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Representation of monoids

in the category of monoid acts

Abolghasem Karimi Feizabadi, Hamid Rasouli and Mahdieh Haddadi

To Bernhard Banaschewski on his 90th Birthday

Abstract. The study of monoids in the category of monoid acts leads to the notion of power

action. In this paper, for a monoid T , we investigate the relationship between the category T -Act

of all T -acts and the category T -Pwr of all T -power acts. For a T -power actM on a commutative

monoid T , we introduce the covariant functor MM− from T -Act to T -Pwr and show that the

family of assignments (ηA : A→MMA
)A∈T -Act constitutes a natural transformation. Moreover,

the Hom-functor (M−)− and the tensor functor M−⊗− from T -Act × T -Act to T -Pwr are

naturally equivalent.

1. Introduction and preliminaries

Representation of mathematical structures is a way for better seeing of them to
study. Analyzing the internalized concepts in a topos captured the interest of
some mathematicians. The general notion of a mathematical object in a topos (or
a category with some properties) introduces a lot of conceptions and structures
obtained from its classical versions in Set, the category of sets ([4]). For instance,
�Algebras in a Category� are some of these structures such as groups and group
actions in a topos (see [2, 8]).

For a monoid T , let T -Act denote the category of all T -acts and act homo-
morphisms between them. Considering the monoid T as a category T with one
object, T -Act is isomorphic to the functor category SetT (or [T ,Set] in another
notation), hence it is a (presheaf) topos (see [3]). Here we study the structure of
monoids in the category T -Act, so-called T -power acts, or actions over monoids

in the sense of [5] which were used to construct the hypergroups. First we verify
some basic properties of the power acts. In particular, the free objects in the
category T -Pwr of all T -power acts are constructed. For a T -power act M and a
T -act A over a commutative monoid T , it is shown that the set MA of all T -act
homomorphisms from A to M is a T -power act which gives the two functors M−

(contravariant) and MM− (covariant) from T -Act to T -Pwr. Also the family of

assignments (ηA : A → MMA

)A∈T -Act constitutes a natural transformation from
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the identity functor to UMM− , where U is the forgetful functor. Finally, we prove
that (MA)B and MA⊗B are naturally isomorphic in T -Pwr for every T -acts A
and B.

Now let us brie�y recall some needed notions in the sequel.

Let T be a monoid and A be a (non-empty) set. A right T -act on A is a map
A × T → A, (a, t)  at, such that for every a ∈ A and t, s ∈ T , (at)s = a(ts)
and a1 = a. The notion of left T -act is de�ned similarly. Here by a T -act we
mean a right T -act unless otherwise stated. An element θ in a T -act A is said
to be a �xed element if θt = θ for each t ∈ T . Let A,B be two T -acts. A
map f : A → B is called a T -act homomorphism or simply act homomorphism if
f(at) = f(a)t, for every a ∈ A and t ∈ T . The class of all T -acts together with
the T -act homomorphisms between them forms a category which is denoted by
T -Act. For a monoid M , H(M) denotes the monoid of all endomorphisms of M
with the composition of mappings as its operation. To denote the image of x ∈M
under σ ∈ H(M) we will use the post�x notation. An equivalence relation θ on a
T -act A is called a T -act congruence if xθy implies that xtθyt, for every x, y ∈ A
and t ∈ T . The free T -act on a non-empty set X is the set X × T with the action
(x, t)s = (x, ts), for every x ∈ X and t, s ∈ T . Let A be a right T -act and B be a
left T -act. The tensor product of A and B is the set A⊗B := (A×B)/θ, where θ
is the equivalence relation on the set A×B generated by the pairs ((at, b), (a, tb))
for a ∈ A, b ∈ B, t ∈ T . We denote (a, b)/θ ∈ A⊗B by a⊗ b. In the case that T is
a commutative monoid, every T -act can be considered as a T -biact so that there
is naturally a T -act structure on the tensor product A⊗ B for any two T -acts A
and B (see [6, Proposition II.5.12]). For more information on the theory of acts
over monoids, see [6]. Also for some required categorical ingredients we refer to
[7]. Throughout the paper T stands for a monoid unless otherwise stated.

2. Monoids in the category of acts: Power action

Algebra in a category is a subject for mathematicians to study algebraic structures
categorically. In this theory, a base category C is replaced to the category Set and
all algebraic operations are the morphisms of C, and homomorphisms are those
morphisms in C such that preserve the operations in the sense of commutative
diagrams in C. Note that equations in algebras are explained as commutative
diagrams. For more information we refer to [2, 4, 8].

Here we study the notion of monoid in the base category T -Act, where T is
a monoid. Let us �rst recall the notion of a monoid in an arbitrary category.
Let C be a category with �nite products. A monoid 〈M, ·, 1M 〉 in C is an object
of C together with two morphisms · : M × M → M called multiplication and
1M : > →M called identity, in which > is the terminal object of C such that the
following diagrams commute:

• Association law ((x · y) · z = x · (y · z)):
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M ×M ×M ·×idM //

idM×·
��

M ×M

·
��

M ×M ·
// M

• Identity law (x · 1M = x = 1M · x):

>×M1M×idM//

π2

%%

M ×M

·
��

M ×>idM×1Moo

π1

yy
M

Now let M , N be two monoids in a category C. A homomorphism from M to
N is a morphism f : M → N in C such that the following diagrams commute:
• Preserving the multiplication:

M ×M · //

f×f
��

M

f

��
N ×N ·

// N

• Preserving the identity:

>

1N   

1M // M

f

��
N

All monoids in a category C with homomorphisms between them make a cate-
gory denoted by Mon(C).

Here we are going to explain objects of the categoryMon(T -Act) for a monoid
T with identity 1. Let M be an object in this category. Then there is a T -action
M × T → M, (m, t) mt, with a T -act homomorphism · : M ×M → M . So for
every t, s ∈ T andm,n ∈M we have (mt)s = m(ts),m1 = m and (m·n)t = mt·nt.
Since 1M : > → M is a T -act homomorphism where > is considered as the one-
element T -act, 1M t = 1M . Finally, by the diagrams of associativity and identity,
M is a monoid. Because of the kind of these equations, we use the notation mt

for mt and give the following de�nition. If no confusion arises, the identities of M
and T are denoted by the same symbol 1.

De�nition 1. Let T be a monoid. By a (right) T -power act, we mean a monoidM
equipped with a map M × T →M , (m, t) mt, in such a way that the following
conditions hold for all t, s ∈ T and m,n ∈M :

(mn)t = mtnt, (mt)s = mts, m1 = m, 1t = 1.
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If T contains a zero, then m0 is clearly a �xed element ofM whereM is considered
as a T -act.

Note that the notion of power act is also appeared in [5] under the name of
�action over monoids�.

Now we describe the morphisms of the category Mon(T -Act). Let M and
N be two objects of Mon(T -Act). It is easy to see that a map f : M → N is
a morphism in Mon(T -Act), so-called a T -power act homomorphism or simply
power act homomorphism if and only if f(mn) = f(m)f(n), f(1) = 1 and f(mt) =
f(m)t, for all m,n ∈M and t ∈ T . The category of all T -power acts with T -power
act homomorphisms between them is denoted by T -Pwr which is isomorphic to
the category Mon(T -Act).

In the following, we give some examples of power acts.

Example 1. 1. Consider the monoid (N, ·). Then every commutative monoid
M with mk to be mm · · ·m, k-times, for every m ∈ M and k ∈ N, is an
N-power act.

2. Given a monoid M , let T be a submonoid of H(M). Then we de�ne mσ to
be mσ, for all m ∈M and σ ∈ T . Then M is a T -power act which is called
the natural power action.

3. Given two monoids M and T with 0 ∈ T , let φ : T → H(M) be a monoid
homomorphism and u ∈ M . For every m ∈ M and t 6= 0 in T , de�ne
mt = mφ(t), and m0 = u. Then M is a T -power act if and only if uφ(t) = u
for all t ∈ T and u2 = u. This is called the (φ, u)-power action. In particular,
the (id, 1)-power action is said to be an identity power action where id : T →
H(M) is the constant homomorphism mapping every t ∈ T to idM .

Proposition 1. Let M and T be two monoids and 0 ∈ T . Then each T -power
act M is of the form (φ, u)-power act (in the sense of Example 1(3)) for a unique

monoid homomorphism φ : T → H(M) and some u ∈M .

Proof. Let M be a T -power act and t ∈ T . De�ne σt : M → M by mσt = mt for
every m ∈M . We show that the map σt is a monoid homomorphism. Indeed, we
have (mn)σt = (mn)t = mtnt = mσtnσt, and 1σt = 1t = 1 for every m,n ∈ M .
Now, de�ne φ : T → H(M) by φ(t) = σt, t ∈ T . The map φ is a monoid
homomorphism. To see this, for any t, s ∈ T and m ∈M , mσts = mts = (mt)s =
mσtσs. Thus φ(ts) = σts = σtσs = φ(t)φ(s). Also φ(1) = σ1 = id. Now take
u := φ(0). It is clear that u2 = u and uφ(t) = u for all t ∈ T . Then M is
a (φ, u)-power act (see Example 1(3)). For the uniqueness of φ, suppose that
ψ : T → H(M) is a monoid homomorphism with mt = mψ(t), for all m ∈M and
t ∈ T . This implies that mψ(t) = mφ(t) for all m ∈ M and t ∈ T which means
ψ = φ.

Here we de�ne the notion of a bipower act.
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De�nition 2. Let T and S be monoids. By a (T, S)-bipower act M we mean a
monoidM which is both (right) T and S-power acts simultaneously, in such a way
that (mt)s = (ms)t, for every m ∈M , t ∈ T and s ∈ S.

Remark 1. Every (T, S)-bipower act M for two monoids T and S can be consid-
ered as a T × S-power act. To this end, we de�ne the power action m(t,s) to be
(mt)s for every m ∈M , t ∈ T and s ∈ S. Then we have:

1. m(1,1) = (m1)1 = m,

2. 1(t,s) = (1t)s = 1,

3. m(t,s)n(t,s) = (mt)s(nt)s = (mtnt)s = ((mn)t)s = (mn)(t,s),

4. (m(t1,s1))(t2,s2) = (((mt1)s1)t2)s2 = (((mt1)t2)s1)s2 = (mt1t2)s1s2 =
m(t1,s1)(t2,s2).

By a power act congruence on a T -power actM we mean a monoid congruence
as well as a T -act congruence on M .

Suppose that M is a T and S-power act for monoids T and S. We construct
a quotient of M which is a (T, S)-bipower act. To do this, let θ be the power act
congruence on M generated by the set θ = {((mt)s, (ms)t) : m ∈M, t ∈ T, s ∈ S}.
De�ne (m/θ)(m′/θ) = (mm′)/θ, (m/θ)t = mt/θ and (m/θ)s = ms/θ for m,m′ ∈
M, t ∈ T, s ∈ S. It is easily seen that M/θ is a (T, S)-bipower act. Hence, it
follows from Remark 1 that M/θ is a T × S-power act.

Lastly, we show that the power act is a universal algebraic structure and verify
the existence of the free power acts. The reader is referred to [1] for some required
details on universal algebra.

Let M be a T -power act. Then M can be considered as an algebra of the type
〈·, (λt)t∈T , 1〉, where · is the binary operation, λt is the unary operation given by
λt(m) = mt, for every t ∈ T,m ∈ M , and 1 is the nullary operation on M such
that the following equations hold for every t, s ∈ T and x, y ∈M :

λt(x · y) = λt(x) · λt(y), λs(λt(x)) = λts(x), λ1(x) = x, λt(1) = 1.

Therefore, the category T -Pwr is an equational class and then the free objects
over T -acts exist in this category. We explain the construction of free T -power
acts in the following.

Let A be a T -act. Consider the free monoid Fm(A) = {x1x2 · · ·xn : xi ∈
A,n ∈ N}∪{1} on the set A. Now we de�ne a T -action on Fm(A) by (x1 · · ·xn)t =
xt1 · · ·xtn, 1t = 1 for all t ∈ T and xi ∈ A, then one can easily see that Fm(A) is a T -
power act, and the inclusion map i : A→ Fm(A) is a T -act homomorphism. If M
is a T -power act and f : A→M is a T -act homomorphism, we de�ne f : Fm(A)→
M to be f(x1 · · ·xn) = f(x1) · · · f(xn). Clearly, f is a T -power act homomorphism
with fi = f . Also if g : Fm(A)→M is a T -power act homomorphism with gi = f ,
then we have g(x1 · · ·xn) = g(x1) · · · g(xn) = f(x1) · · · f(xn) = f(x1 · · ·xn), for
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every x1, x2, . . . , xn ∈ A, that is, f is unique. Hence, Fm(A) is a free monoid in
the category T -Act on a T -act A. Then the assignment A Fm(A) de�nes the
free functor Fm : T -Act → T -Pwr. It is worth noting that the composition of
Fm to the free functor F : Set → T -Act, given by X  X × T , gives the free
functor Fpwr : Set → T -Pwr, X  Fm(X × T ). Consequently, Fm(X × T ) is
the free T -power act on a set X.

3. Power acts over commutative monoids

This section is devoted to study T -power acts for which T is a commutative monoid.
This kind of power acts displays a close relationship between Hom-functors and
tensor functors.

For a T -power act M and a T -act A, let us denote MA := HomT -Act(A,M),
the set of all T -act homomorphisms from A to M where M is considered as a T -
act. It is easily seen that the set MA is a monoid under the operation (f · g)(a) :=
f(a)g(a), for every f, g ∈ MA, a ∈ A. Note that the identity element of MA is
1 : A→M mapping every a ∈ A to 1 ∈M . Now we get the following:

Lemma 1. Let M be a T -power act and A be a T -act, where T is a commutative

monoid. Then the monoid MA is a T -power act together with the action f t(a) :=
(f(a))t, for every f ∈MA, t ∈ T, a ∈ A.

Proof. Take any f ∈ MA and t ∈ T . First note that f t ∈ MA. Indeed, for every
t, s ∈ T, a ∈ A, the commutativity of T implies that

f t(as) = (f(as))t = ((f(a))s)t = (f(a))st = (f(a))ts = ((f(a))t)s = (f t(a))s.

Moreover, for every f, g ∈MA, t, s ∈ T and a ∈ A, we have:

1. (f · g)t(a) = ((f · g)(a))t = (f(a)g(a))t = (f(a))t(g(a))t = f t(a)gt(a) =

(f t · gt)(a).

2. (f t)s(a) = (f t(a))s = ((f(a))t)s = f(a)ts = f ts(a).

3. f1(a) = (f(a))1 = f(a).

4. 1t(a) = (1(a))t = 1t = 1.

This means that MA is a T -power act.

We carry on this section with studying of the connections between the cate-
gories T -Act and T -Pwr for which T is a commutative monoid.

Proposition 2. Let M be a T -power act on a commutative monoid T . The

following assertions hold:

(i) There is a contravariant Hom-functor M− = HomT -Act(−,M) : T -Act →
T -Pwr assigning each T -act A to MA, and each T -act homomorphism h : A→ B



Representation of monoids in the category of monoid acts 257

to Mh : MB → MA mapping each f ∈ MB to f ◦ h. Moreover, this yields

a covariant Hom-functor MM− = HomT -Pwr(M
−,M) : T -Act → T -Pwr in a

natural way.

(ii) The family of assignments (ηA : A→MMA

)A∈T -Act each of them assigning

a 7→ â : MA → M , â(f) = f(a) for every a ∈ A, f ∈ MA, constitutes a natural

transformation from the identity functor IdT -Act to the functor UMM− where U :
T -Act → T -Pwr is the forgetful functor.

Proof. (i) For every T -act A, MA ∈ T -Pwr by Lemma 1. Considering a T -
act homomorphism h : A → B, we claim that Mh is a T -power act homomor-
phism. Clearly, Mh is a monoid homomorphism. Let t ∈ T and f ∈ MB . Then
Mh(f t)(a) = (f t ◦ h)(a) = f t(h(a)) = f(h(a)t) = f(h(at)) = (Mh(f))(at) =
(Mh(f))t(a), for every a ∈ A. So Mh(f t) = (Mh(f))t, as desired. Assume that
h : A→ B and k : B → C are homomorphisms in T -Act and f ∈MC . It follows
that Mk◦h(f) = f ◦ (k ◦ h) = (f ◦ k) ◦ h = Mh(Mk(f)) = (Mh ◦Mk)(f). That is,
Mk◦h = Mh ◦Mk. Also clearly M idA = idMA . Therefore, M− is a contravariant
functor. For the second part, it su�ces to note that MM− = M− ◦U ◦M− where
U : T -Pwr → T -Act is the forgetful functor.

(ii) First we show that the map â : MA → M is a morphism in T -Pwr, for
each a in a T -act A. Let f, g ∈ MA and t ∈ T . Then â(f · g) = (f · g)(a) =
f(a)g(a) = â(f)â(g), and â(f t) = f t(a) = (f(a))t = (â(f))t. Moreover, each ηA
is a morphism in T -Act because ât(f) = f(at) = f t(a) = â(f t) = (â)t(f) for
all a ∈ A, t ∈ T, f ∈ MA. Hence, ηA(at) = (ηA(a))t. It remains to prove the
commutativity of the following diagram:

A
ηA //

f

��

MMA

MMf

��
B

ηB
// MMB

Let a ∈ A, β ∈ MB . We have MMf ◦ ηA(a)(β) = (â ◦Mf )(β) = â(β ◦ f) =

(β ◦ f)(a) = β(f(a)) = f̂(a)(β) = ηB ◦ f(a)(β), as required.

Remark 2. (i) Let Γ be a subclass of morphisms in T -Act and M be a T -power
act for a commutative monoid T . Then one can easily check thatM is a Γ-injective
object in T -Act, i.e. injective with respect to all Γ-morphisms, if and only if the
contravariant functor M− maps every Γ-morphism to an onto morphism in T -
Pwr.

(ii) Let C be the category of all contravariant functors from T -Act to T -Pwr
for a commutative monoid T , and natural transformations between them. Then
the assignment M  M− gives a covariant functor T -Pwr → C. More explicitly,
for every morphism α : M → N in T -Pwr, one can de�ne a natural transformation
α̂ = (α̂A)A∈T -Act : M− → N− to be α̂A(f) = α ◦ f , for all f ∈ MA. That is, for
every T -act homomorphism h : A→ B, the following diagram commutes:
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MA α̂A // NA

MB

α̂B

//

Mh

OO

NB

Nh

OO

Indeed, Nh◦α̂B(f) = Nh(α◦f) = (α◦f)◦h = α◦(f ◦h) = α̂A(f ◦h) = α̂A◦Mh(f),
for every f ∈MB .

At the end, we give the following theorem which shows the relationship between
Hom-functors and tensor functors.

Theorem 1. For a T -power act M on a commutative monoid T , the Hom-functor

(M−)− : T -Act × T -Act → T -Pwr is naturally equivalent to the tensor functor

M−⊗− : T -Act × T -Act → T -Pwr.

Proof. For every T -acts A and B, we de�ne φ = φA,B : MA⊗B → (MA)B mapping
each T -power act homomorphism f : A⊗B → M to φ(f) : B → MA, where
φ(f)(b) : A → M , for every b ∈ B, maps every a ∈ A to f(a ⊗ b). It follows
from [6, Corollary II.5.20] that φ is a T -act isomorphism. Moreover, it is clear
that φ is a monoid homomorphism. Hence, φ is an isomorphism in T -Pwr. It
remains to prove the naturality of (φA,B)A,B : M−⊗− → (M−)−. Consider any
T -act homomorphisms f : A → A′ and g : B → B′. We show that the following
diagram commutes:

MA⊗B φA,B // (MA)B

MA′⊗B′ φA′,B′ //

Mf⊗g

OO

(MA′)B
′

(Mf )g

OO

Indeed, for every a ∈ A and b ∈ B, we have

((φA,B ◦Mf⊗g)(α))(b)(a) = φA,B(Mf⊗g(α))(b)(a) = Mf⊗g(α)(a⊗ b)
= (α ◦ (f ⊗ g))(a⊗ b)
= α(f(a)⊗ g(b)).

On the other hand,

(((Mf )g ◦ φA′,B′)(α))(b)(a) = (Mf )g(φA′,B′(α))(b)(a)
= (Mf ◦ φA′,B′(α) ◦ g)(b)(a)
= Mf (φA′,B′(α)(g(b)))(a)
= (φA′,B′(α)(g(b)) ◦ f)(a)
= φA′,B′(α)(g(b))(f(a))
= α(f(a)⊗ g(b)).

Hence, φA,B ◦Mf⊗g = (Mf )g ◦ φA′,B′ .
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