A study of anti-fuzzy quasi-ideals in ordered semigroups

Anwar Zeb and Asghar Khan

Abstract. In this paper, we introduce the concept of anti-fuzzy quasi-ideals in ordered semigroups and investigate the quasi-ideals of ordered semigroups in terms of anti-fuzzy quasi-ideals. We characterize left (resp. right) regular and completely regular ordered semigroups in terms of anti-fuzzy quasi-ideals and semiprime anti-fuzzy quasi-ideals.

1. Introduction

Biswas introduced the concept of an anti-fuzzy subgroup of a group in [3] and studied the basic properties of groups in terms of anti-fuzzy subgroups. Hong and Jun [5] modified Biswas idea and applied it to BCK-algebras. Akram and Dar defined anti-fuzzy left *h*-ideals of hemirings [2]. Recently Shabir and Nawaz studied anti fuzzy ideals of semigroups [11]. Ahsan et. al in [1] characterize semigroups in terms of fuzzy quasi-ideals. The monograph given by Mordeson and Malik [10] deals with the applications of fuzzy approach to the concepts of automata and formal languages. Fuzzy sets in ordered semigroups were first introduced by Kehayopulu and Tsingelis in [8].

In this paper, we introduce the concept of anti-fuzzy quasi-ideals in ordered semigroups and investigate the basic properties of quasi-ideals of ordered semigroups in terms of anti-fuzzy quasi-ideals. We characterize left (resp. right) regular and completely regular ordered semigroups in terms of anti-fuzzy quasi-ideals. We define semiprime anti-fuzzy quasi-ideals and characterize completely regular ordered semigroups in terms of semiprime anti-fuzzy quasi-ideals.

²⁰¹⁰ MSC: 06F05, 06D72, 08A72

 $[\]label{eq:Keywords:Fuzzy subset, anti-fuzzy quasi-ideal, simple semigroup, completely regular ordered semigroup.$

2. Some basic definitions and results

By an ordered semigroup (po-semigroup) we mean a structure (S, \cdot, \leqslant) in which

- (OS1) (S, \cdot) is a semigroup,
- (OS2) (S, \leqslant) is a poset,
- $(OS3) \ (\forall a, b, x \in S) (a \leq b \Longrightarrow ax \leq bx \text{ and } xa \leq xb).$

Throughout this paper S will denote an ordered semigroup unless otherwise specified.

For $A, B \subseteq S$, we denote $(A] := \{t \in S \mid t \leq h \text{ for some } h \in A\}$ and $AB := \{ab \mid a \in A, b \in B\}$. Then $A \subseteq (A], (A](B] \subseteq (AB], ((A]] = (A])$ and $((A](B]] \subseteq (AB]$.

A non-empty subset A of S is called a *right* (resp. *left*) *ideal* of S if:

- (1) $AS \subseteq A$ (resp. $SA \subseteq A$),
- (2) $a \in A$ and $S \ni b \leq a$ imply $b \in A$.

If A is both a right and a left ideal of S, then it is called an *ideal* of S. A non-empty subset Q of S is called a *quasi-ideal* of S if:

(1) $(QS] \cap (SQ] \subseteq Q$,

(2) $a \in Q$ and $S \ni b \leq a$ imply $b \in Q$.

- A subsemigroup B of S is called a *bi-ideal* of S if:
- (1) $BSB \subseteq B$,

(2) $a \in B$ and $S \ni b \leq a$ imply $b \in B$.

A fuzzy subset f of S is called a *fuzzy left* (resp. *right*) *ideal* of S if:

- (1) $x \leqslant y \Longrightarrow f(x) \ge f(y),$
- (2) $f(xy) \ge f(y)$ (resp. $f(xy) \ge f(x)$) for all $x, y \in S$.

If f is both a fuzzy left and a fuzzy right ideal of S. Then it is called a *fuzzy ideal* of S.

A fuzzy subset f of S is called a *fuzzy subsemigroup* of S if for all $x, y \in S$ $f(xy) \ge \min\{f(x), f(y)\}$. A fuzzy subsemigroup f of S is called a *fuzzy bi-ideal* of S if:

(1) $x \leq y \Longrightarrow f(x) \geq f(y),$

(2) $f(xyz) \ge \min\{f(x), f(z)\}$ for all $x, y \in S$.

For a non-empty family of fuzzy subsets $\{f_i\}_{i \in I}$ of S, the fuzzy subsets $\bigwedge_{i \in I} f_i$ and $\bigvee_{i \in I} f_i$ of S are defined as follows:

$$\Big(\bigwedge_{i\in I} f_i\Big)(x) := \inf_{i\in I} \{f_i(x)\}, \qquad \Big(\bigvee_{i\in I} f_i\Big)(x) := \sup_{i\in I} \{f_i(x)\}.$$

For any two fuzzy subsets f and g of S we put

$$(f \circ g)(x) := \begin{cases} \bigvee \max\{f(y), g(z)\} \text{ if } A_x \neq \emptyset, \\ (y, z) \in A_x \\ 0 & \text{ if } A_x = \emptyset, \end{cases}$$

where $A_x := \{(y, z) \in S \times S \mid x \leq yz\}.$

A fuzzy subset f of S is called a *fuzzy quasi-ideal* of S if:

- (1) $x \leq y \Longrightarrow f(x) \geq f(y),$
- (2) $(f \circ 1) \land (1 \circ f) \preceq f$,

where $f \leq g$ means that $f(x) \leq g(x)$ for all $x \in S$.

A fuzzy subset f of S is called an *anti-fuzzy subsemigroup* of S if

$$f(xy) \leqslant \max\{f(x), f(y)\}$$

for all $x, y \in S$.

An anti-fuzzy subsemigroup f of S is called an *anti-fuzzy bi-ideal* of S if:

(1) $x \leq y$ implies $f(x) \leq f(y)$,

(2) $f(xay) \leq \max\{f(x), f(y)\}$

for all $x, a, y \in S$.

For fuzzy subsets f and g of S the product f * g is defined as follows:

$$(f * g)(a) = \begin{cases} \bigwedge_{(y,z) \in A_x} \max\{f(y), g(z)\} \text{ if } A_x \neq \emptyset\\ 1 & \text{ if } A_x = \emptyset \end{cases}$$

The fuzzy subsets " \mathcal{S} " and " \mathcal{O} " of S are defined as

$$\mathcal{S}(x) = 1, \qquad \mathcal{O}(x) = 0$$

for all $x \in S$.

Proposition 2.1. Let $A, B \subseteq S$. Then

(i) $A \subseteq B$ if and only if $f_{B^c} \preceq f_{A^c}$.

- $(ii) \quad f_{A^c} \lor f_{B^c} = f_{A^c \cup B^c} = f_{(A \cap B)^c}.$
- (*iii*) $f_{A^c} * f_{B^c} = f_{(AB]^c}$.

An ordered semigroup S is called *regular* (see [6]) if for every $a \in S$ there exists $x \in S$ such that $a \leq axa$ or equivalently, $(1)(\forall a \in S)(a \in (aSa])$ and $(2)(\forall A \subseteq S)(A \subseteq (ASA])$, and S is called *left* (resp. *right*) *simple* (see [7]) if it has no proper left (resp. right) ideals.

Lemma 2.2. (cf. [7]). S is left (resp. right) simple if and only if (Sa] = S (resp. (aS] = S) for every $a \in S$.

An ordered semigroup S is called *left* (resp. *right*) *regular* (see [7]) if for every $a \in S$, there exists $x \in S$ such that $a \leq xa^2$ (resp. $a \leq a^2x$) or equivalently, $(1)(\forall a \in S)(a \in (Sa^2])$ and $(2)(\forall A \subseteq S)(A \subseteq (SA^2])$. S is called *completely regular* if it is regular, left regular and right regular [7].

If $\emptyset \neq A \subseteq S$, then the set $(A \cup (AS \cap SA)]$ is the quasi-ideal of S generated by A.

Lemma 2.3. (cf. [6]). S is completely regular if and only if $A \subseteq (A^2SA^2]$ for every $A \subseteq S$. Equivalently, if $a \in (a^2Sa^2]$ for every $a \in S$.

3. Anti-fuzzy quasi-ideals

Definition 3.1. A fuzzy subset f of S is called an *anti-fuzzy quasi-ideal*if (1) $(f * \mathcal{O}) \lor (\mathcal{O} * f) \succeq f$,

(2) $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in S$.

As a consequence of the transfer principle for fuzzy sets (cf. [9] we obtain the following two theorems.

Theorem 3.2. Let $\emptyset \neq A \subseteq S$. Then A is a quasi-ideal of S if and only if the characteristic function f_{A^c} of the complement of A is an anti-fuzzy quasi-ideal of S.

Theorem 3.3. Let f be a fuzzy subset of S. Then each non-empty level L(f;t) is a quasi-ideal if and only if f is an anti-fuzzy quasi-ideal.

Example 3.4. The set $S = \{a, b, c, d, f\}$ with the multiplication

and the order $\leq := \{(a, a), (a, b), (a, c), (a, d), (a, f), (b, b), (c, c), (d, d), (f, f)\}$ is an ordered semigroup with the following quasi-ideals:

 ${a}, {a, b}, {a, c}, {a, d}, {a, f}, {a, b, d}, {a, c, d}, {a, b, f}, {a, c, f}, S.$

For a fuzzy set f defined by f(a) = 0.3, f(b) = 0.5, f(c) = f(f) = 0.8, f(d) = 0.6 we have

$$L(f;t) := \begin{cases} S & \text{if} \quad t \in [0.8, 1), \\ \{a, b, d\} & \text{if} \quad t \in [0.6, 0.8), \\ \{a, b\} & \text{if} \quad t \in [0.5, 0.6), \\ \{a\} & \text{if} \quad t \in [0.3, 0.5), \\ \emptyset & \text{if} \quad t \in [0, 0.3). \end{cases}$$

L(f;t) is a quasi-ideal. By Theorem 3.3, f is an anti-fuzzy quasi-ideal. \Box

Lemma 3.5. Every anti-fuzzy quasi-ideal of S is its anti-fuzzy bi-ideal.

Proof. Let $x, y, z \in S$. Then xyz = x(yz) = (xy)z. Hence $(x, yz) \in A_{xyz}$ and $(xy, z) \in A_{xyz}$. Since $A_{xyz} \neq \emptyset$, we have

$$f(xyz) \leq \left[(f * \mathcal{O}) \lor (\mathcal{O} * f) \right] (xyz)$$

=
$$\max \left[\bigwedge_{(p,q) \in A_{xyz}} \max\{f(p), \mathcal{O}(q)\}, \bigwedge_{(p_1,q_1) \in A_{xyz}} \max\{\mathcal{O}(p_1), f(q_1)\} \right]$$

$$\leq \max[\max\{f(x), \mathcal{O}(yz)\}, \max\{\mathcal{O}(xy), f(z)\}]$$

=
$$\max[\max\{f(x), 0\}, \max\{0, f(z)\}] = \max[f(x), f(z)].$$

Let $x, y \in S$, then xy = x(y) and hence $(x, y) \in A_{xy}$. Since $A_{xy} \neq \emptyset$, we have

$$f(xy) \leq [(f * \mathcal{O}) \lor (\mathcal{O} * f)](xy)$$

= $\max \left[\bigwedge_{(p,q) \in A_{xy}} \max\{f(p), \mathcal{O}(q)\}, \bigwedge_{(p,q) \in A_{xy}} \max\{\mathcal{O}(p), f(q)\} \right]$
 $\leq \max[\max\{f(x), \mathcal{O}(y)\}, \max\{\mathcal{O}(x), f(y)\}]$
= $\max[\max\{f(x), 0\}, \max\{0, f(y)\}] = \max[f(x), f(y)].$

Let $x, y \in S$ be such that $x \leq y$. Then $f(x) \leq f(y)$, because f is an anti-fuzzy quasi-ideal of S. Thus f is an anti-fuzzy bi-ideal of S.

The converse of above Lemma is not true, in general.

Example 3.6. The set $S = \{a, b, c, d\}$ with the multiplication table

•	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	b	a
d	a	a	b	b

and the order $\leq := \{(a, a), (b, b), (c, c), (d, d), (a, b)\}$ is an ordered semigroup.

 $\{a, d\}$ is its bi-ideal but not a quasi-ideal.

For a fuzzy set f(a) = f(d) = 0.7, f(b) = f(c) = 0.3 we have

$$L(f;t) := \begin{cases} S & \text{if} \quad t \in [0.7,1), \\ \{a,d\} & \text{if} \quad t \in [0.3,0.7), \\ \emptyset & \text{if} \quad t \in [0,0.3). \end{cases}$$

L(f;t) is a bi-ideal for every t, but for $t \in [0.3, 0.7)$ it is not a quasi-ideal of S. By Theorem 3.3, f is an anti-fuzzy bi-ideal of S but not an anti-fuzzy quasi-ideal of S.

4. Completely regular ordered semigroups

Theorem 4.1. The the following are equivalent:

- (i) S is regular, left and right simple,
- (ii) every anti-fuzzy quasi-ideal of S is a constant function.

Proof. (i) \implies (ii). Let S be a fixed regular, left and right simple ordered semigroup. Let f be an anti-fuzzy quasi-ideal of S. We consider the set $E_{\Omega} = \{e \in S \mid e^2 \ge e\}$. E_{Ω} is non-empty, because for $a \in S$ there exists $x \in S$ such that $a \le axa$, hence $(ax)^2 = (axa)x \ge ax$, which means that $ax \in E_{\Omega}$.

(A) We first prove that f is a constant function on E_{Ω} . That is, f(e) = f(t) for every $t \in E_{\Omega}$. In fact: since S is left and right simple, we have (St] = S and (tS] = S. But $e \in S$. Then $e \in (St]$ and $e \in (tS]$. Thus $e \leq xt$ and $e \leq ty$ for some $x, y \in S$. If $e \leq xt$ then $e^2 = ee \leq (xt)(xt) = (xtx)t$ and $(xtx, t) \in A_{e^2}$. If $e \leq ty$ then $e^2 = ee \leq (ty)(ty) = t(yty)$ and $(t, yty) \in A_{e^2}$.

Since $A_{e^2} \neq \emptyset$ we have

$$\begin{split} f(e^2) &\leqslant ((f * \mathcal{O}) \lor (\mathcal{O} * f))(e^2) = \max[(f * \mathcal{O})(e^2), (\mathcal{O} * f)(e^2)] \\ &= \max\left[\bigwedge_{(y_1, z_1) \in A_{e^2}} \max\{f(y_1), \mathcal{O}(z_1)\}, \bigwedge_{(y_2, z_2) \in A_{e^2}} \max\{\mathcal{O}(y_2), f(z_2)\}\right] \\ &\leqslant \max[\max\{f(t), \mathcal{O}(yty)\}, \max\{\mathcal{O}(xtx), f(t)\}] \\ &= \max[\max\{f(t), 0\}, \max\{0, f(t)\}] = \max[f(t), f(t)] = f(t). \end{split}$$

Since $e \in E_{\Omega}$, we have $e^2 \ge e$ and $f(e^2) \ge f(e)$. Thus $f(e) \le f(t)$. On the other hand since S is left and right simple and $e \in S$, we have S = (Se]and S = (eS]. Since $t \in S$ we have $t \in (Se]$ and $t \in (eS]$. Then $t \le ze$ and $t \le es$ for some $z, s \in S$. If $t \le ze$ then $t^2 = tt \le (ze)(ze) = (zez)e$ and $(zez, e) \in A_{t^2}$. If $t \le es$ then $t^2 = tt \le (es)(es) = e(ses)$ and $(e, ses) \in A_{t^2}$. Since $A_{t^2} \ne \emptyset$ we have

$$\begin{split} f(t^2) &\leqslant ((f * \mathcal{O}) \lor (\mathcal{O} * f))(t^2) = \max[(f * \mathcal{O})(t^2), (\mathcal{O} * f)(t^2)] \\ &= \max\left[\bigwedge_{(y_1, z_1) \in A_{t^2}} \max\{f(y_1), \mathcal{O}(z_1)\}, \bigwedge_{(y_2, z_2) \in A_{t^2}} \max\{\mathcal{O}(y_2), f(z_2)\}\right] \\ &\leqslant \max[\max\{f(e), \mathcal{O}(ses)\}, \max\{\mathcal{O}(zez), f(e)\}] \\ &= \max[\max\{f(e), 0\}, \max\{0, f(e)\}] = \max[\max\{f(e), f(e)\}] = f(e) \end{split}$$

Since $t \in E_{\Omega}$ then $t^2 \ge t$ and $f(t^2) \ge f(t)$. Thus $f(t) \le f(e)$. Consequently, f(t) = f(e).

(B) Now we prove that f is a constant function on S. That is, f(t) = f(a) for every $a \in S$. In fact: since S is regular and $a \in S$, there exists $x \in S$ such that $a \leq axa$. We consider the elements ax and xa of S. Then by (OS3), we have $(ax)^2 = (axa)x \geq ax$ and $(xa)^2 = x(axa) \geq xa$, then $ax, xa \in E_{\Omega}$ and by (A) we have f(ax) = f(t) and f(xa) = f(t). Since $(ax)(axa) \geq axa \geq a$, then $(ax, axa) \in A_a$ and $(axa)(xa) \geq axa \geq a$, then $(axa, xa) \in A_a$ and hence $A_a \neq \emptyset$. Since f is an anti-fuzzy quasi-ideal of S, we have

$$f(a) \leq ((f * \mathcal{O}) \lor (\mathcal{O} * f))(a) = \max[(f * \mathcal{O})(a), (\mathcal{O} * f)(a)]$$

= $\max\left[\bigwedge_{(y_1, z_1) \in A_a} \max\{f(y_1), \mathcal{O}(z_1)\}, \bigwedge_{(y_2, z_2) \in A_a} \max\{\mathcal{O}(y_2), f(z_2)\}\right]$
 $\leq \max[\max\{f(ax), \mathcal{O}(axa)\}, \max\{\mathcal{O}(axa), f(xa)\}]$
= $\max[\max\{f(ax), 0\}, \max\{0, f(xa)\}] = \max[f(ax), f(xa)] = f(t).$

Since S is left and right simple we have (Sa] = S, and (aS] = S. Since $t \in S$, we have $t \in (Sa]$ and $t \in (aS]$. Then $t \leq pa$ and $t \leq aq$ for some $p, q \in S$. Then $(p, a) \in A_t$ and $(a, q) \in A_t$. Since $A_t \neq \emptyset$, and f is an anti-fuzzy quasi-ideal of S, we have

$$f(t) \leq ((f * \mathcal{O}) \lor (\mathcal{O} * f))(t) = \max[(f * \mathcal{O})(t), (\mathcal{O} * f)(t)]$$

= $\max\left[\bigwedge_{(y_1, z_1) \in A_t} \max\{f(y_1), \mathcal{O}(z_1)\}, \bigwedge_{(y_2, z_2) \in A_t} \max\{\mathcal{O}(y_2), f(z_2)\}\right]$
 $\leq \max\left[\max\{f(a), \mathcal{O}(q)\}, \max\{\mathcal{O}(p), f(a)\}\right]$
= $\max\left[\max\{f(a), 0\}, \max\{0, f(a)\}\right] = f(a).$

Thus $f(t) \leq f(a)$ and f(t) = f(a).

 $(ii) \Longrightarrow (i)$. Let $a \in S$. Then the set (aS] is a quasi-ideal of S. Indeed: $(aS] \cap (Sa] \subseteq (aS]$, and $x \in (aS]$ and $S \ni y \leqslant x \in (aS]$ imply $y \in ((aS]] = (aS]$. Since (aS] is quasi-ideal of S, by Theorem 3.2, the characteristic function $f_{(aS]^c}$ of (aS] is an anti-fuzzy quasi-ideal of S. By hypothesis, $f_{(aS]^c}$ is a constant function, that is, there exists $t \in \{0, 1\}$ such that $f_{(aS]^c}(x) = t$ for every $x \in S$. Let $(aS] \subset S$ and a be an element of S such that $a \notin (aS]$, then $f_{(aS]^c}(a) = 1$. On the other hand, since $a^2 \in (aS]$, then $f_{(aS]^c}(a^2) = 0$, a contradiction to the fact that $f_{(aS]^c}$ is a constant function. Hence (aS] = S. By symmetry we can prove that (Sa] = S.

Since $a \in S$ and S = (aS] = (Sa], we have $a \in (aS] = (a(Sa]] = (aSa]$, consequently S is regular.

Theorem 4.2. S is completely regular if and only if for every anti-fuzzy quasi-ideal f of S we have $f(a) = f(a^2)$ for every $a \in S$.

Proof. Let S be completely regular and f be an anti-fuzzy quasi-ideal of S. Since S is left and right regular we have $a \in (Sa^2]$ and $a \in (a^2S]$ for every $a \in S$. Then there exists $x, y \in S$ such that $a \leq xa^2$ and $a \leq a^2y$. Hence $(x, a^2), (a^2, y) \in A_a$. Since $A_a \neq \emptyset$, we have

$$\begin{split} f(a) &\leq ((f * \mathcal{O}) \lor (\mathcal{O} * f))(a) = \max[(f * \mathcal{O})(a), (\mathcal{O} * f)(a)] \\ &= \max\left[\bigwedge_{(y_1, z_1) \in A_a} \max\{f(y_1), \mathcal{O}(z_1)\}, \bigwedge_{(y_2, z_2) \in A_a} \max\{\mathcal{O}(y_2), f(z_2)\}\right] \\ &\leq \max\left[\max\{f(a^2), \mathcal{O}(y)\}, \max\{\mathcal{O}(x), f(a^2)\}\right] \\ &= \max\left[\max\{f(a^2), 0\}, \max\{0, f(a^2)\}\right] \\ &= \max\left[f(a^2), f(a^2)\right] = f(a^2) = f(aa) \leqslant \max\{f(a), f(a)\} = f(a). \end{split}$$

Hence $f(a) = f(a^2)$.

Conversely, let $a \in S$ and let $Q(a^2)$ be the quasi-ideal generated by a^2 . Then $Q(a^2) = (a^2 \cup (a^2S \cap Sa^2)]$. By Theorem 3.2, the characteristic function $f_{Q(a^2)^c}$ is an anti-fuzzy quai-ideal of S. By hypothesis $f_{Q(a^2)^c}(a) = f_{Q(a^2)^c}(a^2)$. Since $a^2 \in Q(a^2)$, we have $f_{Q(a^2)^c}(a^2) = 0$, then $f_{Q(a^2)^c}(a) = 0$ and $a \in Q(a^2) = (a^2 \cup (a^2S \cap Sa^2)]$. Then $a \leq a^2$ or $a \leq a^2x$ and $a \leq ya^2$ for some $x, y \in S$. If $a \leq a^2$ then $a \leq a^2 = aa \leq a^2a^2 = aaa^2 \leq a^2aa^2 \in a^2Sa^2$ and so $a \in (a^2Sa^2]$. If $a \leq a^2x$ and $a \leq ya^2$ then $a \leq (a^2x)(ya^2) = a^2(xy)a^2 \in a^2Sa^2$ and so $a \in (a^2Sa^2]$.

A subset T of S is called *semiprime* if for every $a \in S$ such that $a^2 \in T$ we have $a \in T$. An anti-fuzzy quasi-ideal f of S is called *semiprime* if $f(a) \leq f(a^2)$ all $a \in S$.

Theorem 4.3. S is completely regular if and only if every its anti-fuzzy quasi-ideal is semiprime.

Proof. Let S be completely regular and f be its anti-fuzzy quasi-ideal. Then $f(a) \leq f(a^2)$ for $a \in S$. Indeed: since S is left and right regular, there exist $x, y \in S$ such that $a \leq xa^2$ and $a \leq a^2y$ then $(x, a^2) \in A_a$ and $(a^2, y) \in A_a$. Since $A_a \neq \emptyset$, and f is an anti-fuzzy quasi-ideal of S, we have

$$\begin{split} f(a) &\leq ((f * \mathcal{O}) \lor (\mathcal{O} * f))(a) = \max[(f * \mathcal{O})(a), (\mathcal{O} * f)(a)] \\ &= \max\left[\bigwedge_{(y_1, z_1) \in A_a} \max\{f(y_1), \mathcal{O}(z_1)\}, \bigwedge_{(y_2, z_2) \in A_a} \max\{\mathcal{O}(y_2), f(z_2)\}\right] \\ &= \max\left[\max\{f(a^2), \mathcal{O}(y)\}, \max\{\mathcal{O}(x), f(a^2)\}\right] \\ &\leq \max\left[\max\{f(a^2), 0\}, \max\{0, f(a^2)\}\right] = \max\left[f(a^2), f(a^2)\right] = f(a^2). \end{split}$$

Conversely. Let f be an anti-fuzzy quasi-ideal of S such that $f(a) \leq f(a^2)$ for all $a \in S$. By Theorem 3.2, the characteristic function $f_{Q(a^2)^c}$ of the quasi-ideal $Q(a^2)$ is an anti-fuzzy quai-ideal of S. By hypothesis $f_{Q(a^2)^c}(a) \leq f_{Q(a^2)^c}(a^2)$. Since $a^2 \in Q(a^2)$, we have $f_{Q(a^2)^c}(a^2) = 0$, then $f_{Q(a^2)^c}(a) = 0$ and $a \in Q(a^2) = (a^2 \cup (a^2 S \cap Sa^2)]$. Thus $a \leq a^2$ or $a \leq a^2 p$ and $a \leq qa^2$ for some $p, q \in S$. If $a \leq a^2$ then $a \leq a^2 = aa \leq a^2a^2 = aaa^2 \leq a^2aa^2 \in a^2Sa^2$ and so $a \in (a^2Sa^2]$. If $a \leq a^2 p$ and $a \leq qa^2$ then $a \leq (a^2p)(qa^2) = a^2(pq)a^2 \in a^2Sa^2$ and so $a \in (a^2Sa^2]$. Consequently, S is completely regular.

References

- J. Ahsan, R. M. Latif, and M. Shabir, Fuzzy quasi-ideals of semigroups, J. Fuzzy Math. 2 (2001), 259 - 270.
- [2] M. Akram and K. H. Dar, On anti fuzzy left h-ideals in hemirings, International Math. Forum 46 (2007), 2295 - 2304.
- [3] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Sets and Systems 35 (1990), 121 - 124.
- [4] W. A. Dudek and Y. B. Jun, N-quasi-groups, Quasigroups and Related Systems 17 (2009), 29 – 38.
- [5] S. M. Hong and Y. B. Jun, On anti-fuzzy ideals in BCK-algebras, Kyungpook Math. J. 38 (1998), 145 – 150.
- [6] N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1 (1998), 27-32.
- [7] N. Kehayopulu, and M. Tsingelis, On the decomposition of prime ideals in ordered semigroups into their N-classes, Semigroup Forum 47 (1993), 393-395.
- [8] N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum 65 (2002), 128 - 132.
- M. Kondo and W. A. Dudek, On the Transfer Principle in fuzzy theory, Mathware Soft Comput. 12 (2005), 41 - 55.
- [10] J. N. Mordeson, D. S. Malik and N. Kuroki, *Fuzzy semigroups*, Studies in Fuzziness and Soft Computing 131, Springer-Verlag, Berlin, 2003.
- [11] M. Shabir and Y. Nawaz, Semigroups characterized by the properties of their anti-fuzzy ideals, J. Advanced Research Pure Appl. Math. (2008), 1–18.

Received September 02, 2010 Revised February 8, 2011

Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

E-mails: anwar55.ciit@yahoo.com (A. Zeb) azhar4set@yahoo.com (A. Khan)