gamma \in M$.

Let $x \in \operatorname{dom} \beta=\left\{a_{i}\right\} \cup\left\{s_{k}\right\}=\operatorname{dom}(\alpha \gamma)$.
If $x=a_{i}$ for some $i \in I$, then $x(\alpha \gamma)=a_{i}(\alpha \gamma)=\left(a_{i} \alpha\right) \gamma=y_{i} \gamma=a_{i} \beta=x \beta$.
If $x=s_{k}$ for some $k \in K$, then $x(\alpha \gamma)=s_{k}(\alpha \gamma)=\left(s_{k} \alpha\right) \gamma=u_{k} \gamma=s_{k} \beta=x \beta$.
Thus $\beta=\alpha \gamma$. Hence $\overline{P T}(X, Y)=\alpha M$. Therefore, α is a left magnifying element in $\overline{P T}(X, Y)$.

Taking $Y=X$ in Theorem 3.3 we obtain
Corollary 3.4. $\alpha \in P(X)$ is a left magnifying element in $P(X)$ if and only if $\operatorname{dom} \alpha=X$ and α is injective but not surjective.

Example 3.5. Let $X=\mathbb{N}$ and $Y=2 \mathbb{N}$. Define

$$
\alpha=\binom{n}{n+2}_{n \in \mathbb{N}}
$$

Then $(\operatorname{dom} \alpha \cap Y) \alpha=(2 \mathbb{N}) \alpha=2 \mathbb{N} \backslash\{2\} \subseteq Y$ and so $\alpha \in \overline{P T}(X, Y)$. Moreover, we get $\operatorname{dom} \alpha=\mathbb{N}=X, y \alpha^{-1} \subseteq Y$ for all $y \in Y \cap \operatorname{ran} \alpha$ and α is injective but α is not surjective. By Theorem 3.3, α is a left magnifying element in $\overline{P T}(X, Y)$. By the proof of Theorem 3.3, there exists $M=\{\delta \in \overline{P T}(X, Y) \mid \operatorname{dom} \delta \neq \mathbb{N}=X\} \subset$ $\overline{P T}(X, Y)$ such that $\alpha M=\overline{P T}(X, Y)$.

4. Right Magnifying Elements in $\overline{P T}(X, Y)$

Lemma 4.1. If $\alpha \in \overline{P T}(X, Y)$ is a right magnifying element in $\overline{P T}(X, Y)$, then α is surjective.
Proof. Assume that α is a right magnifying element in $\overline{P T}(X, Y)$. Then there is a proper subset M of $\overline{P T}(X, Y)$ such that $M \alpha=\overline{P T}(X, Y)$. Since $i d_{X} \in \overline{P T}(X, Y)$, there exists $\beta \in M$ such that $\beta \alpha=i d_{X}$. From $i d_{X}$ is surjective, this implies α is surjective.

Lemma 4.2. If $\alpha \in \overline{P T}(X, Y)$ is a right magnifying element in $\overline{P T}(X, Y)$, then $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$.

Proof. Assume α is a right magnifying element in $\overline{P T}(X, Y)$. Then there exists a proper subset M of $\overline{P T}(X, Y)$ such that $M \alpha=\overline{P T}(X, Y)$. By Lemma 4.1, α is surjective.

Suppose that $y_{0} \alpha^{-1} \cap Y=\emptyset$ for some $y_{0} \in Y$ and define

$$
\beta=\binom{Y}{y_{0}}
$$

Then $\beta \in \overline{P T}(X, Y)$. Since $M \alpha=\overline{P T}(X, Y)$, there is $\gamma \in M$ such that $\gamma \alpha=\beta$. But α is surjective and $y_{0} \alpha^{-1} \cap Y=\emptyset$, so $y_{0} \alpha^{-1} \subseteq X \backslash Y$. Thus for each $y \in Y$,
$y_{0}=y \beta=(y \gamma) \alpha$. So $y \gamma \in y_{0} \alpha^{-1} \subseteq X \backslash Y$ which is a contradiction. Therefore $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$.

Lemma 4.3. If $\alpha \in \overline{P T}(X, Y)$ is a right magnifying element in $\overline{P T}(X, Y)$, then $\operatorname{dom} \alpha \neq X$ or α is not injective.

Proof. Assume that α is a right magnifying element in $\overline{P T}(X, Y)$. By Lemmas 4.1 and 4.2, α is surjective and $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$. Suppose that $\operatorname{dom} \alpha=X$ and α is injective. Let $X=\left\{a_{i}\right\} \cup\left\{b_{j}\right\}$ be such that $Y=\left\{a_{i}\right\}$. Then

$$
\alpha=\left(\begin{array}{ll}
a_{i} & b_{j} \\
y_{i} & z_{j}
\end{array}\right)
$$

where $\left\{y_{i}\right\}=Y$ and $\left\{z_{j}\right\}=X \backslash Y$. There is $\alpha^{-1} \in \overline{P T}(X, Y)$ such that $\alpha \alpha^{-1}=$ $i d_{X}$. Let $\beta \in \overline{P T}(X, Y)$. Then $\beta \alpha \in \overline{P T}(X, Y)$. Since $\overline{P T}(X, Y)=M \alpha$, we have $\beta \alpha=\delta \alpha$ for some $\delta \in M$. Thus $\beta=(\beta \alpha) \alpha^{-1}=(\delta \alpha) \alpha^{-1}=\delta \in M$. Hence $\overline{P T}(X, Y) \subseteq M$. That yields $M=\overline{P T}(X, Y)$ which contradicts with $M \subset$ $\overline{P T}(X, Y)$. Therefore, $\operatorname{dom} \alpha \neq X$ or α is not injective.

Theorem 4.4. $\alpha \in \overline{P T}(X, Y)$ is a right magnifying element in $\overline{P T}(X, Y)$ if and only if the following statements hold:

1. α is surjective,
2. $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$ and
3. $\operatorname{dom} \alpha \neq X$ or α is not injective.

Proof. Assume that α is a right magnifying element in $\overline{P T}(X, Y)$. Conditions 1-3 are a consequence of Lemmas 4.1, 4.2 and 4.3.

Conversely, assume that conditions 1-3 are satisfied. We have two cases.
Case 1: dom $\alpha \neq X$. Choose $M=\{\delta \in \overline{P T}(X, Y) \mid \delta$ is not surjective $\}$. Then $M \subset \overline{P T}(X, Y)$. Let $\beta \in \overline{P T}(X, Y)$. Then

$$
\beta=\left(\begin{array}{ccc}
A_{i} & B_{j} & C_{k} \\
a_{i} & b_{j} & c_{k}
\end{array}\right) .
$$

where $A_{i} \cap Y \neq \emptyset ; B_{j}, C_{k} \subseteq X \backslash Y ;\left\{a_{i}\right\} \subseteq Y,\left\{b_{j}\right\} \subseteq Y \backslash\left\{a_{i}\right\}$ and $\left\{c_{k}\right\} \subseteq X \backslash Y$. Since α is surjective, we have $\operatorname{ran} \beta \subseteq X=\operatorname{ran} \alpha$. From $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$, we have $a_{i} \alpha^{-1} \cap Y \neq \emptyset \neq b_{j} \alpha^{-1} \cap Y$. Choose $d_{a_{i}} \in a_{i} \alpha^{-1} \cap Y$ and $d_{b_{j}} \in b_{j} \alpha^{-1} \cap Y$. Then $d_{a_{i}} \alpha=a_{i}$ and $d_{b_{j}} \alpha=b_{j}$. Since $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$, we have $c_{k} \in \operatorname{ran} \alpha$ and we can choose $c_{k}^{\prime} \in \operatorname{dom} \alpha$ such that $c_{k}^{\prime} \alpha=c_{k}$. Define

$$
\gamma=\left(\begin{array}{ccc}
A_{i} & B_{j} & C_{k} \\
d_{a_{i}} & d_{b_{j}} & c_{k}^{\prime}
\end{array}\right)
$$

Then $\gamma \in \overline{P T}(X, Y)$. Since $\operatorname{ran} \gamma \subseteq \operatorname{dom} \alpha \neq X, \gamma$ is not surjective. Thus $\gamma \in M$.
Let $\operatorname{dom}(\gamma \alpha)=(\operatorname{ran} \gamma \cap \operatorname{dom} \alpha) \gamma^{-1}=(\operatorname{ran} \gamma) \gamma^{-1}=\operatorname{dom} \gamma=\operatorname{dom} \beta$ and $x \in \operatorname{dom} \beta$.

If $x \in A_{i}$ for some $i \in I$, then $x(\gamma \alpha)=(x \gamma) \alpha=d_{a_{i}} \alpha=a_{i}=x \beta$.
If $x \in B_{j}$ for some $j \in J$, then $x(\gamma \alpha)=(x \gamma) \alpha=d_{b_{j}} \alpha=b_{j}=x \beta$.

If $x \in C_{k}$ for some $k \in K$, then $x(\gamma \alpha)=(x \gamma) \alpha=c_{k}^{\prime} \alpha=c_{k}=x \beta$.
Thus $\gamma \alpha=\beta$ and hence $\overline{P T}(X, Y) \subseteq M \alpha$ which implies that $M \alpha=\overline{P T}(X, Y)$. Case 2: α is not injective. Choose $M=\{\delta \in \overline{P T}(X, Y) \mid \delta$ is not surjective $\}$. Then $M \subset \overline{P T}(X, Y)$. Let $\beta \in \overline{P T}(X, Y)$. Then

$$
\beta=\left(\begin{array}{ccc}
A_{i} & B_{j} & C_{k} \\
a_{i} & b_{j} & c_{k}
\end{array}\right)
$$

where $A_{i} \cap Y \neq \emptyset ; B_{j}, C_{k} \subseteq X \backslash Y ;\left\{a_{i}\right\},\left\{b_{j}\right\} \subseteq Y$ and $\left\{c_{k}\right\} \subseteq X \backslash Y$.
Let $\gamma \in \overline{P T}(X, Y)$ be as in Case 1. Since α is not injective, there is $x_{0} \in \operatorname{ran} \alpha$ and distinct elements $x_{1}, x_{2} \in \operatorname{dom} \alpha$ such that $x_{1} \alpha=x_{0}=x_{2} \alpha$. Note that $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$. If $x_{0} \in \operatorname{ran} \beta$, then there is exactly one (either x_{1} or x_{2}) in ran γ. If $x_{0} \notin \operatorname{ran} \beta$, then $x_{1}, x_{2} \notin \operatorname{ran} \gamma$. Thus γ is not surjective and so $\gamma \in M$. Analogously as in Case 1, we get $\gamma \alpha=\beta$ and hence $\overline{P T}(X, Y) \subseteq M \alpha$. This means that $M \alpha=\overline{P T}(X, Y)$.

Therefore, α is a right magnifying element in $\overline{P T}(X, Y)$.
For $Y=X$ we obtain the following corollary.
Corollary 4.5. $\alpha \in P(X) \alpha$ is a right magnifying element in $P(X)$ if and only if α is surjective and ($\operatorname{dom} \alpha \neq X$ or α is not injective).

Example 4.6. Let $X=\mathbb{N}$ and $Y=2 \mathbb{N}$. Define

$$
\alpha=\left(\begin{array}{ccccc}
1 & \{2,3\} & 4 & \{5,6\} & n+2 \\
1 & 2 & 3 & 4 & n
\end{array}\right)_{n \geq 5} \text { and } \beta=\left(\begin{array}{ccccc}
1 & 4 & 5 & 8 & n+4 \\
1 & 2 & 3 & 4 & n
\end{array}\right)_{n \geq 5}
$$

Then $(\operatorname{dom} \alpha \cap Y) \alpha=(2 \mathbb{N}) \alpha=2 \mathbb{N} \subseteq Y$ and $(\operatorname{dom} \beta \cap Y) \beta=(2 \mathbb{N} \backslash\{2,6\}) \beta=2 \mathbb{N} \subseteq$ Y. So $\alpha, \beta \in \overline{P T}(X, Y)$. It is clear that α is surjective. Furthermore, $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$ and α is not injective but $\operatorname{dom} \alpha=\mathbb{N}=X$. We can see that β is a bijection and $y \beta^{-1} \cap Y \neq \emptyset$ for all $y \in Y$ but $\operatorname{dom} \beta=\mathbb{N} \backslash\{2,3,6,7\} \neq X$. By Theorem 4.4, α, β are right magnifying elements in $\overline{P T}(X, Y)$. Then by the proof of Theorem 4.4, there is $M=\{\delta \in \overline{P T}(X, Y) \mid \delta$ is not surjective $\} \subset \overline{P T}(X, Y)$ such that $M \alpha=\overline{P T}(X, Y)$ and $M \beta=\overline{P T}(X, Y)$.

5. Left Magnifying Elements in $P T_{(X, Y)}$

Lemma 5.1. If $\alpha \in P T_{(X, Y)}$ is a left magnifying element in $P T_{(X, Y)}$, then $\operatorname{dom} \alpha=X$ and α is injective.

Proof. Assume that α is a left magnifying element in $P T_{(X, Y)}$. Then there exists a proper subset M of $P T_{(X, Y)}$ such that $\alpha M=P T_{(X, Y)}$. Since $i d_{X} \in P T_{(X, Y)}$, there exists $\beta \in M$ such that $\alpha \beta=i d_{X}$. Thus $\operatorname{dom} \alpha=X$ and α is injective.

Lemma 5.2. If $\alpha \in P T_{(X, Y)}$, where $Y \neq X$, is a left magnifying element in $P T_{(X, Y)}$, then α is not surjective.

Proof. Given $Y \neq X$. Assume that α is a left magnifying element in $P T_{(X, Y)}$ and α is surjective. Then there exists $M \subset P T_{(X, Y)}$ such that $\alpha M=P T_{(X, Y)}$. By Lemma 5.1, we get $\operatorname{dom} \alpha=X$ and α is injective. Thus α is a bijection on X. Since $\alpha \beta \in P T_{(X, Y)}=\alpha M, \alpha \beta=\alpha \gamma$ for some $\gamma \in M$. So $\beta=\gamma$ and hence $\beta \in M$. Thus $P T_{(X, Y)} \subseteq M$. So $M=P T_{(X, Y)}$ which is a contradiction. Therefore, α is not surjective.

Theorem 5.3. If $Y \neq X$, then $\alpha \in P T_{(X, Y)}$ is a left magnifying element in $P T_{(X, Y)}$ if and only if $\operatorname{dom} \alpha=X$ and α is injective but not surjective.
Proof. Let $Y \neq X$. Assume that α is a left magnifying element in $P T_{(X, Y)}$. By Lemmas 5.1 and 5.2 , we have $\operatorname{dom} \alpha=X$ and α is injective but not surjective. Conversely, assume that $\operatorname{dom} \alpha=X$ and α is injective but not surjective. Choose $M=\left\{\delta \in P T_{(X, Y)} \mid \operatorname{dom} \delta \neq X\right\}$. Then $M \subset P T_{(X, Y)}$.

We prove that $\alpha M=P T_{(X, Y)}$. Let $\beta \in P T_{(X, Y)}$ and $Y=\left\{a_{i}\right\} \dot{\cup}\left\{b_{j}\right\}$ where $\operatorname{dom} \beta \cap Y=\left\{a_{i}\right\}$ and $X \backslash Y=\left\{s_{k}\right\} \dot{\cup}\left\{t_{l}\right\}$ when $\operatorname{dom} \beta \cap(X \backslash Y)=\left\{s_{k}\right\}$. Then

$$
\alpha=\left(\begin{array}{llll}
a_{i} & b_{j} & s_{k} & t_{l} \\
y_{i} & z_{j} & u_{k} & v_{l}
\end{array}\right)
$$

where $Y=\left\{y_{i}\right\} \cup\left\{z_{j}\right\}$ and $\left\{u_{k}\right\},\left\{v_{l}\right\} \subseteq X \backslash Y$. Define $\gamma:\left\{y_{i}\right\} \cup\left\{u_{k}\right\} \rightarrow X$ by

$$
\gamma=\left(\begin{array}{cc}
y_{i} & u_{k} \\
a_{i} \beta & s_{k} \beta
\end{array}\right) .
$$

Since α is injective, γ is well-defined and $(\operatorname{dom} \gamma \cap Y) \gamma=\left\{y_{i}\right\} \gamma=\left\{a_{i} \beta\right\}=$ $(\operatorname{dom} \beta \cap Y) \beta=Y$, hence $\gamma \in P T_{(X, Y)}$. Since α is not surjective, from dom $\gamma=$ $\left\{y_{i}\right\} \cup\left\{u_{k}\right\} \subseteq \operatorname{ran} \alpha \neq X$ it follows $\gamma \in M$. But $x(\alpha \gamma)=(x \alpha) \gamma=x \beta$ for all $x \in \operatorname{dom} \beta=\left\{a_{i}\right\} \cup\left\{s_{k}\right\}=\operatorname{dom}(\alpha \gamma)$. Hence $\alpha \gamma=\beta$ and so $\alpha M=P T_{(X, Y)}$. So, α is a left magnifying element in $P T_{(X, Y)}$.

Theorem 5.4. $E(X)$ has no left magnifying elements.
Proof. Suppose that α is a left magnifying element in $E(X)$. Then α is a left magnifying element in $P T_{(X, Y)}$ when $Y=X$. By Lemma 5.1, $\operatorname{dom} \alpha=X$ and α is injective. Since $\alpha \in E(X), \alpha$ is surjective. Then there is $\alpha^{-1} \in E(X)$ such that $\alpha^{-1} \alpha=i d_{X}$. Since α is left magnifying, there is $M \subset E(X)$ such that $\alpha M=E(X)$. Let $\beta \in E(X)$. Analogously as in the proof of Lemma 5.2, we obtain $\beta \in M$. Thus $M=E(X)$. That is a contradiction. Hence, $E(X)$ has no left magnifying elements.

Example 5.5. Let $X=\mathbb{N}$ and $Y=2 \mathbb{N}$. Define

$$
\alpha=\left(\begin{array}{ll}
2 n-1 & 2 n \\
2 n+1 & 2 n
\end{array}\right)_{n \in \mathbb{N}} .
$$

Since $(\operatorname{dom} \alpha \cap Y) \alpha=(2 \mathbb{N}) \alpha=2 \mathbb{N}=Y, \alpha \in P T_{(X, Y)}, \operatorname{dom} \alpha=\mathbb{N}=X$ and α is injective. But $\operatorname{ran} \alpha=\mathbb{N} \backslash\{1\} \neq X$, then α is not surjective. By Theorem 5.3, α
is a left magnifying element in $P T_{(X, Y)}$. Let $M=\left\{\delta \in P T_{(X, Y)} \mid \operatorname{dom} \delta \neq \mathbb{N}\right\}$. Then, analogously as in the proof of Theorem 5.3, for each $\beta \in P T_{(X, Y)}$, there exists $\gamma \in M$ such that $\alpha \gamma=\beta$. Thus $P T_{(X, Y)}=\alpha M$ for some $M \subset P T_{(X, Y)}$.

6. Right Magnifying Elements in $P T_{(X, Y)}$

Lemma 6.1. If $\alpha \in P T_{(X, Y)}$ is a right magnifying element in $P T_{(X, Y)}$, then α is surjective.

Proof. Assume that α is a right magnifying element in $P T_{(X, Y)}$. Then $M \alpha=$ $P T_{(X, Y)}$ for some proper subset M of $P T_{(X, Y)}$. Since $i d_{X} \in P T_{(X, Y)}$, there exists $\beta \in M$ such that $\beta \alpha=i d_{X}$. So, α must be surjective.

Lemma 6.2. If $\alpha \in P T_{(X, Y)}$ is a right magnifying element in $P T_{(X, Y)}$, then $\operatorname{dom} \alpha \neq X$ or α is not injective.
Proof. Assume α is a right magnifying element in $P T_{(X, Y)}$. Then $M \alpha=P T_{(X, Y)}$ for some $M \subset P T_{(X, Y)}$. Suppose that dom $\alpha=X$ and α is injective. By Lemma 6.1, α is surjective. Let $\beta \in P T_{(X, Y)}$. Then $\beta \alpha \in P T_{(X, Y)}$. Since $P T_{(X, Y)}=M \alpha$, we have $\beta \alpha=\delta \alpha$ for some $\delta \in M$. Since α is a bijection on X with $Y \alpha=Y$, we get $\beta=\delta \in M$. Hence $P T_{(X, Y)} \subseteq M$. That yields $M=P T_{(X, Y)}$ which contradicts with $M \subset P T_{(X, Y)}$. Therefore, $\operatorname{dom} \alpha \neq X$ or α is not injective.

Theorem 6.3. $\alpha \in P T_{(X, Y)}$ is a right magnifying element in $P T_{(X, Y)}$ if and only if α is surjective and ($\operatorname{dom} \alpha \neq X$ or α is not injective).
Proof. Assume that α is a right magnifying element in $P T_{(X, Y)}$. By Lemmas 6.1 and $6.2, \alpha$ is surjective and ($\operatorname{dom} \alpha \neq X$ or α is not injective).

Conversely, assume that α is surjective and ($\operatorname{dom} \alpha \neq X$ or α is not injective). We have two cases:

Case 1: $\operatorname{dom} \alpha \neq X$. Choose $M=\left\{\delta \in P T_{(X, Y)} \mid \delta\right.$ is not surjective $\}$. Then $M \subset P T_{(X, Y)}$. Let $\beta \in P T_{(X, Y)}$. Then

$$
\beta=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} & b_{j}
\end{array}\right)
$$

where $A_{i} \cap Y \neq \emptyset, B_{j} \subseteq X \backslash Y,\left\{a_{i}\right\}=Y$ and $\left\{b_{j}\right\} \subseteq X \backslash Y$. $(\operatorname{dom} \alpha \cap Y) \alpha=Y$ implies $y \alpha^{-1} \cap Y \neq \emptyset$ for all $y \in Y$. Then $a_{i} \alpha^{-1} \cap Y \neq \emptyset$ and $d_{a_{i}} \alpha=a_{i}$ for $d_{a_{i}} \in a_{i} \alpha^{-1} \cap Y$. Since $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha, b_{j} \in \operatorname{ran} \alpha$ and $b_{j}^{\prime} \alpha=b_{j}$ for somee $b_{j}^{\prime} \in \operatorname{dom} \alpha$. Define

$$
\gamma=\left(\begin{array}{cc}
A_{i} & B_{j} \\
d_{a_{i}} & b_{j}^{\prime}
\end{array}\right)
$$

Then $\gamma \in P T_{(X, Y)}$. Since $\operatorname{ran} \gamma \subseteq \operatorname{dom} \alpha \neq X, \gamma$ is not surjective. Thus $\gamma \in M$. Consequently, $x(\gamma \alpha)=(x \gamma) \alpha=x \beta$ for all $x \in \operatorname{dom} \beta=\operatorname{dom}(\gamma \alpha)$. Hence $\gamma \alpha=\beta$ and $P T_{(X, Y)} \subseteq M \alpha$ which gives $M \alpha=P T_{(X, Y)}$.

CASE 2: α is not injective. Choose $M=\left\{\delta \in P T_{(X, Y)} \mid \delta\right.$ is not surjective $\}$. Then $M \subset P T_{(X, Y)}$. Let $\beta \in P T_{(X, Y)}$. Then

$$
\beta=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} & b_{j}
\end{array}\right)
$$

where $A_{i} \cap Y \neq \emptyset ; B_{j} \subseteq X \backslash Y ;\left\{a_{i}\right\}=Y$ and $\left\{b_{j}\right\} \subseteq X \backslash Y$. Let $\gamma \in P T_{(X, Y)}$ be as in Case 1. Since α is not injective, there is $x_{0} \in \operatorname{ran} \alpha$ and distinct elements $x_{1}, x_{2} \in \operatorname{dom} \alpha$ such that $x_{1} \alpha=x_{0}=x_{2} \alpha$. Obviously $\operatorname{ran} \beta \subseteq \operatorname{ran} \alpha$. If $x_{0} \in \operatorname{ran} \beta$, then there is exactly one (either x_{1} or x_{2}) in $\operatorname{ran} \gamma$. If $x_{0} \notin \operatorname{ran} \beta$, then $x_{1}, x_{2} \notin$ $\operatorname{ran} \gamma$. Thus γ is not surjective and so $\gamma \in M$. Analogously as in Case 1, we obtain $\gamma \alpha=\beta$. Hence $P T_{(X, Y)} \subseteq M \alpha$. This means that $M \alpha=P T_{(X, Y)}$. Therefore, α is a right magnifying element in $P T_{(X, Y)}$.

Corollary 6.4. $\alpha \in E(X)$ is a right magnifying element in $E(X)$ if and only if $\operatorname{dom} \alpha \neq X$ or α is not injective.

Example 6.5. Let $X=\mathbb{N}$ and $Y=2 \mathbb{N}$. Define

$$
\alpha=\left(\begin{array}{cc}
2 n & 2 n+1 \\
2 n & 2 n-1
\end{array}\right)_{n \in \mathbb{N}} \text { and } \beta=\left(\begin{array}{ccccc}
1 & 2 & \{3,4\} & \{5,6\} & n+2 \\
1 & 2 & 3 & 4 & n
\end{array}\right)_{n \geqslant 5} .
$$

Then $(\operatorname{dom} \alpha \cap Y) \alpha=2 \mathbb{N}=(\operatorname{dom} \beta \cap Y) \beta$ and so $\alpha, \beta \in P T_{(X, Y)}$. It is clear that α is injective. Since $\operatorname{ran} \alpha=\mathbb{N}=X, \alpha$ is surjective. but $\operatorname{dom} \alpha=\mathbb{N} \backslash\{1\} \neq X$, so $\operatorname{dom} \beta=\mathbb{N}=X$ and β is surjective but not injective. By Theorem 6.3, α, β are right magnifying elements in $P T_{(X, Y)}$. Then there is $M=\left\{\delta \in P T_{(X, Y)} \mid \delta\right.$ is not surjective $\} \subset P T_{(X, Y)}$ such that $M \alpha=P T_{(X, Y)}$ and $M \beta=P T_{(X, Y)}$.

Added in proof (January 5, 2021). One of the Reviewers informed us that the results of our Sections 3 and 4 are similar to results obtained in the paper: R. Chinram, S. Buapradist, N. Yaqoob, P. Petchkaew, Left and right magnifying elements in some generalized partial transformation semigroups, submitted to Commun. Algebra, but the proofs are different.

References

[1] M. Gutan, Semigroups with strong and non-trong magnifying elements, Semigroup Forum 53 (1966), no. 3, $384-386$.
[2] M. Gutan, Semigroups which contain magnifying elements are factorizable, Commun. Algebra 25 (1997), no. 12, 3953 - 3963.
[3] M. Gutan, Good and very good magnifiers, Bollettio dell' Unione Matematica Italiana 3 (2000), no. 3, $793-810$.
[4] E.S. Ljapin, Semigroups, Amer. Math. Soc.: Providence, R. I., USA, 1974.
[5] E. S. Ljapin, Translations of Mathematical Monographs Vol.3, Semigroups, Amer. Math. Soc.: Providence, R. I., USA, 1963.
[6] P. Luangchaisri, T. Changpas, C. Phanlert, Left (right) magnifying elements of a partial transformation semigroup, Asian-Eur. J. Math. 13 (2020), no. 1, 7 pp.

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand E-mails: Chadaphorn_p@cmu.ac.th, preeyanuch.h@cmu.ac.th

[^0]: 2010 Mathematics Subject Classification: 20M10, 20M20
 Keywords: left magnifying element, right magnifying element, partial transformation semi-
 group, partial transformation semigroup with invariant set
 This research was supported by Chiang Mai University.

