Quasi union hyper K-algebras

Mohammad A. Nasr-Azadani and Mohammad M. Zahedi

Abstract

We give a method of construction of a hyper K-algebra on a set of order α , where α is a fixed cardinal number. Then we introduce the notion of quasi union hyper K-algebra and prove that any quasi union hyper K-algebra is implicative and whenever $0 \circ 0 = \{0\}$, it is strong implicative hyper Kalgebra. Also a quasi union hyper K-algebra is positive implicative if and only if it is a hyper BCK-algebra. Finally we prove that any hyper Kalgebra $H \stackrel{\mathbb{C}}{=} \bigoplus_{i \in \Lambda} A_i$ (closed set), where $|A_i| = 2$ under some conditions is a quasi union hyper K-algebra or a quasi union hyper BCK-algebra.

1. Introduction

The study of BCK-algebra was initiated by Imai and Iséki [6] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi. The hyper structure theory (called also multi algebras) was introduced in 1934 by Marty [8] at the 8th congress of Scandinavian Mathematicians. Hyper structures have many applications to several sectors of both pure and applied sciences. Borzooei, et.al. [4, 7] applied the hyper structure to BCK-algebras and introduced the concept of hyper BCKalgebra and hyper K-algebra in which, each of them is a generalization of BCK-algebra. Borzooei and Harizavi [3] introduced a decomposition for a hyper BCK-algebra. Nasr-Azadani and Zahedi [9] study S-absorbing (P)decomposable hyper K-algebras as a generalization of decomposition for hyper BCK-algebras. Now, we follow [9] and obtain some results as mentioned in the abstract.

²⁰⁰⁰ Mathematics Subject Classification: $06\mathrm{F}35,\,03\mathrm{G}25$

Keywords: S-absorbing set, (P)-decomposition, (P)-closed union, positive implicative hyper K-algebra, quasi union hyper K-algebra.

2. Preliminaries

Let *H* be a non-empty set, the set of all non-empty subset of *H* is denoted by $\mathcal{P}^*(H)$. A hyperoperation on *H* is a map $\circ : H \times H \to \mathcal{P}^*(H)$, where $(a,b) \to a \circ b$ for all $a, b \in H$. A set *H*, endowed with a hyperoperation, " \circ ", is called a hyperstructure. If $A, B \subseteq H$, then $A \circ B = \bigcup_{a \in A, b \in B} a \circ b$.

Definition 1. [4, 7] Let H be a non-empty set containing a constant "0" and " \circ " be a hyperoperation on H. Then H is called a *hyper K-algebra* (*hyper BCK-algebra*) if it satisfies K1 – K5 (respectively: HK1 – HK4).

K1:	$(x \circ z) \circ (y \circ z) < x \circ y,$	HK1:	$(x \circ z) \circ (y \circ z) \ll x \circ y,$
K2:	$(x \circ y) \circ z = (x \circ z) \circ y,$	HK2:	$(x \circ y) \circ z = (x \circ z) \circ y,$
K3:	x < x,	HK3:	$x \circ H \ll x,$
K4:	x < y, y < x, then $x = y$,	HK4:	$x \ll y, y \ll x$, then $x = y$,
K5:	0 < x		

for all $x, y, z \in H$, where x < y $(x \ll y)$ means $0 \in x \circ y$. Moreover for any $A, B \subseteq H$, A < B if $\exists a \in A, \exists b \in B$ such that a < b and $A \ll B$ if $\forall a \in A, \exists b \in B$ such that $a \ll b$.

For briefly the readers could see some definitions and results about hyper K-algebra and hyper BCK-algebra in [4, 7]. In the sequel H always denotes a hyper K-algebra. If $I \subset H$, then $I' = H \setminus I$ and $I^* = I' \cup \{0\}$.

Definition 2. [5] An element $b \in H$ is called a *left (right) scalar* if $|b \circ x| = 1$ $(|x \circ b| = 1)$ for all $x \in H$. An element is called *scalar* if it is a left and a right scalar.

Theorem 1. [10] Let $(H_i, \circ_i, 0)$, $i \in \Omega$ be a family of hyper K-algebras such that $H_i \cap H_j = \{0\}, i \neq j \in \Omega$, 0 be a left scalar in each $H_i, i \in \Omega$, $H = \bigcup_{i \in \Omega} H$ and " \circ " on H is defined as follows:

$$x \circ y := \begin{cases} x \circ_i y & \text{if } x, y \in H_i, \\ \{x\} & \text{if } x \in H_i, y \notin H_i. \end{cases}$$

Then $(H, \circ, 0)$ is hyper K-algebra denoted by $H = \bigoplus_{i \in \Omega} H_i$.

Definition 3. [1, 2] A hyper K-algebra H is called

(i) weak implicative if $x < x \circ (y \circ x)$,

- (*ii*) *implicative* if $x \in x \circ (y \circ x)$,
- (*iii*) strong implicative if $x \circ 0 \subseteq x \circ (y \circ x)$,

(iv) positive implicative if $(x \circ y) \circ z = (x \circ z) \circ (y \circ z)$

holds for all $x, y, z \in H$.

Definition 4. [9, 4, 11] A non-empty subset I of H is said to be *closed* if x < y and $y \in I$ imply $x \in I$, and it is said to be a *hyper K-ideal* of H if $x \circ y < I$ and $y \in I$ imply $x \in I$.

Theorem 2. [9] Any hyper K-ideal of H is closed.
$$\Box$$

Definition 5. [9] Let I and S be non-empty subsets of H. Then we say that I is *S*-absorbing if $x \in I$ and $y \in S$ imply $x \circ y \subseteq I$. In the case S = I' or $S = I^*$ we say that I is *C*-absorbing or C^* -absorbing, respectively.

Theorem 3. [9] Let H be a hyper BCK-algebra and I be a hyper BCK-ideal or closed set. Then I is H-absorbing.

Definition 6. [9] A hyper K-algebra H is called (P)-decomposable if there exists a non-trivial family $\{A_i\}_{i\in\Lambda}$ of subsets of H with P-property such that $H \neq \{A_i\}$ for all $i \in \Lambda$, $H = \bigcup_{i\in\Lambda} A_i$ and $A_i \cap A_j = \{0\}, i \neq j$.

In this case, we write $H = \bigoplus_{i \in \Lambda} A_i(\mathbf{P})$ and say that $\{A_i\}_{i \in \Lambda}$ is a (P)decomposition for H. If each A_i , $i \in \Lambda$, is S-absorbing we write $H \stackrel{\text{S}}{=} \bigoplus_{i \in \Lambda} A_i(\mathbf{P})$. Moreover, we say that this decomposition is *closed union*, in short (P)-CUD, if $\bigcup_{i \in \Delta} A_i$ has P-property for any non-empty subset Δ of Λ . If there exists a (P)-CUD for H, then we say that H is a (P)-CUD.

Theorem 4. [9] Let $H \stackrel{\text{H}}{=} A \oplus B$. Then 0 is a left scalar element.

Theorem 5. [9] Let $H \stackrel{C^*}{=} \oplus_{i \in \Lambda} A_i(hyper \ K\text{-}ideal)$. Then H is $(hyper \ K\text{-}ideal)$ -CUD and $H \stackrel{C^*}{=} I \oplus I^*(hyper \ K\text{-}ideal)$, where $I = \bigcup_{i \in \Delta} A_i$ for any non-empty subset Δ of Λ .

Theorem 6. [10] Let $(H, \circ, 0)$ be a hyper BCK-algebra. Then $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-algebra) if and only if $H = \bigoplus_{i \in \Omega} H_i$ (hyper BCK-ideal).

3. Quasi union hyper K-algebra

In this section we give a method to construct a hyper K-algebra of order α where α is a given cardinal number. Also we introduce the concept of quasi union hyper K-algebra and investigate some properties of it.

Remark 1. Let H be a set containing "0", $\mathcal{P}_0(H) = \{A \subseteq H : 0 \in A\}$ and $\mathcal{S} = \{f | f : H \to \mathcal{P}_0(H) \text{ is a function}\}$. For convenience we use F^x instead of f(x) for any $f \in \mathcal{S}$. Clearly $\mathcal{S} \neq \emptyset$, because the functions $f, g : H \to \mathcal{P}_0(H)$, where $f(x) = \{0\}$ and $g(x) = \{0, x\}$ for all $x \in H$, are members of \mathcal{S} .

Theorem 7. Let $H = X \cup \{0\}$, where X is a non-empty set. Then for any $f \in S$ we can define the hyperoperation $\circ_f : H \times H \longrightarrow \mathcal{P}^*(H)$ by putting:

$$x \circ_f y := \begin{cases} F^x & \text{if } x = y, \\ \{x\} & \text{otherwise} \end{cases}$$

Moreover, the following statements are equivalent

- (i) $(H, \circ_f, 0)$ is a hyper K-algebra,
- (ii) $F^x \circ_f y = F^x$ for all $y \neq x, y \in H$,
- (iii) $x \neq y$ and $y \in F^x$ imply $y \in F^y$ and $F^y \subseteq F^x$.

Proof. By Remark 1, u = v implies $f(u) = F^u = f(v) = F^v$. This yields that " \circ_f " is well-defined and hence it is a hyperoperation on H.

 $(i) \Rightarrow (ii)$. Let $(H, \circ_f, 0)$ be a hyper K-algebra and $y \neq x, y \in H$. Then by definition of " \circ_f " and K2 we have:

$$F^x \circ_f y = (x \circ_f x) \circ_f y = (x \circ_f y) \circ_f x = (x \circ_f x) = F^x.$$

 $(ii) \Rightarrow (i)$. To do this, we show that H satisfies K1 – K5. Since $0 \in F^x = x \circ_f x$, hence x < x for all $x \in H$ and K3 holds. Moreover by definition of \circ_f we have $0 \circ_f x = \{0\}$ for all $x \neq 0$, that is 0 < x. Thus K5 holds.

To check K1, K2 and K4, we consider the following five cases: (I) $x \neq y, x \neq z$ and $y \neq z$, (II) $x = y \neq z$, (III) $x = z \neq y$, (IV) $x \neq y = z$, (V) x = y = z.

K1: $(x \circ_f z) \circ_f (y \circ_f z) < x \circ_f y.$

For convenience, we put $(x \circ_f z) \circ_f (y \circ_f z) = A$ and $x \circ_f y = B$. If (I) holds, then $A = \{x\} = B$ and by K3, A < B. If (II) holds, then $A = F^x = B$, therefore A < B. If (III) holds, then by (ii), $A = F^x \circ_f y = F^x$ and $B = \{x\}$. Since $0 \in F^x$ and K5 holds, then A < B. If (IV) holds, then $A = x \circ_f F^y$ and $B = \{x\}$. Since $0 \in F^y$ and K3 holds, thus $x \in x \circ_f 0 \subseteq x \circ_f F^y$ and it yields that A < B. If (V) holds, then $A = F^x \circ_f F^x$ and $B = F^x$. Since $0 \in F^x$ and K5 holds, then A < B. Therefore K1 holds in all cases.

K2: $(x \circ_f y) \circ_f z = (x \circ_f z) \circ_f y$.

We put $A = (x \circ_f y) \circ_f z$ and $B = (x \circ_f z) \circ_f y$ and show that A = Bfor all cases (I) – (V). If (I) holds, then $A = \{x\} = B$. If (II) holds, then by (*ii*) we have $A = F^x \circ_f z = F^x$ and $B = F^x$, so A = B. If (III) holds, similar to the proof of case (II) we have A = B. If (IV) holds, then $A = \{x\} = B$. If (V) holds, then A = B. Finally we show that K4 holds, i.e., x < y, $y < x \Rightarrow x = y$. Suppose x < y, y < x and $x \neq y$. Then we have $0 \in x \circ_f y = \{x\}$ and $0 \in y \circ_f x = \{y\}$. Hence x = y = 0 which is a contradiction to $x \neq y$. Thus $(H, \circ_f, 0)$ is hyper K-algebra.

 $(ii) \Rightarrow (iii)$. Let $y \neq x$ and $y \in F^x$. Then, according to the definition, $u \circ_f y = \{u\}$ where $u \neq y$. Therefore

$$F^{x} \circ_{f} y = \bigcup_{u \neq y, u \in F^{x}} (u \circ_{f} y) \cup y \circ y = (F^{x} - \{y\}) \cup F^{y}.$$
(1)

By (ii), $F^x \circ_f y = F^x$. So equality (1) yields that $y \in F^y$ and $F^y \subseteq F^x$, that is, (iii) holds.

 $(iii) \Rightarrow (ii)$. Suppose $x \neq y$. We consider two cases (a): $y \notin F^x$ and (b): $y \in F^x$. If (a) holds, then $u \neq y$ for all $u \in F^x$. Thus by definition of \circ_f we have $F^x \circ_f y = F^x$, hence (ii) holds. If (b) holds, then by equality (1) and hypothesis $(F^y \subseteq F^x)$ we get that $F^x \circ_f y = F^x$. \Box

Definition 7. The hyperoperation and hyper K-algebra which have been introduced in Theorem 7 are called a *quasi union hyper operation* and a *quasi union hyper K-algebra*, respectively.

Corollary 1. For any set X such that $0 \notin X$ and $f(x) \in \{\{0\}, \{0, x\}\}$ for all $f \in S$ and $x \in H$ there is a quasi union hyper K-algebra on $H = X \cup \{0\}$ with the hyperoperation defined as follows:

$$x \circ y := \begin{cases} F^x = \{0\} \text{ or } F^x = \{0, x\} & \text{if } x = y \\ \{x\} & \text{otherwise.} \end{cases}$$

Proof. Since $F^x \circ y = F^x$, for all $x \neq y \in H$, thus by Theorem 7 (*ii*) and Definition 7, $(H, \circ, 0)$ is a quasi union hyper K-algebra.

Example 1. Let $X = \{1, 2\}$. Then according to Corollary 1, each of the following tables are quasi union hyper K-algebra on $H = \{0, 1, 2\}$.

C)1	0	1		2	_	0	2	0	1	2
	0	{0}	{0	} .	{0}			0	{0}	{0}	{0}
	$\begin{array}{c} 1 \\ 2 \end{array}$	$\{1\}$ $\{2\}$	$\{0\\ \{2$	} · } ·	$\{1\}$ $\{0\}$			$\begin{array}{c c}1\\2\end{array}$	$\{1\}\ \{2\}$	$\{0,1\}\$ $\{2\}$	$\{1\}$ $\{0\}$
°3		0	1	2			 \mathbf{b}_4		0	1	2
0	{	0}	{0}	{0	}		0	{($],1\}$	{0}	{0}
$\frac{1}{2}$	{	1} 2}	$\{0\}$ $\{2\}$	$\{1\\\{0,$	2		$\begin{array}{c c}1\\2\end{array}$	{	$\{1\}$ $\{2\}$	$\{0,1\}\ \{2\}$	$\{1\}\ \{0,1,2\}$

Corollary 2. Let H be a quasi union hyper K-algebra and $x \neq y$. If $y \in F^x$ and $x \in F^y$, then $F^y = F^x$.

The proof follows from Theorem 7 (iii).

4. Some results on quasi union hyper K-algebras

Theorem 8. Let H be a quasi union hyper K-algebra. Then the following statements are equivalent:

- (i) H is positive implicative hyper K-algebra,
- (*ii*) $F^x = \{0\}$ or $F^x = \{0, x\}$ for all $x \in H$,
- (iii) H is a hyper BCK-algebra.

Proof. $(i) \Rightarrow (ii)$. Let H be positive implicative, i.e., $(x \circ y) \circ z = (x \circ z) \circ (y \circ z)$ for all $x, y, z \in H$ and $u \in F^x$. If $u \neq x$, since $(u \circ x) \circ x = (u \circ x) \circ (x \circ x)$ we get that $\{u\} = \{u\} \circ (x \circ x)$. From $u \in F^x = x \circ x$, we conclude that $0 \in \{u\} \circ (x \circ x) = \{u\}$. So u = 0 and $F^x = \{0\}$ or $F^x = \{0, x\}$ for all $x \in H$.

 $(ii) \Rightarrow (i)$. Suppose $F^x = \{0\}$ or $F^x = \{0, x\}$ for all $x \in H$. We show that H is a positive implicative hyper K-algebra, i.e., H satisfies the following identity:

$$(x \circ y) \circ z = (x \circ z) \circ (y \circ z).$$
⁽²⁾

We prove it by considering the following cases: (I) $x \circ x = \{0\}$, (II) $x \circ x = \{0, x\}$. CASE 1. $x \neq y, x \neq z, y \neq z$.

CASE 1. $x \neq y, \ x \neq z, \ y \neq z$.

$$(x \circ y) \circ z = \{x\} \circ z = \{x\}$$
 and $(x \circ z) \circ (y \circ z) = \{x\} \circ \{y\} = \{x\}$

CASE 2. $x = y \neq z$. If (I) holds, then

$$(x \circ y) \circ z = \{0\} \circ z = \{0\}$$
 and $(x \circ z) \circ (y \circ z) = \{x\} \circ \{x\} = \{0\}$

If (II) holds, then

$$(x \circ y) \circ z = \{0, x\} \circ z = \{0, x\}$$
 and $(x \circ z) \circ (y \circ z) = \{x\} \circ \{x\} = \{0, x\}.$

CASE 3. $x = z \neq y$. By K2 and the proof of Case 2, (2) holds. CASE 4. $x \neq y = z$. By considering $F^0 = 0 \circ 0 = \{0\}$, if (I) holds then

$$(x \circ y) \circ z = \{x\} \circ z = \{x\}$$
 and $(x \circ z) \circ (y \circ z) = \{x\} \circ \{0\} = \{x\}$.

If (II) holds, then

$$(x \circ y) \circ z = \{x\} \circ z = \{x\}$$
 and $(x \circ z) \circ (y \circ z) = \{x\} \circ \{0, y\} = \{x\}$.

CASE 5. x = y = z. By considering $F^0 = 0 \circ 0 = \{0\}$, if (I) holds then

$$(x \circ y) \circ z = \{0\} \circ x = \{0\}$$
 and $(x \circ z) \circ (y \circ z) = \{0\} \circ \{0\} = \{0\}.$

If (II) holds, then $(x \circ y) \circ z = \{0, x\} \circ x = \{0, x\}$ and $(x \circ z) \circ (y \circ z) = \{0, x\} \circ \{0, x\} = \{0, x\}$. These cases imply that the identity (2) is satisfied, thus H is a positive implicative hyper K-algebra.

 $(ii) \Rightarrow (iii)$. Let $F^x = \{0\}$ or $F^x = \{0, x\}$ for all $x \in H$. We show that H is a hyper BCK-algebra. To do this, since each hyper K-algebra satisfies HK2 and HK4, it is sufficient to prove H satisfies HK1 and HK3. Now we show that HK1 holds, i.e., $(x \circ z) \circ (y \circ z) \ll x \circ y$ for all $x, y \in H$. We prove it by considering the following cases:

(I)
$$x \circ x = \{0\},$$
 (II) $x \circ x = \{0, x\}.$

CASE 1. $x \neq y, x \neq z, y \neq z$.

$$(x \circ z) \circ (y \circ z) = \{x\} \ll x \circ y = \{x\}.$$

CASE 2. $x = y \neq z$.

$$(x\circ z)\circ(y\circ z)=\{x\}\circ\{x\}=x\circ x\ll x\circ y=x\circ x.$$

CASE 3. $x = z \neq y$. By considering $F^0 = 0 \circ 0 = \{0\}$, if (I) holds then

$$(x \circ z) \circ (y \circ z) = \{0\} \circ \{y\} = \{0\} \ll x \circ y = \{x\}.$$

If (II) holds, then $(x \circ z) \circ (y \circ z) = \{0, x\} \circ \{y\} = \{0, x\} \ll x \circ y = \{x\}.$

CASE 4. $x \neq y = z$. If (I) holds, then $(x \circ z) \circ (y \circ z) = \{x\} \circ \{0\} = \{x\} \ll \{x\}$. If (II) holds, then $(x \circ z) \circ (y \circ z) = \{x\} \circ \{0, y\} = \{x\} \ll x \circ y = \{x\}$.

CASE 5. x = y = z. If (I) holds, then $(x \circ z) \circ (y \circ z) = \{0\} \ll x \circ y = \{0\}$. If (II) holds, then $(x \circ z) \circ (y \circ z) = \{0, x\} \ll x \circ y = \{0, x\}$.

Therefore HK1 holds. Finally since $0 \ll x$, $x \ll x$, hence $\{0, x\} \ll x$. Therefore by considering " \circ " of H we have $x \circ y \ll x$ for all $x, y \in H$, i.e., HK3 holds. Thus H is a hyper BCK-algebra.

 $(iii) \Rightarrow (ii)$. Let H be a quasi union hyper BCK-algebra. Then $F^0 = 0 \circ 0 = \{0\}$. So, let $u \in F^x$ and $u \neq x$. Then, since $x \circ x \ll x$, we have $u \ll x$ or $0 \in u \circ x = \{u\}$. This implies that u = 0, hence $F^x = \{0\}$ or $F^x = \{0, x\}$ for all $x \in H$.

Theorem 9. Any quasi union hyper K-algebra H is implicative.

Proof. Let H be a quasi union hyper K-algebra. By considering Definition 3, it is enough to show that $x \in x \circ (y \circ x)$ for all $x, y \in H$. Let $x, y \in H$. Then if $x \neq y$, we have $x \circ (y \circ x) = \{x\}$ and if x = y, then $x \in x \circ (x \circ x)$. Because $0 \in x \circ x$. Hence we have $x \in x \circ (y \circ x)$, for any $x, y \in H$.

Theorem 10. Let H be a quasi union hyper K-algebra. Then H is strong implicative if and only if $F^0 = \{0\}$.

Proof. Let H be a strong implicative quasi union hyper K-algebra. Then $x \circ 0 \subseteq x \circ (y \circ x)$ for all $x, y \in H$. If x = 0 and $y \neq 0$ we have $0 \circ 0 \subseteq 0 \circ (y \circ 0) = \{0\}$. Hence $0 \circ 0 = F^0 = \{0\}$. Conversely, suppose $F^0 = \{0\}$. We prove that $x \circ 0 \subseteq x \circ (y \circ x)$ for all $x, y \in H$. By considering $F^0 = 0 \circ 0 = \{0\}$, if $x \neq y$, then we have $x \circ 0 = \{x\} = x \circ (y \circ x)$. If x = y, then we have $x \circ 0 = \{x\} \subseteq x \circ (x \circ x)$, because $0 \in x \circ x$ and $x \circ 0 = \{x\}$. Therefore H is a strong implicative hyper K-algebra.

Theorem 11. If $(H, \circ, 0)$ is a quasi union hyper K-algebra, then for any $x \in H \setminus \{0\}, A_x = \{0, x\}$ is a hyper K-ideal of H.

Proof. Suppose $v \circ y < A_x$ and $y \in A_x$. We show that $v \in A_x$. If $v \in \{0, x\}$, then we are done. Otherwise, we have $v \circ y = \{v\} < \{0, x\}$. This implies that v < 0 or v < x. Since $v \neq 0, x$, from these we conclude that $0 \in v \circ 0 = \{v\}$ or $0 \in v \circ x = \{v\}$. Hence v = 0, which is a contradiction. Therefore $v \in \{0, x\}$ and hence A_x is a hyper K-ideal of H. \Box

Theorem 12. Let H be a quasi union hyper K-algebra. Then $H \stackrel{\mathbb{C}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (hyper K-ideal).

Proof. By considering Definition 6 and Theorem 11, it is enough to show that for all $x \in H \setminus \{0\}$, $A_x = \{0, x\}$ is C-absorbing. Suppose $t \notin \{0, x\}$, since $u \circ t = \{u\} \subseteq A_x$ for all $u \in \{0, x\}$, we conclude that A_x is C-absorbing.

Corollary 3. Let H be a quasi union hyper K-algebra and $0 \circ 0 = \{0\}$. Then $H \stackrel{C^*}{=} \bigoplus_{x \in H \setminus \{0\}} A_x(hyper K-ideal).$

Proof. The proof follows from Definition 5 and Theorem 12.

By the following example we show that there is a quasi union hyper K-algebra such that $A_x = \{0, x\}$ is not C^* -absorbing.

Example 2. Consider $H = \{0, 1, 2\}$ with the following structure:

0	0	1	2
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\{ \begin{matrix} 0,1 \\ \{1 \\ \{2 \} \end{matrix}$	$\{ 0 \} \\ \{ 0,1 \} \\ \{ 2 \}$	$\{ 0 \} \\ \{ 1 \} \\ \{ 0, 1, 2 \}$

Then $(H, \circ, 0)$ is a quasi hyper K-algebra and $A_2 = \{0, 2\}$ is not C^* -absorbing, because $0 \circ 0 = \{0, 1\} \not\subseteq A_2$.

Corollary 4. Let H be a quasi union hyper K-algebra. Then $H \stackrel{\mathbb{C}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (closed set).

Proof. Since any hyper K-ideal is closed set, the proof follows from Theorem 12. \Box

Lemma 1. Any hyper K-ideal I of hyper BCK-algebra H is a hyper BCK-ideal too.

Proof. Let $x \circ y \ll I$ and $y \in I$. Then $x \circ y < I$. Since I is a hyper K-ideal and $y \in H$, we conclude that $x \in I$. Hence I is a hyper BCK-ideal of H. \Box

Corollary 5. Let H be a quasi union hyper BCK-algebra. Then $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x(hyper BCK-ideal).$

Proof. Since by Theorem 3 any hyper BCK-ideal is H-absorbing, then by using Lemma 1 and Theorem 12 we get that $H \stackrel{\text{H}}{=} \bigoplus_{x \in H} \{0, x\}$ (hyper BCK-ideal).

Corollary 6. Let H be a quasi union hyper BCK-algebra. Then $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (hyper BCK-algebra), i.e., it is a union of family of hyper BCK-algebras.

Proof. The proof follows from Corollary 5 and Theorem 6. \Box

Theorem 13. Any quasi union hyper K-algebra H is (hyper K-ideal)-CUD.

Proof. By Theorem 12, $H \stackrel{\mathbb{C}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (hyper K-ideal). By Theorem 1, we must show that for any non-empty subset B of $H \setminus \{0\}$, $\bigcup_{x \in B} A_x$ is a hyper K-ideal of H. Suppose $u \circ y < \bigcup_{x \in B} A_x$ and $y \in \bigcup_{x \in B} A_x$. If $u \neq y$ then $u \circ y = \{u\} < \bigcup_{x \in B} A_x$. This yields that for some $x \in B$, $u < A_x$. Since A_x is a hyper K-ideal and by Theorem 2 it is a closed set, we conclude that $u \in A_x$. Therefore $u \in \bigcup_{x \in B} A_x$. If u = y, then $u \in \bigcup_{x \in B} A_x$. Thus $\bigcup_{x \in B} A_x$ is a hyper K-ideal of H, i.e., H is a (hyper K-ideal)-CUD.

Theorem 14. Let H be a quasi union hyper K-algebra and I be a subset of H containing 0. Then I is a hyper K-ideal of H.

Proof. By Theorem 12 we have $H \stackrel{C}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (hyper K-ideal). Since $I = \bigcup_{x \in I} \{0, x\}$, by Theorem 13, I is a hyper K-ideal of H.

Now, we proceed to find some relations between a quasi union hyper K-algebra and a family of hyper K-algebras of type $H \stackrel{\text{C}}{=} \bigoplus_{i \in \Lambda} A_i$ (hyper K-ideal) where, $|A_i| = 2$. In particular, we show that whenever $|H| \ge 4$, any type of these hyper K-algebras is a quasi union hyper K-algebra.

Remark 2. Let $H \stackrel{\mathbb{C}}{=} \bigoplus_{i \in \Lambda} A_i$ (hyper K-ideal) where, $|A_i| = 2$. Since $|A_i| = 2$, we have $A_i = \{0, x\}$ for a nonzero element $x \in H$. Hence for convenience we write A_x instead of A_i and hence $H \stackrel{\mathbb{C}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (hyper K-ideal).

Theorem 15. Let $H \stackrel{\mathbb{C}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x(hyper K\text{-}ideal) and |H| \ge 4$. Then H is a quasi union hyper K-algebra.

Proof. Since by K3, we have $0 \in x \circ x = F^x$, according to Theorem 7, it is sufficient to show that $x \circ y = \{x\}$ for all $x \neq y$. Suppose $u \in x \circ y$ and $x \neq y$. Then by considering the following three cases we prove u = x.

(I)
$$y = 0$$
, (II) $x \neq 0$ and $y \neq 0$, (III) $x = 0$.

If (I) holds, then since $x \circ 0 < A_u$ and A_u is a hyper K-ideal, we conclude that $x \in A_u$. Since $x \neq y = 0$, then x = u. If (II) holds, since $y \notin A_x$ and A_x is C-absorbing, we get that $x \circ y \subseteq A_x$. Thus $u \in A_x$. We show that $u \neq 0$. If u = 0, then x < y and $x \in A_y$, because any hyper K-ideal is closed set. This yields that x = y, which is a contradiction. Therefore u = x. If (III) holds, then since $|H| \ge 4$ we have at least two nonzero elements $t, z \in H$ different from y. Therefore $0 \circ y \subseteq A_t \cap A_z = \{0\}$, because A_x and A_t are C-absorbing. This yield that $0 \circ y = \{0\}$, or u = x = 0. Therefore $x \circ y = \{x\}$, where $x \neq y \in H$.

Theorem 15 is not true in general.

Example 3. Let $H = \{0, 1, 2\}$ with the following structure:

Then $H = (H, \circ, 0)$ is a hyper K-algebra such that $H \stackrel{\mathbb{C}}{=} \{0, 1\} \oplus \{0, 2\}$ (hyper K-ideal) and $0 \circ y \neq \{0\}$ where $y \neq 0$. Also this example shows that even if each A_x in Theorem 15 is C^* -absorbing, then H may not be a quasi union hyper K-algebra, whenever |H| = 3.

Lemma 2. Let $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x(\text{closed set})$ and $|H| \ge 3$. Then 0 is a left scalar.

Proof. Since $|H| \ge 3$ the proof follows from Theorems 5 and 4.

Theorem 16. Let $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x(\text{closed set})$ and $|H| \ge 3$. Then $x \circ y = \{x\}$ for $x \neq y$.

Proof. By Lemma 2 we conclude that $0 \circ y = \{0\}$ for all $y \in H$. Now let $0 \neq x \neq y$. On the contrary, suppose $x \circ y \neq \{x\}$. Since A_x is H-absorbing we have $x \circ y \subseteq A_x = \{0, x\}$. If $x \circ y = \{0, x\}$ or $\{0\}$, then x < y. In this case if y = 0 we conclude that x = 0, which is a contradiction. Otherwise, $y \neq 0$, we get that $x \in A_y$, because A_y is a closed set and $y \in A_y$. This yields that x = y which is also a contradiction. Hence $x \circ y = \{x\}$. So, $x \neq y$.

Theorem 16 is not true in general.

Example 4. Let $H = \{0, 1\}$ with the following structure:

Then $H = (H, \circ, 0)$ is a hyper K-algebra such that $0 \circ 1 \neq \{0\}$.

Theorem 17. Let $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (closed set) and $|H| \ge 3$. Then 0 is a scalar and $x \circ y = \{x\}$ for $x \neq y$.

Proof. By Theorem 16, $a \circ 0 = \{a\}$ and $0 \circ a = \{0\}$ while $a \neq 0$. Also by Lemma 2 we have $0 \circ 0 = \{0\}$. Hence 0 is scalar. The remaining of the proof follows from Theorem 16.

Corollary 7. Let $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x(hyper \ K\text{-}ideal) and |H| \ge 3$. Then 0 is a scalar and $x \circ y = \{x\}$ for $x \neq y$.

The proof follows from Theorems 2 and 17.

Theorem 18. Let $H \stackrel{\text{H}}{=} \bigoplus_{x \in H \setminus \{0\}} A_x$ (closed set) and $|H| \ge 3$. Then H is a positive (strong) implicative quasi union hyper BCK-algebra.

Proof. By hypothesis and Theorem 17, we have $0 \circ 0 = \{0\}$ and $x \circ y = \{x\}$, where $x \neq y$. Since A_x is H-absorbing we have $x \circ x \subseteq A_x$, for all $x \in H$. Hence $x \circ x = \{0\}$ or $x \circ x = \{0, x\}$. Therefore these imply that

$$x \circ y = \begin{cases} \{0\} \text{ or } \{0, x\} & \text{if } x = y, \\ \{x\} & \text{otherwise.} \end{cases}$$

So the proof follows from Corollary 1 and Theorems 8 and 10.

References

- R. A. Borzooei, A. Borumand Saeid and M. M. Zahedi: (Strong, Weak) implicative hyper K-algebra, 8th In. Conference on AHM (Greece) (2002), 103 - 114.
- [2] R. A. Borzooei, P. Corsini and M. M. Zahedi: Some kinds of positive implicative hyper K-ideals, J. Discrete Math. and Crypyography 6 (2003), 113-121.
- [3] R. A. Borzooei and H. Harizavi: On decomposable hyper BCK-algebras, Quasigroups and Related Systems 13 (2005), 193 – 202.
- [4] R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun: On hyper K-algebras, Math. Japon. 52 (2000), 113-121.
- [5] P. Corsini: Prolegomena of hypergroup theory, Aviani Editore, Italy, 1993.
- [6] Y. Imai and K. Iséki: On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19 – 22.
- [7] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzooei: On hyper BCK-algebra, Italian J. Pure Appl. Math. 10 (2000), 127 – 136.
- [8] F. Marty: Sur une generalization de la notion de groups, 8th congress Math. Scandinavies, Stockhholm, 1934, 45 - 49.
- [9] M. A. Nasr-Azadani and M. M. Zahedi: S-absorbing set and (P)-decomposition in hyper algebras, (in preparation).
- [10] M. A. Nasr-Azadani and M. M. Zahedi: A note on union of hyper K-algebras, (in preparation).
- [11] M. M. Zahedi, R. A. Borzooei, Y. B. Jun and A. Hasankhani: Some results on hyper K-algebra, Scientiae Math. 3 (2000), 53-59.

Department of Mathematics Shahid Bahonar University of Kerman Kerman Iran E-mail: nasr@shahed.ac.ir, zahedi mm@mail.uk.ac.ir