Computer Science Journal of Moldova, vol.9, no.3(27), 2001

Algorithms for minimum flows *

Eleonor Ciurea Laura Ciupal

Abstract

We present a generic preflow algorithm and several implemen-
tations of it, that solve the minimum flow problem in O(n?m)
time.

AMS Mathematics Subject Classification: 90B10, 90C35,
05C35, 68R10

Key words: Network flow, network algorithms, minimum
flow, preflow, residual capacity, distance label.

1 Minimum Flow Problem

We consider a capacitated network G = (N, A, [, ¢, s,t) with a non-
negative capacity c(i,j) and with a nonnegative lower bound (i, 7)
associated with each arc (i,j) € A. We distinguish two special nodes
in the network G: a source node s and a sink node ¢t. A flow is a
function f: A — R satisfying the next conditions:

fl,N)— f(N,i) = 0: 7 ;é_s,t (la)
—v, 1=1
1(i,7) < f(i,g) <cli,g) V(,j) €A (1b)

for some v > 0. We refer to v as the value of the flow f. The minimum
flow problem is to determine a flow f for which v is minimized.

(©2001 by E. Ciurea, L. Ciupal
The paper was prepared after the report presented at the I Conference of the
Mathematical Society of Moldova

275

E. Ciurea, L. Ciupal

For solving the minimum flow problem we will use the following
definitions: A preflow is a function f : A — R, that satisfies (1b) and

fli,N)— f(N,i) <0, Vie N\ {s,t} (2)

The algorithm that we will describe next maintains a preflow at
each intermediate stage. For any preflow f, we define the deficit of the
node ¢ as

e(i) = f(i,N) — f(N,i), VieN (3)

We refer to a node i with e(i) = 0 as balanced. The residual capacity
r(i,7) of any arc (i,7) € A, with respect to a given preflow f, is given
by r(i,7) = c(4,7) — f(4,?) + f(i,5) — l(i,7). The residual capacity of
the arc (7, j) represents the maximum amount of flow from the node i
to node j that can be cancelled. The network Gy = (N, Af) consisting
only of the arcs with positive residual capacity is referred to as the
residual network (with respect to preflow f).

A cut is a partition of the node set IV into two subsets S and
S = N —S; we represent this cut using the notation [S, S]. We refer to
acut [S,S] asas—t cutif s€ S andt e S. We refer to an arc (i,5)
with i € S and j € S as a forward arc of the cut, and an arc (i, j) with
i €S and j € S as a backward arc of the cut. Let (S, S) denote the set
of forward arcs in the cut, and let (S,S) denote the set of backward
arcs.

We define the capacity c[S, S] of a s —t cut [S, S] as the sum of the
lower bounds of the forward arcs minus the sum of the capacities of the
backward arcs. That is, ¢[S,S] = I(S,S) — ¢(S, S) We refer to a s —t
cut whose capacity is maximum among all s — ¢t cuts as a mazimum
cut.

Theorem 1.1 (Min-Flow Max-Cut Theorem). The minimum
value of the flow from a source node s to a sink node t in a capacitated
network with nonnegative lower bounds equals the mazimum capacity
among all s —t cuts.

This theorem can be proved in a manner similar to the proof of the
Max-Flow Min-Cut Theorem.

276

Algorithms for minimum flows

We refer to a path in G from the source node s to the sink node t as a
decreasing path if it consists only in arcs with positive residual capacity.
Clearly, there is a one-to-one correspondence between decreasing paths
in G and directed paths from s to ¢ in Gy. Given a decreasing path P
in GG, we can decrease the current flow f in the following manner:

f(i,3) —r, if(i,5) is a forward arc in P
fli,79) =1 f(i,j3)+r, if(i,7) is a backward arc in P
f(i,j), if(i,5) is not an arc in P

where r = min{r(i,j) | (i,j) € P} is the residual capacity of the
decreasing path P.

Theorem 1.2. (Decreasing Path Theorem) A flow f* is a mini-
mum flow if and only if the residual network Gy« contains no directed
path from the source node to the sink node.

This theorem can be proved in a manner similar to the proof of the
Increasing Path Theorem.

The minimum flow problem in a network can be solved in two
phases:
(1) establish a feasible flow
(2) from a given feasible flow, establish the minimum flow

Establishing a Feasible Flow

The problem of determining a feasible flow consists in finding a
function f : A — R4 that satisfies conditions (la) and (1b). First,
we transform this problem into a circulation problem by adding an arc
(t, s) of infinite capacity and zero lower bound. This arc carries the flow
sent from node s to node t back to node s. Clearly, the minimum flow
problem admits a feasible flow if and only if the circulation problem
admits a feasible circulation. Because these two problems are equiva-
lent, we focus on finding a feasible circulation if it exists. The feasible
circulation problem is to identify a flow f satisfying these following
constraints:

277

E. Ciurea, L. Ciupal

fli,N)— f(N,i) =0, forevery node i€ N (4a)
1(i,7) < f(i,7) <c(i,j), foreveryarc (i,j) € A (4b)

By replacing f(i,5) = f/(i,7) + 1(i,j) in (4a) and (4b) we obtain
the following transformed problem:

f'(i,N) — f'(N,i) = b(i), for every nodei € N (5a)

0< f'(i,§) < ei,f) — U(i,j), for every arc (i,j) € A (5b)

with the supplies/demands b(-) at the nodes defined by b(i) = I[(N, i) —
l(i,N).

Clearly, > ;o b(7) = 0. We can solve this feasible flow problem by
solving a maximum flow problem defined in a transformed network. We
introduce two new nodes: a source node s’ and a sink node ¢'. For each
node i with b(7) > 0 we add source arc (s',i) with capacity b(7) and for
each node ¢ with b(i) < 0 we add sink arc (z,t') with capacity —b(4).
Than we solve a maximum flow problem in this transformed network.
If the maximum flow saturates all the source and the sink arcs, then
the initial problem has a feasible solution (which is the restriction of
the maximum flow that saturates all the source and sink arcs to the
initial set of arcs A); otherwise it is infeasible.

Establishing a Minimum Flow

There are two approaches for solving maximum flow problem: (1)
using augmenting path algorithms and (2) using preflow-push algo-
rithms. From the first algorithms we can easily obtain algorithms for
minimum flow by replacing augmenting paths with decreasing paths.
The second type of algorithms for maximum flow does not permit such
an easy transformation. In the next section we present a generic preflow

278

Algorithms for minimum flows

algorithm for minimum flow and we suggest several implementations
of it.

2 Generic Preflow Algorithm for Minimum
Flow

Before describing the generic preflow algorithm, we introduce some
defi-nitions. In the residual network Gy, the distance functiond : N —
N with respect to a given preflow f is a function from the set of nodes
to the nonnegative integers. We say that a distance function is valid if
it satisfies the following conditions:

d(s)=0 (6a)

d(j) <d(i)+1, for every arc (i,j) € Ay (6b)
We refer to d(i) as the distance label of node 1.

Lemma 2.1 (a) If the distance labels are valid, the distance label d(i)
1s a lower bound on the length of the shortest directed path from node
s to node i in the residual network.

(b) If d(t) > n, the residual network contains no directed
path from the source node to the sink node.

Proof. (a) Let P = (s = iy,i2,...,0k,ik+1 = 9) be any path of
length k from node s to node ¢ in the residual network. The validity
conditions imply that:

d(ia) < d(i1)) + 1 = d(s) + 1 =1
d(’L3) < d(’LQ) + 1 < 2
d(ia) < d(is) + 1 < 3
d(zkH) < d@ig) + 1 < &k

(b) Since d(t) is a lower bound on the length of the shortest
path from s to t in the residual network and no directed path can

279

E. Ciurea, L. Ciupal

contain more than (n—1) arcs, imply that if d(¢) > n, then the residual
network contains no directed path from s to ¢t. m

We say that the distance labels are ezact if for each node i,d(7)
equals the length of the shortest path from node s to node i in the
residual network. We refer to an arc (7,) from the residual network
as an admissible arc if d(j) = d(i) 4+ 1; otherwise it is inadmissible. We
refer to a path from node s to node ¢ consisting entirely of admissible
arcs as an admissible path.

Lemma 2.2 An admissible path is a shortest decreasing path from the
source to the sink.

Proof. Since every arc (7, 7) in an admissible path P is admissible,
the residual capacity of this arc and the distance labels of its end nodes
satisfy the following conditions:

(1) r(,5)>0

(2) d(j) =d(i)+1

Condition (1) implies that P is a decreasing path and condition (2)
implies that if P contains k arcs then d(t) = k. Since d(t) is a lower
bound on the length of any path from the source to the sink in the
residual network (from Lemma 2.1 (a)), the path P must be a shortest
decreasing path. m

We refer to a node i with e(i) < 0 as an active node. We adopt the
convention that the source node and the sink node are never active.

The generic algorithm for the minimum flow problem is the follow-
ing:

Generic Algorithm;
Begin
let f be a feasible flow in network G;
compute the exact distance labels d(-) in the residual network G'y;
if ¢ is not labeled then
f is a minimum flow
else
begin
for each arc (i,t) € A do

280

Algorithms for minimum flows

Fi,t) = 10, 1);
d(t) :=n;
while the network contain an active node do
begin
select an active node j;
if the network contain an admissible arc (i, j) then
pull g = min(—e(j),7(4,7)) units of flow from node

to node i;
else d(j) = min{d(7) | (1,7) € Ar} +1
end
end
end.

A pull of g units of flow from node j to node ¢ increases both
e(j) and r(j,7) by ¢ units and decreases both e(i) and r(i,j) by ¢
units. We refer to the process of increasing the distance label of node
g, d(j) = min{d(j) | (i,7) € Ar} + 1, as a relabel operation. This
algorithm begins with a feasible flow and sends back as much flow,
as it is possible, from the sink node to the source node. Because the
algorithm decreases the flow on individual arcs, it does not satisfy
the mass balance constraint (la) at intermediate stages. In fact, it is
possible that the flow entering in a node exceeds the flow leaving from
it. The basic operation of this algorithm is to select an active node and
to send the flow entering in it back, closer to the source. For measuring
closeness, we will use the distance labels d(-). Let j be a node with
strictly negative deficit. If it exists an admissible arc (4, j), we pull flow
on this arc; otherwise we relabel the node j so that we create at least
one admissible arc.

Theorem 2.3 The generic algorithm computes correctly a minimum

flow.

Proof. The algorithm terminates when the network does not con-
tain any active nodes, therefore the current preflow is a flow. Since
d(t) := n, the residual network contains no directed path from the
source node to the sink node and Theorem 1.2 implies that the ob-

281

E. Ciurea, L. Ciupal

tained flow is a minimum flow. m

Actually, the algorithm terminates with optimal residual capacities.
From these residual capacities we can determine a minimum flow in
several ways. For example, we can make a variable change: For all

ares (i,7), let ¢(4,5) = c(i,5) — (i, 5), r'(4,5) = r(i,5) and f'(i,5) =
f(i,7) —1(4,7). The residual capacity of arc (i,) is

Equivalently,
T/(ivj) = C,(jai) - f,(]vz) + f/(za])
Similarly,
r/(ja Z) = C/(ivj) - f/('l7]) + f/(jvz)
We can compute the value of f’ in several ways; for example
f'(i,§) = max(r'(i, j) — €(j,1),0)
and
f,(ja Z) = max(r'(j, 7’) - C,(iaj)’ 0)

Converting back into the original variables, we obtain the following
expressions:

f(lvj) = l(lvj) + max(r(@j) - C(j7i) + l(]7l)’0)
and
f(j,Z) = l(]J) + max(r(j,i) - C(iaj) + l(l,]),O)

We refer to a pull of flow from node j to node i as a cancelling pull
if it deletes the arc (7,7) from the residual network; otherwise it is a
noncancelling pull. After the initializations the nodes adjacent to the
sink have negative deficits, so the algorithm can select an active node.

Complexity of the Algorithm

Lemma 2.4 For each node i, d(i) < 2n.

282

Algorithms for minimum flows

Proof. Each node i with negative deficit is connected to node t by a
directed path P from t to ¢ in the residual network. Since d(t) = n and
d(l) < d(k) + 1, for each admissible arc (k,1), d(i) <d(t) + |P| < 2n.
]

Since each time the algorithm relabels a node i, d(i), increases at
least 1 unit, we have established the following result:

Lemma 2.5 Fach distance label increases at most n times. Conse-
quently, the total number of relabel operations is at most 2n>.

Lemma 2.6 The algorithm performs at most nm cancelling pulls.

Proof. We will show that between two consecutive cancelling of an
arc (i,7) both d(i) and d(j) must increase by at least 2 units. Since the
algorithm increases each distance label at most 2n times, this result
would imply that the algorithm could drop any arc from the residual
network at most n times. Consequently, the total number of cancelling
pulls would be at most nm.

Suppose that a pull drops the arc (7, j) from the residual network.
Since the arc (7,) is admissible,

Before the algorithm cancels this arc again, it must pull the flow
from node i to node j. At this time the distance labels d’(i) and d'(j)
satisfy the equality
d'(i)=d(j)+1

In the next cancelling of arc (i, j) we must have
d'(j) = d"(i) + 1.

By using these relations, we obtain

d'(j)=d"(i)) +1>d' (i) +1>d(j)+2>d(j)+2

and
d'(iy=d"(j)—1>d()+2—-1=d(i)+2. =

283

E. Ciurea, L. Ciupal

Lemma 2.7 The generic algorithm performs O(n?m) noncancelling
pulls.

Proof. Let I be the set of active nodes. We consider the potential
function ® = }7,;d(i). Since |I| < n and d(i) < 2n for all i € I, the
initial value of ® is at most 2n?. At the termination of the algorithm,
® = (0. During the execution of the algorithm, one of the following two
cases must apply:

Case 1: The algorithm is unable to find an admissible arc, in which case
the distance label of node j increases by € > 1 units. This operation
increases ® by € units. Since the total increase in d(j) for each node j
throughout the execution of the algorithm is bounded by 2n, the total
increase in ® due to increases in distance labels is bounded by 2n?.
Case 2. The algorithm is able to identify an admissible arc and it
can pull flow from node j to node i. If the pull cancels the arc (i,)
then it might create a new deficit at node ¢, thereby increasing the
number of active nodes by 1 and increasing ® by d(4), which could be
as much as 2n per pull and so 2n?m over all cancelling pulls. Note that
a noncancelling pull from node j to node i does not increase | I|. The
noncancelling pull decreases ® by d(j) since j becomes inactive, but it
simultaneously increases ® by d(i) = d(j) — 1 if the pull causes node
i to become active, the total decrease in ® being of value 1. If node
i was active before the pull, ® decreases by an amount equal to d(j).
Consequently, the net decrease in ® is at least 1 unit per cancelling
pull. Since the initial value of ® is at most 2n?, the maximum possible
increase in ® is 2n?+ 2n%m, each cancelling pull decreases ® by at least
1 unit and ® always remains nonnegative, the algorithm can perform
at most 2n? + 2n? + 2n?m = O(n?m) noncancelling pulls. m

Theorem 2.8 The generic algorithm runs in O(n*m) time.

Proof. We can maintain the set L of active nodes organized as
simply or doubly linked list, so that the algorithm can add, delete or
select elements from it in O(1) time. Consequently, in view of lemmas
above, it is easy to implement the generic algorithm in O(n?m) time.
]

We suggest a practical improvement. We define a minimum preflow

284

Algorithms for minimum flows

as a preflow with the minimum possible flow outgoing from the source
node.The generic algorithm for minimum flow performs pull operations
and relabel operations at active node until all the deficit reaches the
source node or returns to the sink node. Typically, the algorithm estab-
lishes a minimum preflow long before it establishes a minimum flow.
After establishing a minimum preflow, the algorithm performs rela-
bel operations at active nodes until their distance label are sufficiently
higher than n so it can pull flow back to the sink node. We can modify
the generic algorithm in the following manner: we maintain a set N’
of nodes that satisfy the property that the residual network contains
no path from the source node to a node in N’. Initially, N’ = {t}. We
add nodes to N’ in the following way: let numb (k) be the number of
nodes whose distance label is k. We can update numb(-) in O(1) steps
per relabel operation. Moreover, whenever numb (k') = 0 for some £’
any node j with d(j) > k' is disconnected from the set of nodes i with
d(i) < K’ in the residual network. So, we can add any node j with
d(7) > k' to the set N'. We do not perform pull or relabel operations
for nodes in N and terminate the algorithm when all nodes in N\ N’
are inactive. At this point, the current preflow is a minimum preflow.
By the flow decomposition theory, any preflow f can be decomposed
into a sequence of at most O(n +m) paths and cycles. Let S be such a
set of augmenting paths and cycles. Let Sy C S be a set of paths which
start at a deficit node and terminate at sink node; let fO be the flow
contributed by these path flows. Then f* = f + f° will be a minimum
flow.

3 Several Implementations of the Generic
Preflow Algorithm

The generic algorithm does not specify a rule for selecting active
nodes. By specifying different rules we can develop many different al-
gorithms, which can be better than the generic algorithm. For example,
we could select active nodes in FIFO order, or we could always select
the active node with the greatest distance label, or the active node with

285

E. Ciurea, L. Ciupal

the minimum distance label, or the active node selected most recently
or least recently, or the active node with the largest excess or we could
select any of active nodes with a sufficiently large excess.

FIFO Preflow Algorithm for MinimumFlow

In an iteration, the generic algorithm for minimum flow selects a
node, say node i, and performs a cancelling or a noncancelling pull,
or relabels the node. If the algorithm performs a cancelling pull, then
node ¢ might still be active, but it is not mandatory for the algorithm
to select this node again in the next iteration. We can incorporate
the rule that whenever the algorithm selects an active node, it keeps
pulling flow from that node until either its deficit becomes zero or the
algorithm relabels the node. We refer to a sequence of cancelling pulls
followed either by a noncancelling pull or a relabel operation as a node
examination.

The FIFO preflow algorithm for minimum flow examines active
nodes in FIFO order. The algorithm maintains the set L of the active
nodes as a queue. It selects an active node i from the front of L,
performs pulls from this node and adds newly active nodes to the rear
of L. The algorithm terminates when the queue of active nodes is
empty.

The FIFO preflow algorithm for the minimum flow problem is the
following:

FIFO Preflow Algorithm;

Begin
let f be a feasible flow in network G}
compute the exact distance labels d(-) in the residual network G'y;
if ¢ is not labeled then

f is a minimum flow

else
begin
L :={;
for each arc (i,t) € A do
begin

286

Algorithms for minimum flows

FG,8) = 1, 1)
if e(i) < 0 and (i # s) then
add 7 to the rear of L;
end;
d(t) :=n;
while L # () do
begin
remove the node j from the front of the queue L;
pull / relabel (j);
end
end
end.
procedure pull/relabel (j);
begin
select the first arc (7,) that enters in node j;
B:=1;
repeat
if (4, j) is an admissible arc then
begin
pull g = min(—e(j),r(7,7)) units of flow from node j to node i;
ifi¢ L and i # s and i # t then
add 7 to the rear of L;
end;
if e(j) < 0 then
if (7,7) is not the last arc that enters in node j then
select the next arc (i, 7) that enters in node j
else begin
a(j) = min{d(i) | (5,7) € Ag} + 1
B:=0;
end;
until (e(j) < 0) or (B = 0);
if e(j) < 0 then
add j to the rear of L;
end;

287

E. Ciurea, L. Ciupal

Theorem 3.1 The FIFO preflow algorithm computes correctly a min-
imum, flow.

Proof. The correctness of the FIFO preflow algorithm follows from
the correctness of the generic preflow algorithm (Theorem 2.3). m

Theorem 3.2 The FIFO preflow algorithm runs in O(n?) time.

Proof. To analyze the worst-case complexity of this algorithm, we
partition the total number of node examinations into different phases.
The first phase consists of node examinations for those nodes that be-
come active during the initialization at the beginning of the algorithm.
The second phase consists of the node examinations of all the nodes
that are in the queue after the algorithm has examined the nodes in
the first phase. The third phase consists of the node examinations of
all the nodes that are in the queue after the algorithm has examined
the nodes in the second phase, and so on.

To bound the number of phases, we consider the difference between
the initial and final value of the potential function ¢ = max{d(i) | ¢ is
active } during a phase. We consider two cases.

Case 1: The algorithm performs at least one relabel operation during
a phase. Then ¢ might increase by as much as the maximum increase
in any distance label. Lemma 2.5 implies that the total increase in ¢
is at most 2n?.

Case 2: The algorithm performs no relabel operation during a phase.
In this case the deficit of every node that was active at the beginning of
the phase moves to nodes with smaller distance labels. Consequently,
¢ decreases by at least 1 unit.

Since the initial value of ¢ is at most n, combining cases 1 and 2,
we find that the total number of phases is at most 2n? + n. In each
phase, any node is examined at most once and, during each node exam-
ination, the algorithm performs at most one noncancelling pull. Since
the number of phases is at most 2n? + n, the number of noncancelling
pulls is O(n?). Therefore, the FIFO preflow algorithm runs in O(n?)
time because the bottleneck operation in the generic preflow algorithm
is the number of noncancelling pulls. m

288

Algorithms for minimum flows

Highest Label Preflow Algorithm for Minimum Flow

The highest-label preflow algorithm always pulls flow from an ac-
tive node with the highest distance label. Let h = max{d(i) | 7 is
active }. The algorithm first examines nodes with distance label equal
to h and pulls the flow from these nodes to nodes with distance labels
equal to h — 1 and, from these nodes, to the nodes with distance labels
equal to h — 2 and so on until the algorithm relabels a node or it has
exhausted all the active nodes. When it has relabeled a node, the algo-
rithm repeats the same process. If the algorithm does not relabel any
node during n consecutive node examinations, all the deficit reaches the
source or the sink and the algorithm terminates. Since the algorithm
performs at most 2n? relabel operations, we obtain a bound of O(n?)
on the number of node examinations. Since each node e-xamination
entails at most one noncancelling pull, the highest-label preflow algo-
rithm performs O(n?) noncancelling pulls. Therefore, it runs in O(n?)
time.

The highest-label preflow algorithm is the same as the FIFO preflow
algorithm, with the set L implemented not as a queue, but as a priority
queue.

References

[1] Ahuja, R., Magnanti, T., Orlin, J.: Network Flow. Theory, Algo-
rithms and Applications. New Jersey, Prentice Hall, 1993.

[2] Ahuja, R., Orlin, J., Tarjan, R.: Improved Time Bounds for the
Mazimum Flow Problem. STAM Journal of Computing, 18 (1988),
pp.939-954.

[3] Ahuja, R., Orlin, J.: A Fast and Simple Algorithm for the Mazimum
Flow Problem. Operation Research, 37 (1988), pp.748-759.

[4] Ahuja, R., Magnanti, T., Orlin, J.; Some Recent Advances in Net-
work Flows. SIAM Review, 33 (1990), pp.175-219.

289

E. Ciurea, L. Ciupal

[5] Goldberg, A. V.: A New Max-Flow Algorithm. Cambridge, MIT,
1985.

[6] Goldberg, A. V., Tarjan, R.E.: A New Approach to the Mazimum
Flow Problem. Journal of ACM, 35 (1988), pp.921-940.

[7] Karzanov, A.V.: Determining the Mazimum Flow in a Network by
the Method of Preflows. Soviet. Math. Dokl., 15 (1974), pp.434-437.

[8] Tarjan, R. E.: A Simple Version of Karzanov’s Blocking Flow Al-
gorithm, 1984.

Eleonor Ciurea, Laura Ciupal, Received September 25, 2001

?Transilvania” University,
Brasov, Romania

290

