A note on M-hypersystems and N-hypersystems in Γ-semihypergroups

Saleem Abdullah, Muhammad Aslam and Tariq Anwar

Abstract. In this paper, we have introduced the notions of M-hypersystem and N-hypersystem in Γ -semihypergroups, and some related properties are investigated. We have also proved that left Γ -hyperideal P of a Γ -semihypergroup S is quasi-prime if and only if $S \setminus P$ is an M-hypersystem.

1. Introduction

In 1986, Sen and Saha [3] defined the notion of a Γ -semigroup as a generalization of a semigroup. Recently, Davvaz, Hila and et. al. [1, 2] introduced the notion of Γ -semihypergroup as a generalization of a semigroup, a generalization of a semihypergroup and a generalization of a Γ -semigroup. The notion of a Γ -hyperideal of a Γ -semihypergroup was introduced in [1].

Let S and Γ be two non-empty sets. Then S is called a Γ -semihypergroup if every $\gamma \in \Gamma$ is a hyperoperation on S, i.e., $x\gamma y \subseteq S$ for every $x, y \in S$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$ we have $x\alpha(y\beta z) = (x\alpha y)\beta z$. Let S be a Γ -semihypergroup and $\gamma \in \Gamma$. A non-empty subset A of S is called a sub- Γ -semihypergroup of S if $x\gamma y \subseteq A$ for every $x, y \in A$. A Γ -semihypergroup S is called *commutative* if for all $x, y \in S$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$.

Example 1.1. Let S = [0, 1] and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma : S^2 \to P^*(S)$ by $x\gamma y = \left[0, \frac{xy}{\gamma}\right]$. Then γ is hyperoperation. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have $(x\alpha y)\beta z = \left[0, \frac{xyz}{\alpha\beta}\right] = x\alpha(y\beta z)$. Thus S is a Γ -semihypergroup. \Box

Example 1.2. Let (S, \circ) be a semihypergroup and Γ be a non-empty subset of S. We define $x\gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. Thus S is a Γ -semihypergroup.

²⁰¹⁰ Mathematics Subject Classification: 20N20, 20M17

Keywords: Γ-semihypergroups, quasi-semiprime, M-hypersystem, N-hypersystem.

Example 1.3. Let S = (0,1), $\Gamma = \{\gamma_n | n \in \mathbb{N}\}$ and for every $n \in \mathbb{N}$ we define hyperoperation γ_n on S as follows

$$x\gamma_n y = \left\{ \frac{xy}{2^k} \mid 0 \leqslant k \leqslant n \right\}$$

Then $x\gamma_n y \subset S$ and for every $m, n \in \mathbb{N}$ and $x, y, z \in S$

$$(x\gamma_n y)\gamma_m z = \left\{\frac{xyz}{2^k} \mid 0 \leqslant k \leqslant n+m\right\} = x\gamma_n \left(y\gamma_m z\right).$$

So, S is a Γ -semihypergroup.

A Γ -semihypergroup S is called *regular* if for all $a \in S$ and $\alpha, \beta \in \Gamma$ there exists $x \in S$ such that $a \in a\alpha x\beta a$.

A non-empty subset A of S is a left (right) Γ -hyperideal of S if $A\Gamma S \subseteq A$ ($S\Gamma A \subseteq A$). A Γ -hyperideal is both a left and right Γ -hyperideal.

A left Γ -hyperideal P is quasi-prime if for any left Γ -hyperideals A and B such that $A\Gamma B \subseteq P$ it follows $A \subseteq P$ or $B \subseteq P$.

A left Γ -hyperideal P is quasi-prime P is quasi-semiprime if any left Γ -hyperideal A from $A\Gamma A \subseteq P$ it follows $A \subseteq P$.

2. M-hypersystem and N-hypersystem

A Γ -semihypergroup S is called *fully* Γ -*hyperidempotent* if every Γ -hyperideal is idempotent.

Proposition 2.1. If S is Γ -semihypergroup and A, B are Γ -hyperideal of S, then the following are equivalent:

- (a) S is fully Γ -hyperidempotent,
- (b) $A \cap B = \langle A \Gamma B \rangle$,
- (c) the set of all Γ -hyperideals of S form a semilattice (L_S, \wedge) , where $A \wedge B = \langle A \Gamma B \rangle$.

Proof. $(a) \Rightarrow (b)$ Always hold $A\Gamma B \subseteq A \cap B$, for any Γ -hyperideals A and B of S. Hence $\langle A\Gamma B \rangle \subseteq A \cap B$.

Converse let $x \in A \cap B$. If $\langle x \rangle$ denote the principle left Γ -hyperideal generated by x, then $x \in \langle x \rangle = \langle x \rangle \Gamma \langle x \rangle \subseteq \langle A \Gamma B \rangle$. Thus $x \in \langle A \Gamma B \rangle$. Therefore $A \cap B \subseteq \langle A \Gamma B \rangle$, which proves (b).

 $(b) \Rightarrow (c) \quad A \land B = \langle A \Gamma B \rangle = A \cap B = B \cap A = \langle B \Gamma A \rangle = B \land A.$

 $(c) \Rightarrow (b)$ Let (L_S, \wedge) be a semilattice. Then $A = A \wedge A = \langle A \Gamma A \rangle = A \Gamma A$. Hence S is fully Γ -hyperidempotent.

Corollary 2.2. If Γ -semihypergroup S is regular, then $S = S\Gamma S$.

A subset M of Γ -semihypergroup S is called an M-hypersystem if for all $a, b \in M$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a\alpha x\beta b \subseteq M$.

A subset N of Γ -semihypergroup S is called an N-hypersystem if for all $a \in N$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a\alpha x\beta a \subseteq N$.

Obviously, each M-hypersystem is an N-hypersystem.

Example 2.3. The set $S_i = (0, 2^{-i})$, where $i \in \mathbb{N}$, is an M-hypersystem of a Γ -semihypergroup S defined in Example 1.3. The set $T_i = (0, 4^{-i})$, where $i \in \mathbb{N}$, is its an N-hypersystem of S.

Example 2.4. The set T = [0, t], where $t \in [0, 1]$, is an M-hypersystem and an N-hypersystem of a Γ -semihypergroup defined in Example 1.1.

Theorem 2.5. Let P be a left Γ -hyperideal of Γ -semihypergroup S. Then the following are equivalent:

- (1) P is a quasi-prime,
- (2) $A\Gamma B = \langle A\Gamma B \rangle \subseteq P \Rightarrow A \subseteq P \text{ or } B \subseteq P \text{ for all left } \Gamma\text{-hyperideals},$
- (3) $A \nsubseteq P$ or $B \nsubseteq P \Rightarrow A\Gamma B \nsubseteq P$ for all left Γ -hyperideals,
- (4) $a \notin P$ or $b \notin P \Rightarrow a\Gamma b \notin P$ for all $a, b \in S$,
- (5) $a\Gamma b \subseteq P \Rightarrow a \in P \text{ or } b \in P \text{ for all } a, b \in S.$

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) is straightforward.

(1) \Leftrightarrow (4) Let $\langle a \rangle \Gamma \langle b \rangle \subseteq P$. Then by (1) either $\langle a \rangle \subseteq P$ or $\langle b \rangle \subseteq P$, which implies that either $a \in P$ or $b \in P$.

(4) \Rightarrow (2) Let $A\Gamma B \subseteq P$. If $a \in A$ and $b \in B$, then $\langle a \rangle \Gamma \langle b \rangle \subseteq P$, now by (4) either $a \in P$ or $b \in P$, which implies that either $A \subseteq P$ or $B \subseteq P$.

(1) \Rightarrow (5) Let *P* be a left Γ -hyperideal of Γ -semihypergroup *S* and $a\Gamma S\Gamma b \subseteq P$. Then, by (2), (3) and (1), we get $S\Gamma(a\Gamma S\Gamma b) \subseteq S\Gamma P \subseteq P$, that is, $S\Gamma(a\Gamma S\Gamma b) = (S\Gamma a)\Gamma(S\Gamma b)$. Thus, $(S\Gamma a)\Gamma(S\Gamma b) \subseteq P$ implies either $S\Gamma a \subseteq P$ or $S\Gamma b \subseteq P$.

Since $S\Gamma a$ and $S\Gamma b$ are left Γ -hyperideals, for $L(a) = (a \cup S\Gamma a)$ we have

$$L(a) \Gamma L(a) \Gamma L(a) = (a \cup S\Gamma a) \Gamma(a \cup S\Gamma a) \Gamma(a \cup S\Gamma a)$$
$$\subseteq a\Gamma a \cup a\Gamma S\Gamma a \cup S\Gamma a\Gamma a \cup \subseteq S\Gamma a\Gamma S\Gamma a\Gamma a \cup S\Gamma a$$
$$\subseteq S\Gamma a \subseteq P.$$

Hence $L(a) \Gamma L(a) \Gamma L(a) = (L(a) \Gamma L(a)) \Gamma L(a) \subseteq P$. Since P is quasiprime and $L(a) \Gamma L(a)$ is a left Γ -hyperideal of S we have $L(a) \Gamma L(a) \subseteq P$

171

or $L(a) \subseteq P$. If $L(a) \subseteq P$, then $a \in L(a) \subseteq P$. Let $L(a) \Gamma L(a) \subseteq P$. Since P is quasi-prime, $L(a) \subseteq P$. Thus, $a \in L(a) \subseteq P$, i.e., $a \in P$.

 $(5) \Rightarrow (1)$ Assume that $A\Gamma B \subseteq P$, wher A and B are left Γ -hyperideals of S such that $A \notin P$. Then there exist $x \in A$ such that $x \notin P$. Hence $x\Gamma S\Gamma y \subseteq A\Gamma S\Gamma B \subseteq A\Gamma B \subseteq P$ for all $y \in B$. Then, by (5), $y \in P$. \Box

Proposition 2.6. A left Γ -hyperideal P of Γ -semihypergroup S is quasiprime if and only if $S \setminus P$ is an M-hypersystem.

Proof. Let $S \setminus P$ be an M-hypersystem and $a\Gamma S\Gamma b \subseteq P$ for some $a, b \in S \setminus P$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a\alpha x\beta b \subseteq S \setminus P$. This implies that $a\alpha x\beta b \not\subseteq P$, which is a contradiction. Hence either $a \in P$ or $b \in P$.

Conversely, if P is quasi-prime and $x, y \in S \setminus P$, then for $z \in S$ and $\alpha, \beta \in \Gamma$ such that $x\alpha z\beta y \notin S \setminus P$ we haven $x\alpha z\beta y \subseteq P$, i.e., either $x \in P$ or $y \in P$. So, $S \setminus P$ is an M-hypersystem.

Proposition 2.7. A left Γ -hyperideal P of Γ -semihypergroup S is quasisemiprime if and only if $S \setminus P$ is an N-hypersystem.

Proof. Let $S \setminus P$ be an N-hypersystem and $a \Gamma S \Gamma a \subseteq P$ with $a \notin P$. Then $a \alpha x \beta b \subseteq S \setminus P$ for some $x \in S$ and $\alpha, \beta \in \Gamma$. Thus $a \alpha x \beta a \notin P$, which is a contradiction. Hence $a \in P$. The converse statement is obvious.

Theorem 2.8. Let S be Γ -semihypergroup and P a proper left Γ -hyperideal of S. Then the following are equivalent:

- (1) P is quasi-prime,
- (2) $a\Gamma M\Gamma b \subseteq P$ implies $a \in P$ or $b \in P$,
- (3) $S \setminus P$ is an M-system,
- (4) $S \setminus P$ is an N-system.

References

- S. M. Anvariyeh, S. Mirvakili, and B. Dawaz, On Γ-hyperideals in Γsemihypergroups, Carpathian J. Math. 26 (2010), 11-23.
- [2] D. Heidari, S. O. Dehkordi and B. Davvaz, Γ-semihypergroups and their properties, U.P.B. Sci. Bull., Series A, 72 (2010), 197 – 210.
- [3] M. K. Sen, and N. K. Saha, On Γ-semigroup, I, Bull. Cal. Math. Soc. 78 (1986), 180 - 186.

Received October 19, 2010

Department of Mathematics Quaid-i-Azam University, Islamabad 45320, Pakistan.