On medial-like identities

Mirko Polonijo

Abstract

The description of the quasigroups that satisfy the identities of the form $(a \cdot b) \cdot (c \cdot d) = (\pi(a) \cdot \pi(b)) \cdot (\pi(c) \cdot \pi(d))$, where π is a certain permutation on $\{a, b, c, d\}$, is given. Those quasigroups include internally medial $(ab \cdot cd = ac \cdot bd)$, externally medial $(ab \cdot cd = db \cdot ca)$ and palindromic $(ab \cdot cd = dc \cdot ba)$ quasigroups. There are six identities that are the equivalents of commutativity, and fourteen identities are the equivalents of commutative mediality.

It is well-known that a groupoid (Q, \cdot) is medial ([1]; entropic in [5]) if it satisfies

$$(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d) \tag{M}$$

i.e.

$$ab \cdot cd = ac \cdot bd \tag{M}$$

for all $a, b, c, d \in Q$. In the identity (M) we interchange the internal pair of the variables and now we could look for the identity in which the external pair is interchanged

$$ab \cdot cd = db \cdot ca \tag{M_e}$$

or the identity in which the both pairs are interchanged

$$ab \cdot cd = dc \cdot ba \,. \tag{P}$$

Therefore, we could call (M) internal mediality and (M_e) external mediality (paramediality in [2], [3]). The identity (P) we shall call palindromity.

Proposition 1. For any groupoid (Q, \cdot) , any two of the three identities (M), (M_e) and (P) imply the third one.

²⁰⁰⁰ Mathematics Subject Classification: 20N05

Keywords: Quasigroup, medial quasigroup, paramedial quasigroup.

Proof.
$$((M)\&(M_e) \Rightarrow (P))$$
 $ab \cdot cd = ac \cdot bd = dc \cdot ba.$
 $((P)\&(M_e) \Rightarrow (M))$ $ab \cdot cd = dc \cdot ba = ac \cdot bd.$
 $((P)\&(M) \Rightarrow (M_e))$ $ab \cdot cd = dc \cdot ba = db \cdot ca.$

Proposition 2. Let (Q, \cdot) be a commutative groupoid. Then (Q, \cdot) is palindromic. Further, the constraints (M) and (M_e) are equivalent, i.e. a commutative groupoid (Q, \cdot) is internally medial if and only if it is externally medial.

Proof. The first statement is obvious, and the second one follows from the previous proposition. \Box

Proposition 3. Let (Q, \cdot) be an idempotent groupoid. If it is externally medial or palindromic, then it is commutative.

Proof. Any externally medial groupoid satisfies $xx \cdot yy = yx \cdot yx$, and for palindromic quasigroup $xx \cdot yy = yy \cdot xx$ is valid. Therefore, if the groupoid is idempotent, i.e. xx = x holds for all $x \in Q$, it is commutative.

Remark 1. There are idempotent internally medial groupoids (moreover quasigroups) which are not commutative. For instance, take Z_3 and define multiplication by $x \cdot y = x + 2y$.

Proposition 4. Let (Q, \cdot) be an internally medial or externally medial or palindromic quasigroup. Its center is empty or Q.

Proof. The center is the set of all $c \in Q$ which commutes with all elements of Q. Therefore, if the center is not empty and c is in the center, then any $a, b \in Q$ can be written in the form a = cx = xc, b = cy = yc for some $x, y \in Q$. Then (M) implies $ab = cx \cdot yc = cy \cdot xc = ba$, (M_e) implies $ab = xc \cdot cy = yc \cdot cx = ba$, (P) implies $ab = cx \cdot yc = cy \cdot xc = ba$, i.e. in any case (Q, \cdot) is commutative. \Box

Proposition 5. A loop is internally medial or externally medial if and only if it is an abelian group.

Proof. (\Rightarrow) If (Q, \cdot) is internally medial or externally medial loop it is commutative, since a loop has nonempty center. Now, put the unit element for b and associativity follows. Sufficiency (\Leftarrow) is obvious.

Proposition 6. A loop is palindromic if and only if it is commutative.

Proof. Notice that a loop has nonempty center.

Corollary 1. A group is internally medial or externally medial or palindromic if and only if it is an abelian group.

Remark 2. As we know, every commutative quasigroup (groupoid) is palindromic, but the converse is not true. If we take an abelian group (Q, +), then quasigroup (Q, -) satisfies (P), but is not commutative. Notice that (Q, -) is internally medial and externally medial.

Proposition 7. A quasigroup (Q, \cdot) is palindromic if and only if exists its automorphism α such that

$$\alpha(x \cdot y) = y \cdot x$$

holds for all $x, y \in Q$.

Proof. (\Rightarrow) For arbitrary $a, b \in Q$ put ab = u, ba = v and take permutation $\alpha = L_v^{-1}R_u$ (where L_v is left translation for v and R_u is right translation for u i.e. $L_v(x) = v \cdot x$ and $R_u(x) = x \cdot u$, for any $x \in Q$).

Then we have $L_v\alpha(xy) = R_u(xy) = xy \cdot ab = ba \cdot yx = L_v(yx)$ and therefore $\alpha(xy) = yx$. Further, for any $x, y \in Q$ taking $x = x_1x_2, y = y_1y_2$ we have $\alpha(xy) = yx = y_1y_2 \cdot x_1x_2 = x_2x_1 \cdot y_2y_1 = \alpha(x_1x_2) \cdot \alpha(y_1y_2) = \alpha(x) \cdot \alpha(y)$ i.e. α is an automorphism.

(\Leftarrow) If α is an automorphism such that $\alpha(x \cdot y) = y \cdot x$ then follows $ab \cdot cd = \alpha(cd \cdot ab) = \alpha(cd) \cdot \alpha(ab) = dc \cdot ba$ i.e. quasigroup is palindromic. \Box

Proposition 8. If (Q, \cdot) is internally or externally medial quasigroup, then it satisfies Thomsen's closure condition, i.e.

$$x_1y_2 = x_2y_1$$
 and $x_1y_3 = x_3y_1$ imply $x_2y_3 = x_3y_2$

for all $x_1, x_2, x_3, y_1, y_2, y_3 \in Q$. Therefore, any internally and any externally medial quasigroup is an abelian group isotope.

Proof. Let us suppose $x_1y_2 = x_2y_1$ and $x_1y_3 = x_3y_1$ hold and take $z \in Q$. Now, for internally medial quasigroup we get

 $x_2y_3 \cdot y_1z = x_2y_1 \cdot y_3z = x_1y_2 \cdot y_3z = x_1y_3 \cdot y_2z = x_3y_1 \cdot y_2z = x_3y_2 \cdot y_1z$

and for externally medial quasigroup we have

 $x_2y_3 \cdot zx_1 = x_1y_3 \cdot zx_2 = x_3y_1 \cdot zx_2 = x_2y_1 \cdot zx_3 = x_1y_2 \cdot zx_3 = x_3y_2 \cdot zx_1.$

Hence, in both cases, $x_2y_3 = x_3y_2$.

Since Thomsen's closure condition is valid in (Q, \cdot) it follows that (Q, \cdot) is isotopic to an abelian group (cf. [1], [5]).

Proposition 9. For a quasigroup (Q, \cdot) and $e, f \in Q$ let us define binary operation + on Q by

$$xe + fy = xy$$

for all $x, y \in Q$. If (Q, \cdot) is internally or externally medial quasigroup, then (Q, +) is an abelian group.

Proof. It is well-known (and easy to check) that (Q, +) is a loop (with the unity 0 = fe). If (Q, \cdot) is internally or externally medial quasigroup then it is isotopic to an abelian group and therefore loop (Q, +) is an abelian group isotope too. Because of Albert's theorem (cf. [1]), (Q, +) is an abelian group.

Proposition 10. ([6], [4]) Let (Q, \cdot) be internally or externally medial quasigroup. Then there is an abelian group (Q, +), an element $q \in Q$ and group automorphisms α, β such that

$$x \cdot y = \alpha(x) + \beta(y) + q$$

for all $x, y \in Q$. For internally medial quasigroup $\alpha\beta = \beta\alpha$ is fulfilled, and for externally medial quasigroup $\alpha\alpha = \beta\beta$.

Proof. Let (Q, +) be the abelian group defined in the previous proposition and $\varphi(x) = R_e(x) = xe$, $\psi(x) = L_f(x) = fx$ for all $x \in Q$. For internally medial quasigroup and externally medial quasigroup we get respectively

$$\varphi(\varphi(a) + \psi(b)) + \psi(\varphi(c) + \psi(d)) = \varphi(\varphi(a) + \psi(c)) + \psi(\varphi(b) + \psi(d)),$$

$$\varphi(\varphi(a) + \psi(b)) + \psi(\varphi(c) + \psi(d)) = \varphi(\varphi(d) + \psi(b)) + \psi(\varphi(c) + \psi(a))$$

The first equality implies

$$\varphi(a+b) + \psi(\varphi(0) + \psi(0)) = \varphi(a+\psi(0)) + \psi(\varphi\psi^{-1}(b) + \psi(0)),$$

$$\varphi(\varphi(0) + \psi(0)) + \psi(c+d) = \varphi(\varphi(0) + \psi\varphi^{-1}(c)) + \psi(\varphi(0) + d),$$

and the second one gives

$$\varphi(a+b) + \psi(\varphi(0) + \psi(0)) = \varphi(\varphi(0) + b) + \psi(\varphi(0) + \psi\varphi^{-1}(a)),$$

$$\varphi(\varphi(0) + \psi(0)) + \psi(c+d) = \varphi(\varphi\psi^{-1}(d) + \psi(0)) + \psi(c + \psi(0)).$$

In both cases it follows that there are such permutations $\varphi_1, \varphi_2, \psi_1, \psi_2$ on Q for which

$$\varphi(a+b) = \varphi_1(a) + \varphi_2(b), \quad \psi(c+d) = \psi_1(c) + \psi_2(d).$$

Hence, φ and ψ are quasi-automorphisms of the abelian group (Q, +). It implies that there are automorphisms α, β of (Q, +) and $q_1, q_2 \in Q$ such that

$$\varphi(x) = \alpha(x) + q_1, \quad \psi(x) = \beta(x) + q_2.$$

Therefore, putting $q = q_1 + q_2$ we have

$$x \cdot y = \alpha(x) + \beta(y) + q$$
.

Now, for internally medial quasigroup we get

$$\alpha(\alpha(a) + \beta(b)) + \beta(\alpha(c) + \beta(d)) = \alpha(\alpha(a) + \beta(c)) + \beta(\alpha(b) + \beta(d))$$

and putting a = c = d = 0 we obtain $\alpha \beta = \beta \alpha$.

For externally medial quasigroup we have

$$\alpha(\alpha(a) + \beta(c)) + \beta(\alpha(b) + \beta(d)) = \alpha(\alpha(d) + \beta(c)) + \beta(\alpha(b) + \beta(a))$$

and putting b = c = d = 0 it follows $\alpha \alpha = \beta \beta$.

Remark 3. It is widely known that K. Toyoda (cf. [6]) proved the previously mentioned proposition for internally medial quasigroups, which is commonly named Toyoda's theorem (see also [1], [5]). The proposition was proved in [4] for externally medial quasigroups (see also [2], [3]). We gave the above proof to stress that it is the same for both types of quasigroups, as is expected.

Any of the identities (M), (M_e) , (P) is of the form

$$ab \cdot cd = (\pi(a) \cdot \pi(b)) \cdot (\pi(c) \cdot \pi(d))$$

where π is a certain permutation on $\{a, b, c, d\}$. Therefore we would like to look on such identities on the quasigroups for any permutation π . Beside the

M. Polonijo

identities $(M), (M_e), (P)$ and trivial identity $ab \cdot cd = ab \cdot cd$ which is fulfilled in any groupoid, we have the following twenty "medial-like" identities more:

$ab \cdot cd = ab \cdot dc (C_1),$	$ab \cdot cd = ba \cdot cd$	$(C_2),$
$ab \cdot cd = ba \cdot dc (C_3),$	$ab\cdot cd=cd\cdot ab$	$(C_4),$
$ab \cdot cd = cd \cdot ba (C_5),$	$ab\cdot cd=dc\cdot ab$	$(C_{6}),$
$ab \cdot cd = ac \cdot db (CM_1),$	$ab\cdot cd = ad\cdot bc$	$(CM_2),$
$ab \cdot cd = ad \cdot cb (CM_3),$	$ab \cdot cd = bc \cdot ad$	$(CM_4),$
$ab \cdot cd = bc \cdot da (CM_5),$	$ab\cdot cd=bd\cdot ac$	$(CM_6),$
$ab \cdot cd = bd \cdot ca (CM_7),$	$ab \cdot cd = ca \cdot bd$	
$ab \cdot cd = ca \cdot db (CM_9),$	$ab \cdot cd = cb \cdot ad$	$(CM_{10}),$
$ab \cdot cd = cb \cdot da (CM_{11}),$	$ab \cdot cd = da \cdot bc$	
$ab \cdot cd = da \cdot cb (CM_{13}),$	$ab \cdot cd = db \cdot ac$	

Proposition 11. For a quasigroup (Q, \cdot) and $i \in \{1, 2, \ldots, 6\}$, (C_i) is valid if and only if the quasigroup is commutative.

Proof. (\Leftarrow) is obvious. (\Rightarrow) is evident for $(C_1), (C_2), (C_4)$. For (C_3) put c = d; for (C_5) put c = b, d = a; for (C_6) put c = a, d = b.

Proposition 12. For a quasigroup (Q, \cdot) and $i \in \{1, 2, ..., 14\}$, (CM_i) holds if and only if the quasigroup is both commutative and internally medial.

Proof. $((CM_1), \Leftarrow)$ is obvious.

 $((CM_1), \Rightarrow)$ Put c = b and commutativity follows; hence (M).

 $((CM_2), \Leftarrow) ab \cdot cd = ba \cdot cd = bc \cdot ad = ad \cdot bc.$

 $((CM_2), \Rightarrow)$ Put d = b and commutativity follows; therefore $ab \cdot cd = ba \cdot cd = bd \cdot ac = ac \cdot bd$.

 $((CM_3), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_3) follows.

 $((CM_3), \Rightarrow)$ Put c = a and commutativity follows; hence (CM_2) and therefore (M).

 $((CM_4), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_4) follows.

 $((CM_4), \Rightarrow)$ Put c = a and commutativity follows; hence (CM_2) and therefore (M).

 $((CM_5), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_5) follows.

 $((CM_5), \Rightarrow)$ Because of $ab \cdot cd = bc \cdot da = cd \cdot ab$ commutativity follows; hence (CM_2) and therefore (M).

 $((CM_6), \Leftarrow)$ is obvious.

 $((CM_6), \Rightarrow)$ Put c = b and commutativity follows; hence (M).

 $((CM_7), \Leftarrow)$ is obvious.

 $((CM_7), \Rightarrow)$ Put d = a and commutativity follows; hence (M).

 $((CM_8), \Leftarrow)$ is obvious.

 $((CM_8), \Rightarrow)$ Put c = b and commutativity follows; hence (M).

 $((CM_9), \Leftarrow)$ is obvious.

 $((CM_9), \Rightarrow)$ Put d = a and commutativity follows; hence (M).

 $((CM_{10}), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_{10}) follows.

 $((CM_{10}), \Rightarrow)$ Put d = b and commutativity follows; hence (CM_2) and therefore (M).

 $((CM_{11}), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_{11}) follows.

 $((CM_{11}), \Rightarrow)$ Put c = a and commutativity follows; hence (CM_2) and therefore (M).

 $((CM_{12}), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_{12}) follows.

 $((CM_{12}), \Rightarrow)$ Because of $ab \cdot cd = da \cdot bc = cd \cdot ab$ commutativity follows; hence (CM_2) and therefore (M).

 $((CM_{13}), \Leftarrow)$ Commutative internally medial quasigroup satisfies (CM_2) , hence (CM_{13}) follows.

 $((CM_{13}), \Rightarrow)$ Put d = b and commutativity follows; hence (CM_2) and therefore (M).

 $((CM_{14}), \Leftarrow)$ is obvious.

 $((CM_{14}), \Rightarrow)$ Put d = a and commutativity follows; hence (M).

Corollary 2. For a quasigroup (Q, \cdot) and $i \in \{1, 2, ..., 14\}$, (CM_i) is valid if and only if the quasigroup is both commutative and externally medial.

Corollary 3. ([3]) If (CM_i) is fulfilled in a quasigroup (Q, \cdot) for some $i \in \{1, 2, ..., 14\}$, i.e. if (Q, \cdot) is internally or externally medial quasigroup which is commutative, then there is an abelian group (Q, +), an element $q \in Q$ and group automorphisms α such that

$$x \cdot y = \alpha(x+y) + q$$

is valid for all $x, y \in Q$.

References

- V. D. Belousov: Osnovy teorii kvazigrupp i lup, (Russian), Nauka, Moskva, 1967.
- [2] J. R. Cho, J. Ježek, T. Kepka: Paramedial groupoids, Czechoslovak. Math. J. 49 (1999), 277 - 290.
- [3] W. Förg, A. Krapež: Equations which preserve the height of variables, Aequationes Math, to appear.
- [4] P. Nemec, T. Kepka: *T*-quasigroups, Part I, Acta Univ. Carol. Math. Phys. 12 (1971), 39 - 49.
- [5] H. O. Pflugfelder: Quasigroups and Loops: Introduction, Sigma Ser. in Pure Math, vol. 7, Heldermann Verlag, Berlin 1990.
- [6] K. Toyoda: On axioms of linear functions, Proc. Imp. Acad. Jap. 17 (1941), 221 – 227.

Received March 13, 2005

University of Zagreb Department of Mathematics Bijenička c. 30 10000 Zagreb Croatia