Left almost semigroups defined by a free algebra

Qaiser Mushtaq and Muhammad Inam

Abstract

We have constructed LA-semigroups through a free algebra, and the structural properties of such LA-semigroups have been investegated. Moreover, the isomorphism theorems for LA-groups constructed through free algebra have been proved.

1. Introduction

A left almost semigroup, abbreviated as an LA-semigroup, is an algebraic structure midway between a groupoid and a commutative semigroup. The structure was introduced by M. A. Kazim and M. Naseeruddin [3] in 1972. This structure is also known as Abel-Grassmann's groupoid, abbreviated as an AG-groupoid [6] and as an invertive groupoid [1].

A groupoid G with left invertive law, that is: $(a b) c=(c b) a, \forall a, b, c \in G$, is called an LA-semigroup.

An LA-semigroup satisfies the medial law: $(a b)(c d)=(a c)(b d)$. An LA-semigroup with left identity is called an $L A$-monoid.

An LA-semigroup in which either $(a b) c=b(c a)$ or $(a b) c=b(a c)$ holds for all $a, b, c, d \in G$, is called an $A G^{*}$-groupoid [6].

Let G be an LA-semigroup and $a \in G$. A mapping $L_{a}: G \longrightarrow G$, defined by $L_{a}(x)=a x$, is called the left translation by a. Similarly, a mapping $R_{a}: G \longrightarrow G$, defined by $R_{a}(x)=x a$, is called the right translation by a. An LA-semigroup G is called left (right) cancellative if all the left (right) translations are injective. An LA-semigroup G is called cancellative if all translations are injective.

Let X be a non-empty set and W_{X}^{\prime} denote the free algebra over X in the variety of algebras of the type $\{0, \alpha,+\}$, consisting of nullary, unary and
binary operations determined by the following identities:

$$
\begin{gathered}
(x+y)+z=x+(y+z), \quad x+y=y+x, \quad x+0=x \\
\alpha(x+y)=\alpha x+\alpha y, \quad \alpha 0=0
\end{gathered}
$$

Every element $u \in W_{X}^{\prime}$ has the form $u=\sum_{i=1}^{r} \alpha^{n_{i}} x_{i}$, where $r \geqslant 0$, and n_{i} are non-negative integers. This expression is unique up to the order of the summands. Moreover $r=0$ if and only if $u=0$.

Let us define a multiplication on W_{X}^{\prime} by $u \circ v=\alpha u+\alpha^{2} v$. Then the set W_{X}^{\prime} is an LA-semigroup under this binary operation. We denote it by W_{X}. It is easy to see that W_{X} is cancellative.

If n is the smallest non-negative integer such that $\alpha^{n} x=x$, then n is called the order of α. The following examples show the existence of such LA-semigroups.
Example 1. Consider a field $F_{5}=\{0,1,2,3,4\}$ and define $\alpha(x)=3 x$ for all $x \in F_{5}$. Then F_{5} becomes an LA-semigroup under the binary operation defined by $u \circ v=\alpha u+\alpha^{2} v, \forall u, v \in F_{5}$.

\circ	0	1	2	3	4
0	0	4	3	2	1
1	3	2	1	0	4
2	1	0	4	3	2
3	4	3	2	1	0
4	2	1	0	4	3

Example 2. Let $X=\{x, y\}$ and α be defined as $\alpha(a)=2 a$, for all $a \in X$ and $2 \in F_{3}$. Then the following table illustrates an LA-semigroup W_{X}.

\circ	0	x	$2 x$	y	$2 y$	$x+y$	$2 x+y$	$x+2 y$	$2 x+2 y$
0	0	x	$2 x$	y	$2 y$	$x+y$	$2 x+y$	$x+2 y$	$2 x+2 y$
x	$2 x$	0	x	$2 x+y$	$2 x+2 y$	y	$x+y$	$2 y$	$x+2 y$
$2 x$	x	$2 x$	0	$x+y$	$x+2 y$	$2 x+y$	y	$x+2 y$	$2 y$
y	$2 y$	$x+2 y$	$2 x+2 y$	0	y	x	$2 x$	$x+y$	$2 x+y$
$2 y$	y	$x+y$	$2 x+y$	$2 y$	0	$x+2 y$	$2 x+2 y$	x	$x+y$
$x+y$	$2 x+2 y$	$2 y$	$x+2 y$	$2 x$	$2 x+y$	0	x	y	$x+y$
$2 x+y$	$x+2 y$	$2 x+2 y$	$2 y$	x	$x+y$	$2 x$	0	$2 x+2 y$	y
$x+2 y$	$2 x+y$	y	$x+y$	$2 x+2 y$	$2 x$	$2 y$	$x+2 y$	0	x
$2 x+2 y$	$x+y$	$2 x+y$	y	$x+2 y$	x	$2 x+2 y$	$2 y$	$2 x+2 y$	0

An LA-semigroup is called an $L A$-band [6], if all of its elements are idempotents. An LA-band can easily be constructed from a free algebra by choosing a unary operation α such that $\alpha+\alpha^{2}=I d_{X}$, where $I d_{X}$ denotes the identity map on X.

Example 3. Define a unary operation α as $\alpha(x)=2 x$, where $x \in F_{5}$. Then under the binary operation o defined as above, F_{5} is an LA-band.

\circ	0	1	2	3	4
0	0	4	3	2	1
1	2	1	0	4	3
2	4	3	2	1	0
3	1	0	4	3	2
4	3	2	1	0	4

An LA-semigroup (G, \cdot) is called an LA-group [5], if
(i) there exists $e \in G$ such that $e a=a$ for every $a \in G$,
(ii) for every $a \in G$ there exists $a^{\prime} \in G$ such that $a^{\prime} a=e$.

A subset I of an LA-semigroup ($G, \cdot \cdot$) is called a left (right) ideal of G, if $G I \subseteq I(I G \subseteq I)$, and I is called a two sided ideal of G if it is left and right ideal of G. An LA-semigroup is called left (right) simple, if it has no proper left (right) ideals. Consequently, an LA-semigroup is simple if it has no proper ideals.

Theorem 1. A cancellative LA-semigroup is simple.
Proof. Let G be a cancellative LA-semigroup. Suppose that G has a proper left ideal I. Then by definition $G I \subseteq I$ and so I being its proper ideal, is a proper LA-subsemigroup of G. If $g \in G \backslash I$, then $g i \in G I$, for all $i \in I$. But $G I \subseteq I$, so there exists an $i^{\prime} \in I$, such that $g i=i^{\prime}$. Since G is cancellative so is then I. This implies that all the right and left translations are bijective. Therefore there exists $i_{1} \in I$, such that $L_{i_{1}}(i)=i^{\prime}$. This implies that $g i=i_{1} i$. By applying the right cancellation, we obtain $g=i_{1}$. This implies that $g \in I$, which contradicts our supposition. Hence G is simple.

Corollary 1. An LA-semigroup defined by a free algebra is simple.
Theorem 2. If G is a right (left) cancellative LA-semigroup, then $G^{2}=G$.
Proof. Let G be a right (left) cancellative LA-semigroup. Then all the right (left) translations are bijective. This implies that for each $x \in G$, there exist some $y, z \in G$ such that $R_{y}(z)=x\left(L_{y}(z)=x\right)$. Hence $G^{2}=G$.

Corollary 2. An $A G^{*}$-groupoid cannot be defined by a free algebra.

Proof. It has been proved in [6], that if G is an AG^{*}-groupoid then G^{2} is a commutative semigroup. Moreover, if G is a right (left) cancellative LA-semigroup, then $G^{2}=G$.

We now define a subset T_{x} of W_{X} such that $T_{x}=\left\{\sum_{i=1}^{r} \alpha^{n_{i}} x \mid x \in X\right\}$.
Theorem 3. T_{x} is an LA-subsemigroup of W_{X}.
Proof. It is sufficient to show that T_{x} is closed under the operation o. Let $u, v \in T_{x}$. Then $u=\sum_{i=1}^{n} \alpha^{n_{i}} x, v=\sum_{i=1}^{m} \alpha^{n_{i}} x$, and so

$$
\begin{aligned}
u \circ v & =\alpha(u)+\alpha^{2}(v)=\alpha\left(\sum_{i=1}^{n} \alpha^{n_{i}} x\right)+\alpha^{2}\left(\sum_{i=1}^{m} \alpha^{n_{i}} x\right) \\
& =\left(\sum_{i=1}^{n} \alpha^{n_{i}+1}+\sum_{i=1}^{m} \alpha^{n_{i}+2}\right) x=\sum_{i=1}^{r} \alpha^{m_{i}} x,
\end{aligned}
$$

where $r=n+m, m_{i}=n_{i}+1$ for $i \leqslant n$ and $m_{i}=n_{i}+2$ for $i>n$.
Theorem 4. If $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then $W_{X}=T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{n}}$.
Proof. Every element $u \in W_{X}$ is of the form $u=\sum_{i=1}^{r} \alpha^{n_{i}} x_{i}$, where r and n_{i} are non-negative integers. This expression is unique up to the order of the summands. This implies that $W_{X}=T_{x_{1}}+T_{x_{2}}+\ldots+T_{x_{n}}$. To complete the proof it is sufficient to show that $T_{x_{i}} \cap T_{x_{j}}=\{0\}$, for $i \neq j$. Let $u \in T_{x_{i}} \cap T_{x_{j}}$, such that $u \neq 0$. Then $u \in T_{x_{i}}$ and $u \in T_{x_{j}}$. This is possible only if $x_{i}=x_{j}$. Which is a contradiction to the fact that $x_{i} \neq x_{j}$. Hence the proof.

Proposition 1. The direct sum of any $T_{x_{i}}$ and $T_{x_{j}}$ for $i \neq j$ is an $L A$ subsemigroup of W_{X}.

Proof. The proof is straightforward.
Theorem 5. The direct sum of any finite number of $T_{x_{i}}$'s is an $L A$ subsemigroup of W_{X}.

Proof. The proof follows directly by induction.
Theorem 6. The set W_{X} / T_{x} of all right (left) cosets of T_{x} in W_{X} is an LA-semigroup.

Proof. Let $W_{X} / T_{x}=\left\{u \circ T_{x} \mid u \in W_{X}\right\}$, and $u \circ T_{x}, v \circ T_{x} \in W_{X} / T_{x}$. Then by the medial law $\left(u \circ T_{x}\right) \circ\left(v \circ T_{x}\right)=(u \circ v) \circ T_{x} \circ T_{x}$. But $T_{x} \circ T_{x}=$ T_{x}. Hence $\left(u \circ T_{x}\right) \circ\left(v \circ T_{x}\right)=(u \circ v) \circ T_{x} \in W_{X} / T_{x}$.

Let $u \circ T_{x}, v \circ T_{x}, w \circ T_{x} \in W_{X} / T_{x}$. Then

$$
\begin{aligned}
\left(\left(u \circ T_{x}\right) \circ\left(v \circ T_{x}\right)\right) \circ\left(w \circ T_{x}\right) & =\left((u \circ v) \circ T_{x}\right) \circ w \circ T_{x} \\
& =((u \circ v) \circ w) \circ T_{x}=((w \circ v) \circ u) \circ T_{x} \\
& =\left(\left(w \circ T_{x}\right) \circ\left(v \circ T_{x}\right)\right) \circ\left(u \circ T_{x}\right)
\end{aligned}
$$

implies that W_{X} / T_{x} is an LA-simigroup.
Remark 1. $\alpha\left(T_{x}\right)=T_{x}$.
Proposition 2. For any $T_{x} \leq W_{X}$ and $v \in W_{X}$ we have
(a) $T_{x} \circ v=(\alpha(v)) \circ T_{x}$,
(b) $T_{x} \circ\left(T_{x} \circ v\right)=\alpha^{2}\left(T_{x} \circ v\right)=\alpha^{3}\left(v \circ T_{x}\right)$,
(c) $\left(T_{x} \circ v\right) \circ T_{x}=\alpha\left(T_{x} \circ v\right)=\alpha^{2}\left(v \circ T_{x}\right)$,
(d) $T_{x} \circ v=\alpha\left(v \circ T_{x}\right)$.

Proof. The proof is straightforward.
Theorem 7. $W_{X} / T_{x_{i}}=\left\{v \circ T_{x_{i}}: v \in W_{X}\right\}$ forms a partition of W_{X}.
Proof. We shall show that $u \circ T_{x_{i}} \cap v \circ T_{x_{i}}=\emptyset$ for $u \neq v$, and $W_{X}=$ $\cup_{v \in W_{X}} v \circ T_{x_{i}}$. Let $w \in v \circ T_{x_{i}} \cap u \circ T_{x_{i}}$. Then $w \in v \circ T_{x_{i}}$ and $w \in u \circ T_{x_{i}}$. This implies that $w=v \circ t_{1}$ and $w=u \circ t_{2}$, where $t_{1}, t_{2} \in T_{x_{i}}$. This implies $v \circ t_{1}=u \circ t_{2}$. Hence $\alpha(v)+\alpha^{2}\left(t_{1}\right)=\alpha(u)+\alpha^{2}\left(t_{2}\right)$, which further gives $\alpha(v)=\alpha(u)+\alpha^{2}\left(t_{2}\right)-\alpha^{2}\left(t_{1}\right)$ where $\alpha^{2}\left(t_{2}\right)-\alpha^{2}\left(t_{1}\right) \in T_{x_{i}}$.

Now $\alpha(v) \in \alpha(u)+T_{x_{i}}$ yields $\alpha(v)+T_{x_{i}} \subseteq \alpha(u)+T_{x_{i}}$, i.e., $v \circ T_{x_{i}} \subseteq$ $u \circ T_{x_{i}}$. Similarly, $u \circ T_{x_{i}}=v \circ T_{x_{i}}$. Hence $v \circ T_{x_{i}} \cap u \circ T_{x_{i}}=\emptyset$. Obviously, $\cup_{v \in W_{X}} v \circ T_{x_{i}} \subseteq W_{X}$.

Conversely, let $t \in W_{X}$. Then $t=\sum_{i=1}^{r} \alpha^{n_{i}} x_{i}$ implies that

$$
\begin{aligned}
t & =\alpha^{n_{1}} x_{1}+\alpha^{n_{2}} x_{2}+\ldots+\alpha^{n_{r}} x_{r} \\
& =\alpha^{n_{i}} x_{i}+\alpha^{n_{1}} x_{1}+\alpha^{n_{2}} x_{2}+\ldots+\alpha^{n_{i-1}} x_{i-1}+\alpha^{n_{i+1}} x_{i+1}+\ldots+\alpha^{n_{r}} x_{r}
\end{aligned}
$$

If $\alpha^{n_{1}} x_{1}+\alpha^{n_{2}} x_{2}+\ldots+\alpha^{n_{i-1}} x_{i-1}+\alpha^{n_{i+1}} x_{i+1}+\ldots+\alpha^{n_{r}} x_{r}=u$, then $t=\alpha^{n_{i}} x_{i}+u, \alpha^{n_{i}} x_{i} \in T_{x_{i}}$. Now $t=\alpha^{n_{i}} x_{i}+u \in T_{x_{i}}+u=\alpha(u)+T_{x_{i}}=$ $\alpha(u)+\alpha^{2}\left(T_{x_{i}}\right)=u \circ T_{x_{i}} \in \cup_{v \in W_{X}} v \circ T_{x_{i}}$ implies $W_{X} \subseteq \cup_{v \in W_{X}} v \circ T_{x_{i}}$. Hence $W_{X}=\cup_{v \in W_{X}} v \circ T_{x}$.

Theorem 8. The order of $T_{x_{i}}$ divides the order of W_{X}.

Proof. If X is a finite non-empty set then W_{X} is also finite. This implies that the set of all the right (left) cosets of $T_{x_{i}}$ in W_{X} is finite.

Let $W_{X} / T_{x_{i}}=\left\{v_{1} \circ T_{x_{i}}, v_{2} \circ T_{x_{i}}, \ldots, v_{r} \circ T_{x_{i}}\right\}$. Then by virtue of Theorem $7, W_{X}=v_{1} \circ T_{x_{i}} \cup v_{2} \circ T_{x_{i}} \cup \ldots \cup v_{r} \circ T_{x_{i}}$. This implies that $\left|W_{X}\right|=\left|v_{1} \circ T_{x_{i}}\right|+\left|v_{2} \circ T_{x_{i}}\right|+\ldots+\left|v_{r} \circ T_{x_{i}}\right|$. Thus $\left|W_{X}\right|=r\left|T_{x_{i}}\right|$. Hence $\left|W_{X}\right|=\left[T_{x_{i}}, W_{X}\right]\left|T_{x_{i}}\right|$, where $\left[T_{x_{i}}, W_{X}\right]$ denotes the number of cosets of $T_{x_{i}}$ in W_{X}.

Theorem 9. If X is a non-empty finite set having r number of elements and the order of $T_{x_{i}}$ is n, then $\left|W_{X}\right|=n^{r}$.

Proof. Since it has already been proved that $W_{X}=T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{r}}$ for $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, it is sufficient to show that $\left|T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{r}}\right|=$ n^{r}. We apply induction on r. Let $r=2$, that is, $W_{X}=T_{x_{1}} \oplus T_{x_{2}}$. Construct the multiplication table of $T_{x_{1}}$ and write all the elements of $T_{x_{2}}$ except 0 in the index row and in the index column. Then the number of elements in the index row or column row is $2 n-1$. We see from the multiplication table that when the elements of $T_{x_{1}}$ are multiplied by the elements of $T_{x_{2}}$ some new elements appear in the table, which are of the form $u \circ v=\alpha(u)+\alpha^{2}(v)$, where $u \in T_{x_{1}}$ and $v \in T_{x_{2}}$ and they are $(n-1)^{2}$ in number. We write all such elements in index row and column and complete the multiplication table of $T_{x_{1}} \oplus T_{x_{2}}$. We see that no new element appear in the table. Then the number of elements in the index row or column is $2 n-1+(n-1)^{2}=n^{2}$. We now consider $n=3$. Take the multiplication table of $T_{x_{1}} \oplus T_{x_{2}}$, and write all elements of $T_{x_{3}}$ except 0 in the index row and column. The number of elements in the index row and column are $n^{2}+n-1$. Multiply the elements of $T_{x_{1}} \oplus T_{x_{2}}$ and $T_{x_{3}}$. Then in the table, some new elements of the form $t \circ w=\alpha(t)+\alpha^{2}(w)$ appear, where $t \in T_{x_{1}} \oplus T_{x_{2}}, w \in T_{x_{3}}$ which are $n^{2}(n-1)$ in number. Now we write all these elements in the index row and column of the table of $T_{x_{1}} \oplus T_{x_{2}} \oplus T_{x_{3}}$. We see that no new element appears in the table. The number of elements in the index row or column is $n^{2}+n^{2}(n-1)=n^{3}$. Continuing in this way we finally get $\left|T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{r}}\right|=n^{r}$.

Theorem 10. Let p be prime and F_{P} a finite field. Let E denote the r-th extension of F_{P}. Then there exists a unique epimorphism between LAsemigroups formed by E and F_{p}.

Proof. Let α be a unary operation. Suppose that β is a root of an irreducible polynomial with respect to F_{p}. It is not difficult to prove that the mapping
$\varphi: E \rightarrow F_{P}$ defined by $\varphi\left(a_{0}+a_{1} \beta+\ldots+a_{r-1} \beta^{r-1}\right)=a_{0}+a_{1}+\ldots+a_{r}$ is a unique epimorphism.

Theorem 11. T_{x} is simple.
Proof. Suppose that T_{x} has a proper left (right) ideal of S. Then by definition $S T_{x} \subseteq S\left(T_{x} S \subseteq S\right)$ and S is proper LA-subsemigroup of T_{x}. We know that the order of T_{x} is either prime or power of a prime. So, if it has a proper LA-subsemigroup S, then the order of S will be prime. Since S is embedded into T_{x}, so there exists a monomorphism between T_{x} and S. But by Theorem 10, there exists a unique epimorphism between T_{x} and S. This implies that there exists an isomorphism between T_{x} and S. This is a contradiction. Hence the proof.

Theorem 12. If K is a kernel of a homomorphism h between LA-groups W and W^{\prime}, then
(a) $K \leq W$,
(b) W / K is an LA-group,
(c) $W / K \cong \operatorname{Im}(h)$.

Proof. (a) and (b) are obvious. For (c) define a mapping $\varphi: W / K \rightarrow$ $\operatorname{Im}(h)$ by $\varphi(u \circ K)=h(u)$ for $u \in W$. Then φ is an isomorphism.

Theorem 13. If $T_{1}=T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{n}}, \quad T_{2}=T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{m}}$, where $n \neq m$, then
(1) $T_{1} \leq T_{1} \oplus T_{2}$ and $T_{1} \cap T_{2} \leq T_{2}$,
(2) $T_{1} \oplus T_{2} / T_{1}$ and $T_{2} / T_{1} \cap T_{2}$ are $L A$-semigroups,
(3) $T_{1} \oplus T_{2} / T_{1} \cong T_{2} / T_{1} \cap T_{2}$.

Proof. (1) and (2) are obvious. For (3) define a mapping $\varphi: T_{2} / T_{1} \cap T_{2} \longrightarrow$ $T_{1} \oplus T_{2} / T_{1}$ by $\varphi\left(v \circ\left(T_{1} \cap T_{2}\right)\right)=v \circ T_{1}$ for all $v \in T_{1} \cap T_{2}$. Then ϕ is an isomorphism.

Theorem 14. If W_{X} is an LA-group, and $T=T_{x_{1}} \oplus T_{x_{2}} \oplus \ldots \oplus T_{x_{n}}$, then $\left(W_{X} / T_{x_{i}}\right) /\left(T / T_{x_{i}}\right)$ is isomorphic to W_{X} / T, where $1 \leqslant i \leqslant n$.

Proof. Define a mapping $\varphi: W_{X} / T_{x_{i}} \longrightarrow W_{X} / T$, by $\varphi\left(v \circ T_{x_{i}}\right)=v \circ T$, where $v \in W_{X}$. Then φ is an epimorphism. By Theorem 12,

$$
\left(W_{X} / T_{x_{i}}\right) /(\operatorname{Ker} \varphi) \cong W_{X} / T
$$

and $\operatorname{Ker} \varphi=T / T_{x_{i}}$. Hence the proof.

References

[1] P. Holgate: Groupoids satisfying a simple invertive law, The Math. Student 61 (1992), 101 - 106.
[2] J. Jezek and T. Kepka: Free entropic groupoids, Comm. Math. Univ. Carolinae 22 (1981), 223 - 233.
[3] M. Kazim and M. Naseeruddin: On almost semigroups, Alig. Bull. Math. 2 (1972), $1-7$.
[4] T. Kepka and P. Nemec: A note on left distributive groupoids, Coll. Math. Soc. J. Bolyai 29 (1977), 467-471.
[5] Q. Mushtaq and M. S. Kamran: On left almost groups, Proc. Pak. Acad. Sci. 331 (1996), $53-55$.
[6] V. Protič and N. Stevanović: AG-test and some general properties of AbelGrassmann's groupoids, PU. M. A 4 (1995), $371-383$.

Department of Mathematics
Received February 11, 2007
Quaid-i-Azam University
Islamabad
Pakistan
E-mail: qmushtaq@isb.apollo.net.pk

