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Semi�elds in loop theory and in �nite geometry

Gábor P. Nagy

Abstract. This paper is a relatively short survey the aim of which is to present the
theory of semi�elds and the related areas of �nite geometry to loop theorists.

1. Introduction

The theory of �nite semi�elds is an area of mathematics where �nite geome-
try, group theory, �eld theory and algebra come together. There are several
good survey papers ([7], [13], [6]) and monographs ([11], [12]), old and new,
with di�erent foci. The present paper is yet another survey paper, with
mostly loop theoretic emphasis. We tried to collect some recent results and
explain the �nite geometric background such that the presentation could
be understood with a graduate level knowledge. We completely omitted
proofs, which certainly does not make the reading of the paper easier. We
suggest the reader to try to �gure out as much as he or she can, whereby
drawing pictures can be of great help.

2. Translations of a�ne planes

A quasigroup is a set Q endowed with a binary operation x ·y such that two
of the unknowns x, y, z ∈ Q determines uniquely the third in the equation
x · y = z. Loops are quasigroups with a unit element. The multiplication
tables of �nite quasigroups are Latin squares. The multiplication tables of
�nite loops are normalized Latin squares, that is, in which the �rst row and
column contain the symbols {1, . . . , n} in increasing order. The left and
right multiplication maps of a loop (Q, ·) are the bijections La : x 7→ a · x
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and Ra : x 7→ x ·a, respectively. These are precisely the permutations which
are given by the rows and columns of the corresponding Latin square. The
group generated by the left and right multiplication maps of a loop Q is the
multiplication group Mlt(Q).

Loops arise naturally in geometry when coordinatizing point-line inci-
dence structures, e.g., a�ne planes, cf. [7]. An a�ne plane consists of a set
P of points, a set L of lines and an incidence relation I ⊂ P ×L such that
the following axioms hold:

(A1) Two points are incident with a unique line.

(A2) Two lines are incident with at most one common point.

(A3) (Parallel axiom) For a given line ` and a point P there is a unique
line m such that PIm and ` ‖ m.

(A4) (Richness axiom) There are three points not incident with a common
line.

Concepts as parallelism, parallel class or collineation can be de�ned in the
same way as for Euclidean planes. The notion of a translation needs a bit
more attention. We say that a collineation is a translation if every line is
parallel to its image, and, the invariant lines form a parallel class. This
parallel class is called the direction of the translation.

In order to get familiar with the topic of translations, we suggest the
reader to work out the following project.

(1) Show that a translation is determined by the image of one point.
Conclude that a nontrivial translation has no �xed point. Show that
if the collineation α has no �xed point and each line ` is parallel to
its image `α, then α is a translation.

(2) Show that the translations of a given plane form a group. Show that
if the directions of the translations τ1, τ2 di�er, then the direction of
τ1τ2 di�ers from both.

In the sequel, let us denote by T the group of translations of a given a�ne
plane.

(3) Assume that T contains two translations with di�erent directions.
Show that T is an abelian group in which all nonidentical elements
have the same order. [Hint:Study the possible directions of τ−1

1 τ−1
2 τ1τ2

and τk
1 , τk

2 , (τ1τ2)k.]
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(4) Show that if the underlying plane is �nite and T contains two trans-
lations with di�erent directions, then T is an elementary abelian p-
group.

We remark that the conditions in (4) are neccesary, that is, there are
a�ne planes with translations in one direction only, whose group of trans-
lations is not abelian.

3. Translation planes and quasi�els

An a�ne plane with a transitive group of translations is called a translation
plane. Translation planes can be coordinatized by a �eld-like structure
called quasi�elds.
The setQ endowed with two binary operations +, · is called a quasi�eld, if

(Q1) (Q,+) is an abelian group with neutral element 0 ∈ Q,

(Q2) (Q \ {0}, ·) is a quasigroup,

(Q3) the right distributive law (x + y)z = xz + yz holds, and,

(Q4) for each a, b, c ∈ Q with a 6= b, there is a unique x ∈ Q satisfying
xa = xb + c.

It is easy to see that 0 ·x = x ·0 = 0 for all x ∈ Q. The right distributive
law implies that the right multiplication maps Ra are in Aut(Q,+), and, the
right multiplication group is a transitive group of automorphisms of (Q,+).
This is a very strong restriction if Q is �nite. Then, Q is an elementary
Abelian group of exponent p. The prime p is called the characteristic of Q
and the order of Q is pn. The right multiplication maps Ra are in GL(n, p).
Moreover, (Q2) and (Q3) imply that for all a, b ∈ Q, a 6= b, det(Ra−Rb) 6= 0,
which means that (Q4) is automatically ful�lled.

In a well known manner, a quasi�eld Q gives rise to a translation plane
by setting Q × Q as the point set and de�ning the lines by the equations
X = c and Y = Xm + b. Indeed, the translations have the form (x, y) 7→
(x + u, y + v) with �xed u, v ∈ Q. Conversely, any translation plane can be
coordinatized by a quasi�eld. Moreover, if two quasi�elds are isotopic then
they coordinatize isomorphic translation planes. However, the converse is
not true: It may well happen that two nonisotopic quasi�elds give rise to
isomorphic translation planes.



112 G. P. Nagy

The remark above implies that we can switch to isotopic copies of Q
without loosing any geometric information. In particular, we can, and in
the sequel we will, assume that Q∗ = Q \ {0} is a loop with unit element 1.

As we see, in loop theoretical terms, a �nite quasi�eld Q is the same
as a loop Q∗ whose right multiplication maps are linear maps of a �nite
dimensional vector space V over a �nite �eld F . Clearly, if F ′ is a sub�eld
of F then V can be considered as an F ′-space, as well. For us, the opposite
question is important: What is the largest �eld F such that V is an F -linear
space and the right multiplication maps are

a) F -linear,

b) F -semilinear maps?

Many constructions of quasi�elds are given in such a way that the right
translation maps are semilinear over a given �eld. However, if we start
from a general quasi�eld then it is easier to answer the linearity. Indeed,
by the right distributive law, the left nucleus

Nλ(Q) = {c ∈ Q | (cx)y = c(xy)}

of Q is a sub�eld of Q and the right translation maps are Nλ(Q)-linear
maps. In the geometric theory of quasi�elds,Nλ(Q) is called the kernel of
Q.

We close this section by making a closer look at the set Sr ={Rx | x ∈ Q}
of right multiplication maps of a quasi�eld Q. Assume that these maps are
linear over the �nite �eld Fq and Q is an Fq-linear space of dimension d.
By �xing a basis in Q, the maps Rx can be written as d× d matrices over
F . In the theory of loops, it is usual to look at Sr as a set of permutations
such that for Rx, Ry ∈ Sr (x 6= y), the permutation RxR−1

y is �xed point
free. For matrices, this means that for all z ∈ Q,

z 6= zRxR−1
y ⇐⇒ 0 6= z(Rx −Ry) ⇐⇒ 0 6= det(Rx −Ry).

In other words, a �nite quasi�eld of dimension d over the �eld Fq can be
equivalently given by the set Σ of d×d matrices over Fq, such that |Σ| = qd

and for any A,B ∈ Σ, A 6= B, det(A−B) 6= 0.
Let A be a d × d matrix, W = F2d

q vector space and de�ne the d-

dimensional subspace UA = {(x, xA) | x ∈ Fd
q} of W . Furthermore, de�ne

U∞ = {(0, x) | x ∈ Fd
q}. Put

Σ̃ = {UA | A ∈ Σ} ∪ {U∞}
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where Σ is the set of right multiplication maps of Q. Then,

a) for any A,B ∈ Σ, A 6= B, UA ∩ UB = UA ∩ U∞ = {(0, 0)}, and,

b) for any nonzero element (x, y) ∈ W there is a unique element of Σ̃
containing it.

These two properties say that Σ̃ form a partition of W into d-dimensional
subspaces. Such partitions are called spreads.

Conversely, any spread Σ̃ of W de�nes a quasi�eld. In order to see
this, choose two elements U0, U1 ∈ Σ̃. Since W = U0 ⊕ U1, we can de�ne
the projection maps π0 : W → U0 and π1 : W → U1. By the de�nion of
a spread, for any subspace V ∈ Σ̃, V ∩ ker πi = V ∩ U1−i = 0, thus, the
restrictions π̃i = πi|V are bijections V → Ui. In this way, any V ∈ Σ̃ de�nes
a linear isomorphism αV : U0 → U1 as presented by the following diagrams:

U0

W
�

��	

@
@@R

U1

π0 π1

U0
-

αV

V
�

��	

@
@@R

U1

π̃0 π̃1

When �xing a basis in U0 and U1, the matrices corresponding to the
linear maps αV , V ∈ Σ̃ \ {U0}, form the set of right translation maps of a
quasi�eld.

4. Semi�elds

From an algebraic point of view, quasi�elds satisfying both distributive laws
are of great importance. We de�ne a pre-semi�eld as a set S endowed with
two binary opertations (S, +, ·) such that

(S1) (S, +, 0) is an Abelian group,

(S2) (S \ {0}, ·) is a quasigroup, and,

(S3) the distributive laws x(y + z) = xy + xz, (x + y)z = xz + yz hold for
all x, y, z ∈ S.

If (S∗, · ) is a loop then (S, +, · ) is called a semi�eld. Semi�elds are
sometimes also called nonassociative division rings. We mention here that
in abstract ring theory, the notion semi�eld is used in a di�erent sense,
where the additive structure does not need to be a group.
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The link between semi�elds and translation planes is as follows. Let
Π be a translation plane coordinatized by the quasi�eld Q. Then, it is
straightforward to check that Q is a (pre-)semi�eld if and only for all ele-
ments a ∈ Q, the maps βa : (x, y) 7→ (x, y + xa) are collineations of Π. The
set {βa | a ∈ Q} forms a group isomorphic to (Q,+). This group acts regu-
larly on the set of lines of equation Y = Xm, m ∈ Q. One can equivalently
show that a spread Σ̃ of W corresponds to a semi�eld if and only if there is
a linear group of W which �xes an element of Σ̃ and acts regularly on the
rest. Such spreads are called semi�eld spreads.

Without going into the details, we mention that a translation plane is
coordinatized by a (pre-)semi�eld if and only if its dual plane is a translation
plane, too.

We now turn our attention to the algebraic properties of a �nite semi�eld
S. From this point of view, we have a �nite �eld Fq, an Fq-vector space S
of dimension d and two sets of Fq-linear transformations

Sr = {Rx | x ∈ S}, and S` = {Lx | x ∈ S},

namely, the sets of left and right multiplication maps on S.
As we have seen before, the �rst question is the appropriate choice of

the �eld Fq. That is, we look for the largest �eld F such that the left and
right multiplication maps are at least semilinear over F . The good news is
that for semi�elds, semilinearity implies linearity. This result of Grundhöfer
[10] is a generalization of the Cartan-Brauer-Hua theorem which says that
a proper normal subring of a skew�eld is contained in the center.

Proposition 4.1. Let S be a semi�eld such that S is an F -vector space of
�nite dimension d. Assume that the left and right multiplication maps are
semilinear over F . Then, they are linear over F .

This proposition implies that the center Z(S) is the largest �eld such
that the left and right multiplication maps are (semi)linear. In the sequel,
we will always consider S as a vector �eld over its center Fq = Z(S). The
dimension of S over Fq will be denoted by d.

In the rest of this section, we present some constructions of �nite semi-
�elds which will show some possibilities for d and q. We start with two easy
remarks.

1) A semi�eld cannot have dimension two over its center, that is, d > 3.

2) A semi�eld of order 8 is a �eld.
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Albert's generalized twisted �elds [1]. This is one of the oldest and
simplest construction for �nite semi�elds. Let F be the �nite �eld Fqd . Let

θ : x 7→ xqt
and σ : x 7→ xqs

be automorphisms of F and c ∈ F such that
c = xq−1 has no solution in F . De�ne the binary operation

x ◦ y = xy − cxθyσ.

Then, (F,+, ◦) is a pre-semi�eld, whose isotopic semi�eld is called Albert's
twisted �eld corresponding to the quadruple (q, s, t, c).

Theorem 4.2. ([1] Theorem 1) Let 1 6= s 6= t 6= 1. Then the right nucleus
of T = T (qd, s, t, c) is Fqs and the left nucleus of T is Fqt. The middle

nucleus consists of the elements x ∈ Fqn with xqs
= xqt

.

The following result was conjectured by Kaplansky and proved by Meni-
chetti.

Theorem 4.3. ([15]) Any three-dimensional semi�eld over a �nite �eld is
associative or a twisted �eld.

Knuth's binary semi�elds. The following construction by Knuth [14]
gives a commutative semi�eld. Let T : F2nm → F2m be a map which is
linear over the sub�eld F2m . De�ne the multiplication

x ◦ y = xy + (T (a)b + aT (b))2.

Then (F2nm,+, ◦) is a commutative pre-semi�eld and the isotope (F2nm,+, ∗)
de�ned by

(1 ◦ x) ∗ (1 ◦ x) = x ◦ y

is a commutative semi�eld with multiplicative unit 1.

The Cohen-Ganley commutative semi�elds. Let q be an odd prime
power. We say that the maps f, g : Fqn → Fqn form a Cohen-Ganley pair if

(CG1) they are Fq-linear, and

(CG2) g(t)2 + 4tf(t) is a non-square for all t ∈ Fqn .

Put S = Fqn × Fqn , and de�ne the multiplication

(x1, y1) · (x2, y2) = (x1x2 + g(y1y2), x1y2 + x2y1 + f(y1y2)). (1)

Then the following hold.
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Theorem 4.4. ([5])

(1) (S, +, ·) is a commutative semi�eld which has dimension two over its
middle nucleus if and only if f, g form a Cohen-Ganley pair.

(2) Conversely, any commutative semi�eld of dimension two over its mid-
dle nucleus can be given the form (1).

(3) There is no proper commutative semi�eld of even order which is of
dimension two over its middle nucleus.

There are not many examples for Cohen-Ganley pairs f, g. Let m ∈ Fqn

be a non-square.

(1) The example f(t) = mt, g(t) = 0 gives rise to a �eld.

(2) The example f(t) = mtq
s
, g(t) = 0 gives a semi�eld which was �rst

discovered by Dickson [8].

(3) There is an in�nite class of examples in characteristic three due to
Cohen and Ganley [5].

(4) The last known construction is a sporadic example f(t) = t9, g(t) =
t27 for qn = 35 due to Bader, Lunardon and Pinneri [2].

Knuth's cubical arrays. Let (S, +, ·) be a pre-semi�eld of dimension d
over its center F . If {e1, . . . , ed} is an F -basis in S, then via the formula

ei · ej =
∑

k

aijkek,

the multiplication in S determines the structure constants aijk ∈ F . The
cubical array (aijk) was introduced and studied by Knuth [13]. Moreover,
Knuth observed that if (aijk) determines a pre-semi�eld then so does each
such array obtained by applying any permutation in S3 to the subscripts of
the array. Thus, each pre-semi�eld produces as many as six pre-semi�elds.
The geometric and algebraic connection between these six pre-semi�eld is
not completely understood yet.
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5. On the multiplication group of �nite semi�elds

In this section, we investigate the structure of the multiplication group of
semi�elds. It will turn out that this question is strongly related to the
study of �nite loops whose multiplication group is a classical projective
linear group.

The �rst result is an immediate consequence of the de�nitions and the
generalized Cartan-Brauer-Hua theorem.

Proposition 5.1. Let S∗ be the multiplicative loop of a �nite semi�eld
S with Fq = Z(S). Then, the nucleus of S∗ equals to the center of S∗.
Moreover, Z(S∗) is cyclic and Mlt(S∗) is a transitive subgroup of GL(d, q)
where d > 3.

The �nite transitive linear groups are known, their classi�cation is a
corollary of the Classi�cation Theorem of �nite simple groups. Using this
classi�cation, some constructions, and results of Vesanen on multiplication
groups of �nite loops, one has the following result.

Theorem 5.2. ([16] Propositions 2.2 and 2.3)

(1) Let S be a �nite semi�eld of dimension d over its center Fq. Let
G be the multiplication group of the multiplicative loop S∗. Then,
SL(d, q) 6 G 6 GL(d, q).

(2) Let d > 3 be an integer and q a prime power such that qd > 8. Then,
there is a semi�eld S such that the multiplication group G of S∗ sat-
is�es SL(d, q) 6 G 6 GL(d, q).

(3) For any integer d > 3 and prime power qd > 8, there is a loop Q such
that PSL(d, q) 6 Mlt(Q) 6 PGL(d, q).

The last statement of the theorem gives a general a�rmative answer to
Drápal's problem [4, Problem 398]. Furthermore, this results pose two more
questions in a natural manner.

The �rst question asks about the converse of part (3): If Q is a �nite
loop such that PSL(d, q) 6 Mlt(Q) 6 PGL(d, q), then Q = S∗/Z(S∗) for
some semi�eld S? The second question is about the case when the equality
PSL(n, q) = Mlt(Q) holds? The latter is related to the more general
problem of classifying �nite simple groups which occur as multiplication
groups of loops.
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The following lemma answers the �rst question in the a�rmative and
can be useful for answering the second question, as well. The proof of this
lemma is basically contained in the proof of [18, Theorem S].

Lemma 5.3. ([16] Proposition 2.3) Let Q be a �nite loop such that Mlt(Q)
6 PGL(d, q) with d > 3. Then there is a semi�eld S of dimension d over
its center Fq such that Q ∼= S∗/Z(S∗).

Concerning classical linear groups as multiplication groups of loops, the
following results by Vesanen and Drápal are important.

Theorem 5.4. ([18] Theorem S) Let G = PSp(n, q) be the symplectic group
acting on the set Ω of the points of the corresponding projective space and
let Q be a loop de�ned on Ω such that Mlt(Q) 6 G. Then, n = 2 and Q is
an Abelian group.

Theorem 5.5. ([18] Theorem U) Let G be one of the following groups:

(1) PGU(n, q), where n > 6,

(2) PO(n, q), where n is odd and n > 7, or

(3) POε(n, q), where n is even and n > 7− ε

acting on the set Ω of the isotropic points of the corresponding projective
space. Then there exists no loop Q de�ned on Ω such that Mlt(Q) 6 G.

Theorem 5.6. ([9]) If Q is a loop of order at least 5, and Mlt(Q) 6
PΓL(2, q) then Q is an Abelian group.

6. Semi�eld �ocks

In the last section we give a survey on the results by Ball, Blokhuis and
Lavrauw [3] on semi�eld �ocks. Let q be an odd prime power and denote by
PG(3, qn) the projective space of dimension 3 over the �eld Fqn . The points
of PG(3, qn) are homogenous quadruples 〈x0, x1, x2, x3〉 and the subspaces
(lines and planes) are given by homogenous linear equations.

Fix a plane Π and a point V 6∈ Π. Take a non-degenerate conic C in
Π and de�ne the cone K with base C as the union of the lines connecting
V and the points of K. Simple counting shows that |C| = qn + 1 and
|K| = q2n + qn + 1. Any plane not incident with V intersects the cone in
a non-degenerate conic. A �ock F of K is a partition of K \ {V } into qn
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conics. If all the planes that contain a conic of the �ock share a line then
the �ock is called linear.

Up to a change of the system of homogenous coordinates, we can assume
that V = 〈0, 0, 0, 1〉, Π : X3 = 0 and the conic C is given by the equation
X0X1 = X2

2 . The point U = 〈1, 0, 0, 0〉 is in C, hence, the line ` = UV ⊂ K.
The points of ` \ {V } have the form 〈1, 0, 0, t〉, where t ∈ Fqn , and any such
point is contained in a unique plane of the �ock F . Let us denote by Πt

the plane containing 〈1, 0, 0, t〉, the equation of Πt is

Πt : tX0 − f(t)X1 + g(t)X2 + X3 = 0,

where g, f : Fqn → Fqn . This �ock is denoted by F(f, g). If the maps f, g
preserve the addition, in other words they are linear over a sub�eld, then
the �ock is called a semi�eld �ock.

Let F = F(f, g) be a semi�eld �ock of K. A standard calculation shows
that

Πt ∩ K = {〈u2, v2, uv,−tu2 + f(t)v2 − g(t)uv〉 | u, v ∈ Fqn}.

Substituting this in the equation of Πs, s 6= t, we obtain

0 = (s− t)u2 − (f(s)− f(t))v2 + (g(s)− g(t))uv

= (s− t)u2 − f(s− t)v2 + g(s− t)uv.

As the �ock property is equivalent with Πt ∩ Πs ∩ K = ∅, the quadratic
equation (s− t)u2 − f(s− t)v2 + g(s− t)uv = 0 has no non-trivial solution
in Fqn for u, v, that is, the discriminant g(s− t)2 +4f(s− t) is a non-square
for all s, t. This proves the following proposition.

Proposition 6.1. The following are essentially the same:

(a) Cohen-Ganley pairs.

(b) Commutative semi�elds of dimension two over their middle nucleus.

(c) Semi�eld �ocks.

The semi�eld �ock corresponding to the Cohen-Ganley pair f(t) = mtq
s
,

g(t) = 0 is called the Kantor-Knuth �ock.

Theorem 6.2. ([17]) If the planes of the semi�eld �ock all share a common
point, then the �ock is either linear (in which case they share a line) or a
Kantor-Knuth semi�eld �ock.
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Let f, g : Fqn → Fqn be a Cohen-Ganley pair which is linear over Fq and
consider the set

W = {At = 〈t,−f(t), g(t)〉 | t ∈ Fqn}

of points of the projective plane PG(2, qn).
A non-degenerate quadratic form is either always a square on the exter-

nal points of the conic it de�nes (points incident with tangents to the conic)
and a non-square on the internal points (points not incident with a tangent)
or the other way around. The quadratic form Q(X0, X1, X2) = X2

2 +4X0X1

is a square on all external points to the conic C′ : X2
2 +4X0X1 since 〈0, 0, 1〉

is incident with a tangent and Q(0, 0, 1) = 1. Therefore it is a non-square
on the internal points which implies that all points ofW are internal points
of C′.

If W is contained in the line of equation α0X0 + α1X1 + α2X2 = 0
then all planes Πt share the common point 〈α0, α1, α2, 0〉, and by Theorem
6.2, the semi�eld �ock is either linear or of Kantor-Knuth type. Assume
that this is not the case. Then, there are values t0, t1, t2 ∈ Fqn such that
At0 , At1 , At2 are linearly independent over Fqn . By the Fq-linearity of the
Cohen-Ganley pair f, g, we have

λ0At0 + λ1At1 + λ2At2 = Aλ0t0+λ1t1+λ2t2 ∈ W

for all λ0, λ1, λ2 ∈ Fq. In other words, W contains a subplane of degree q.

Now, this is a problem in �nite geometry which is interesting in its own:
For which parameters q and n are the subplanes of PG(2, qn) of order q,
which consists of interal points of a �xed conic? The answer was given by
Blokhuis, Lavrauw and Ball:

Theorem 6.3. ([3] Theorem 3.1) If there is a subplane of order q contained
in the internal points of a nondegenerate conic C in PG(2, qn) then q <
4n2 − 8n + 2.

This implies:

Corollary 6.4. ([3] Theorem 1.1) Let S be a commutative semi�eld of
rank 2n over Fq, q odd, and of rank 2 over its middle nucleus Fqn. If
q > 4n2 − 8n + 2 then S is either a Dickson semi�eld or a �eld.
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