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Left almost semigroups de�ned by a free algebra

Qaiser Mushtaq and Muhammad Inam

Abstract

We have constructed LA-semigroups through a free algebra, and the
structural properties of such LA-semigroups have been investegated. More-
over, the isomorphism theorems for LA-groups constructed through free
algebra have been proved.

1. Introduction
A left almost semigroup, abbreviated as an LA-semigroup, is an algebraic
structure midway between a groupoid and a commutative semigroup. The
structure was introduced by M. A. Kazim and M. Naseeruddin [3] in 1972.
This structure is also known as Abel-Grassmann's groupoid, abbreviated as
an AG-groupoid [6] and as an invertive groupoid [1].

A groupoid G with left invertive law, that is: (ab) c = (cb) a, ∀a, b, c ∈ G,
is called an LA-semigroup.

An LA-semigroup satis�es the medial law: (ab) (cd) = (ac) (bd). An
LA-semigroup with left identity is called an LA-monoid.

An LA-semigroup in which either (ab) c = b (ca) or (ab) c = b (ac) holds
for all a, b, c, d ∈ G, is called an AG∗-groupoid [6].

Let G be an LA-semigroup and a ∈ G. A mapping La : G −→ G, de�ned
by La (x) = ax, is called the left translation by a. Similarly, a mapping
Ra : G −→ G, de�ned by Ra (x) = xa, is called the right translation by a.
An LA-semigroup G is called left (right) cancellative if all the left (right)
translations are injective. An LA-semigroup G is called cancellative if all
translations are injective.

Let X be a non-empty set and W ′
X denote the free algebra over X in

the variety of algebras of the type {0, α, +}, consisting of nullary, unary and
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binary operations determined by the following identities:

(x + y) + z = x + (y + z) , x + y = y + x, x + 0 = x,

α (x + y) = αx + αy, α0 = 0.

Every element u ∈ W ′
X has the form u =

∑r
i=1 αnixi, where r > 0, and

ni are non-negative integers. This expression is unique up to the order of
the summands. Moreover r = 0 if and only if u = 0.

Let us de�ne a multiplication on W ′
X by u ◦ v = αu + α2v. Then the

set W ′
X is an LA-semigroup under this binary operation. We denote it by

WX . It is easy to see that WX is cancellative.
If n is the smallest non-negative integer such that αnx = x, then n is

called the order of α. The following examples show the existence of such
LA-semigroups.
Example 1. Consider a �eld F5 = {0, 1, 2, 3, 4} and de�ne α (x) = 3x for
all x ∈ F5. Then F5 becomes an LA-semigroup under the binary operation
de�ned by u ◦ v = αu + α2v, ∀ u, v ∈ F5.

◦ 0 1 2 3 4
0 0 4 3 2 1
1 3 2 1 0 4
2 1 0 4 3 2
3 4 3 2 1 0
4 2 1 0 4 3

Example 2. Let X = {x, y} and α be de�ned as α (a) = 2a, for all a ∈ X
and 2 ∈ F3. Then the following table illustrates an LA-semigroup WX .

◦ 0 x 2x y 2y x + y 2x + y x + 2y 2x + 2y

0 0 x 2x y 2y x + y 2x + y x + 2y 2x + 2y
x 2x 0 x 2x + y 2x + 2y y x + y 2y x + 2y
2x x 2x 0 x + y x + 2y 2x + y y x + 2y 2y
y 2y x + 2y 2x + 2y 0 y x 2x x + y 2x + y
2y y x + y 2x + y 2y 0 x + 2y 2x + 2y x x + y

x + y 2x + 2y 2y x + 2y 2x 2x + y 0 x y x + y
2x + y x + 2y 2x + 2y 2y x x + y 2x 0 2x + 2y y
x + 2y 2x + y y x + y 2x + 2y 2x 2y x + 2y 0 x
2x + 2y x + y 2x + y y x + 2y x 2x + 2y 2y 2x + 2y 0

An LA-semigroup is called an LA-band [6], if all of its elements are
idempotents. An LA-band can easily be constructed from a free algebra by
choosing a unary operation α such that α + α2 = IdX , where IdX denotes
the identity map on X.
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Example 3. De�ne a unary operation α as α (x) = 2x, where x ∈ F5.
Then under the binary operation ◦ de�ned as above, F5 is an LA-band.

◦ 0 1 2 3 4
0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

An LA-semigroup (G, ·) is called an LA-group [5], if
(i) there exists e ∈ G such that ea = a for every a ∈ G,
(ii) for every a ∈ G there exists a′ ∈ G such that a′a = e.
A subset I of an LA-semigroup (G, ·) is called a left (right) ideal of G,

if GI ⊆ I (IG ⊆ I), and I is called a two sided ideal of G if it is left and
right ideal of G. An LA-semigroup is called left (right) simple, if it has no
proper left (right) ideals. Consequently, an LA-semigroup is simple if it has
no proper ideals.

Theorem 1. A cancellative LA-semigroup is simple.

Proof. Let G be a cancellative LA-semigroup. Suppose that G has a proper
left ideal I. Then by de�nition GI ⊆ I and so I being its proper ideal, is
a proper LA-subsemigroup of G. If g ∈ G\I, then gi ∈ GI, for all i ∈ I.
But GI ⊆ I, so there exists an i′ ∈ I, such that gi = i′. Since G is
cancellative so is then I. This implies that all the right and left translations
are bijective. Therefore there exists i1 ∈ I, such that Li1 (i) = i′· This
implies that gi = i1i. By applying the right cancellation, we obtain g = i1.
This implies that g ∈ I, which contradicts our supposition. Hence G is
simple.

Corollary 1. An LA-semigroup de�ned by a free algebra is simple.

Theorem 2. If G is a right (left) cancellative LA-semigroup, then G 2 = G.

Proof. Let G be a right (left) cancellative LA-semigroup. Then all the right
(left) translations are bijective. This implies that for each x ∈ G, there exist
some y, z ∈ G such that Ry (z) = x (Ly (z) = x) . Hence G 2 = G.

Corollary 2. An AG∗-groupoid cannot be de�ned by a free algebra.
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Proof. It has been proved in [6], that if G is an AG∗-groupoid then G 2

is a commutative semigroup. Moreover, if G is a right (left) cancellative
LA-semigroup, then G 2 = G.

We now de�ne a subset Tx of WX such that Tx = {∑r
i=1 αnix |x ∈ X}.

Theorem 3. Tx is an LA-subsemigroup of WX .

Proof. It is su�cient to show that Tx is closed under the operation ◦. Let
u, v ∈ Tx. Then u =

∑n
i=1 αnix, v =

∑m
i=1 αnix, and so

u ◦ v = α (u) + α2 (v) = α (
∑n

i=1 αnix) + α2 (
∑m

i=1 αnix)

=
(∑n

i=1 αni+1 +
∑m

i=1 αni+2
)
x =

∑r
i=1 αmix,

where r = n + m, mi = ni + 1 for i 6 n and mi = ni + 2 for i > n.

Theorem 4. If X = {x1, x2, . . . , xn}, then WX = Tx1 ⊕ Tx2 ⊕ . . .⊕ Txn.

Proof. Every element u ∈ WX is of the form u =
∑r

i=1 αnixi, where r and
ni are non-negative integers. This expression is unique up to the order of
the summands. This implies that WX = Tx1 +Tx2 + . . .+Txn . To complete
the proof it is su�cient to show that Txi ∩ Txj = {0}, for i 6= j. Let
u ∈ Txi ∩ Txj , such that u 6= 0. Then u ∈ Txi and u ∈ Txj . This is possible
only if xi = xj . Which is a contradiction to the fact that xi 6= xj . Hence
the proof.

Proposition 1. The direct sum of any Txi and Txj for i 6= j is an LA-
subsemigroup of WX .

Proof. The proof is straightforward.

Theorem 5. The direct sum of any �nite number of Txi's is an LA-
subsemigroup of WX .

Proof. The proof follows directly by induction.

Theorem 6. The set WX�Tx of all right (left) cosets of Tx in WX is an
LA-semigroup.

Proof. Let WX�Tx = {u ◦ Tx |u ∈ WX}, and u ◦ Tx, v ◦ Tx ∈ WX�Tx.
Then by the medial law (u ◦ Tx)◦ (v ◦ Tx) = (u ◦ v)◦Tx ◦Tx. But Tx ◦Tx =
Tx. Hence (u ◦ Tx) ◦ (v ◦ Tx) = (u ◦ v) ◦ Tx ∈ WX�Tx.
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Let u ◦ Tx, v ◦ Tx, w ◦ Tx ∈ WX�Tx. Then

((u ◦ Tx) ◦ (v ◦ Tx)) ◦ (w ◦ Tx) = ((u ◦ v) ◦ Tx) ◦ w ◦ Tx

= ((u ◦ v) ◦ w) ◦ Tx = ((w ◦ v) ◦ u) ◦ Tx

= ((w ◦ Tx) ◦ (v ◦ Tx)) ◦ (u ◦ Tx)

implies that WX�Tx is an LA-simigroup.

Remark 1. α (Tx) = Tx.

Proposition 2. For any Tx ≤ WX and v ∈ WX we have
(a) Tx ◦ v = (α (v)) ◦ Tx,
(b) Tx ◦ (Tx ◦ v) = α2 (Tx ◦ v) = α3 (v ◦ Tx),
(c) (Tx ◦ v) ◦ Tx = α (Tx ◦ v) = α2 (v ◦ Tx),
(d) Tx ◦ v = α (v ◦ Tx).

Proof. The proof is straightforward.

Theorem 7. WX�Txi = {v ◦ Txi : v ∈ WX} forms a partition of WX .

Proof. We shall show that u ◦ Txi ∩ v ◦ Txi = ∅ for u 6= v, and WX =
∪v∈WX

v ◦ Txi . Let w ∈ v ◦ Txi ∩ u ◦ Txi . Then w ∈ v ◦ Txi and w ∈ u ◦ Txi .
This implies that w = v ◦ t1 and w = u ◦ t2, where t1, t2 ∈ Txi . This implies
v ◦ t1 = u ◦ t2. Hence α (v) + α2 (t1) = α (u) + α2 (t2), which further gives
α (v) = α (u) + α2 (t2)− α2 (t1) where α2 (t2)− α2 (t1) ∈ Txi .

Now α (v) ∈ α (u) + Txi yields α (v) + Txi ⊆ α (u) + Txi , i.e., v ◦ Txi ⊆
u ◦ Txi . Similarly, u ◦ Txi = v ◦ Txi . Hence v ◦ Txi ∩ u ◦ Txi = ∅. Obviously,
∪v∈WX

v ◦ Txi ⊆ WX .
Conversely, let t ∈ WX . Then t =

∑r
i=1 αnixi implies that

t = αn1x1 + αn2x2 + . . . + αnrxr

= αnixi + αn1x1 + αn2x2 + . . . + αni−1xi−1 + αni+1xi+1 + . . . + αnrxr.

If αn1x1 + αn2x2 + . . . + αni−1xi−1 + αni+1xi+1 + ... + αnrxr = u, then
t = αnixi + u, αnixi ∈ Txi . Now t = αnixi + u ∈ Txi + u = α(u) + Txi =
α(u)+α2(Txi) = u◦Txi ∈ ∪v∈WX

v◦Txi implies WX ⊆ ∪v∈WX
v◦Txi . Hence

WX = ∪v∈WX
v ◦ Tx.

Theorem 8. The order of Txi divides the order of WX .
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Proof. If X is a �nite non-empty set then WX is also �nite. This implies
that the set of all the right (left) cosets of Txi in WX is �nite.

Let WX�Txi = {v1 ◦ Txi , v2 ◦ Txi , . . . , vr ◦ Txi}. Then by virtue of The-
orem 7, WX = v1 ◦ Txi ∪ v2 ◦ Txi ∪ . . . ∪ vr ◦ Txi . This implies that
|WX | = |v1 ◦ Txi |+ |v2 ◦ Txi |+ . . . + |vr ◦ Txi |. Thus |WX | = r |Txi | . Hence
|WX | = [Txi ,WX ] |Txi | , where [Txi ,WX ] denotes the number of cosets of
Txi in WX .

Theorem 9. If X is a non-empty �nite set having r number of elements
and the order of Txi is n, then |WX | = nr.

Proof. Since it has already been proved that WX = Tx1⊕Tx2⊕ . . .⊕Txr for
X = {x1, x2, . . . , xr}, it is su�cient to show that |Tx1 ⊕ Tx2 ⊕ . . .⊕ Txr | =
nr. We apply induction on r. Let r = 2, that is, WX = Tx1⊕Tx2 . Construct
the multiplication table of Tx1 and write all the elements of Tx2 except 0 in
the index row and in the index column. Then the number of elements in the
index row or column row is 2n−1. We see from the multiplication table that
when the elements of Tx1 are multiplied by the elements of Tx2 some new
elements appear in the table, which are of the form u ◦ v = α (u) + α2 (v) ,
where u ∈ Tx1 and v ∈ Tx2 and they are (n− 1)2 in number. We write
all such elements in index row and column and complete the multiplication
table of Tx1⊕Tx2 . We see that no new element appear in the table. Then the
number of elements in the index row or column is 2n−1+(n− 1)2 = n2. We
now consider n = 3. Take the multiplication table of Tx1 ⊕ Tx2 , and write
all elements of Tx3 except 0 in the index row and column. The number
of elements in the index row and column are n2 + n − 1. Multiply the
elements of Tx1 ⊕ Tx2 and Tx3 . Then in the table, some new elements of
the form t ◦ w = α (t) + α2 (w) appear, where t ∈ Tx1 ⊕ Tx2 , w ∈ Tx3

which are n2 (n− 1) in number. Now we write all these elements in the
index row and column of the table of Tx1 ⊕ Tx2 ⊕ Tx3 . We see that no new
element appears in the table. The number of elements in the index row
or column is n2 + n2 (n− 1) = n3. Continuing in this way we �nally get
|Tx1 ⊕ Tx2 ⊕ . . .⊕ Txr | = nr.

Theorem 10. Let p be prime and FP a �nite �eld. Let E denote the
r-th extension of FP . Then there exists a unique epimorphism between LA-
semigroups formed by E and Fp.

Proof. Let α be a unary operation. Suppose that β is a root of an irreducible
polynomial with respect to Fp. It is not di�cult to prove that the mapping
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ϕ : E → FP de�ned by ϕ
(
a0 + a1β + ... + ar−1β

r−1
)

= a0 + a1 + ... + ar is
a unique epimorphism.

Theorem 11. Tx is simple.

Proof. Suppose that Tx has a proper left (right) ideal of S. Then by def-
inition STx ⊆ S (TxS ⊆ S) and S is proper LA-subsemigroup of Tx. We
know that the order of Tx is either prime or power of a prime. So, if it has
a proper LA-subsemigroup S, then the order of S will be prime. Since S
is embedded into Tx, so there exists a monomorphism between Tx and S.
But by Theorem 10, there exists a unique epimorphism between Tx and S.
This implies that there exists an isomorphism between Tx and S. This is a
contradiction. Hence the proof.

Theorem 12. If K is a kernel of a homomorphism h between LA-groups
W and W ′, then

(a) K ≤ W ,
(b) W�K is an LA-group,
(c) W�K ∼= Im (h).

Proof. (a) and (b) are obvious. For (c) de�ne a mapping ϕ : W�K →
Im(h) by ϕ(u ◦K) = h(u) for u ∈ W. Then ϕ is an isomorphism.

Theorem 13. If T1 = Tx1 ⊕ Tx2 ⊕ . . .⊕ Txn, T2 = Tx1 ⊕ Tx2 ⊕ . . .⊕ Txm,
where n 6= m, then

(1) T1 ≤ T1 ⊕ T2 and T1 ∩ T2 ≤ T2,
(2) T1 ⊕ T2�T1 and T2�T1 ∩ T2 are LA-semigroups,
(3) T1 ⊕ T2�T1

∼= T2�T1 ∩ T2.

Proof. (1) and (2) are obvious. For (3) de�ne a mapping ϕ : T2�T1∩T2 −→
T1 ⊕ T2�T1 by ϕ(v ◦ (T1 ∩ T2)) = v ◦ T1 for all v ∈ T1 ∩ T2. Then φ is an
isomorphism.

Theorem 14. If WX is an LA-group, and T = Tx1 ⊕Tx2 ⊕ . . .⊕Txn , then
(WX�Txi)� (T�Txi) is isomorphic to WX�T , where 1 6 i 6 n.

Proof. De�ne a mapping ϕ : WX�Txi −→ WX�T , by ϕ (v ◦ Txi) = v ◦ T ,
where v ∈ WX . Then ϕ is an epimorphism. By Theorem 12,

(WX�Txi)� (Ker ϕ) ∼= WX�T

and Kerϕ = T�Txi . Hence the proof.
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