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Integer programming models for colorings of
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Abstract

A mixed hypergraph H = (X, C,D) consists of the vertex
set X and two families of subsets: the family C of C-edges and
the family D of D-edges. In a coloring, every C-edge has at least
two vertices of common color, while every D-edge has at least
two vertices of different colors. The largest (smallest) number of
colors for which a coloring of a mixed hypergraph H using all the
colors exists is called the upper (lower) chromatic number and is
denoted χ̄(H) ( χ(H) ).

We consider integer programming models for colorings of
mixed hypergraphs in order to show that algorithms for opti-
mal colorings may be transformed and used for finding optimal
solutions of the respective integer programming problems.

1 Mixed hypergraphs

A mixed hypergraph is a triple H = (X, C,D), where X is the vertex
set, and each of C, D is a family of subsets of X, called C-edges and
D-edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping from X
into a set of k colors so that each C-edge has at least two vertices of a
common color and each D-edge has at least two vertices of different
colors. That means that in every coloring no C-edge is polychromatic
(i.e. no C-edge has all the colors different) and no D-edge is monochro-
matic. A mixed hypergraph is k-colorable if it has a coloring with at
most k colors. If H admits no coloring then it is called uncolorable. A
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strict k-coloring of a mixed hypergraph is a proper coloring using all k
colors.

The minimum number of colors in a coloring of H is its lower chro-
matic number χ(H); the maximum number of colors in a strict coloring
is its upper chromatic number χ̄(H).

Classical coloring theory of hypergraphs with edge set E [1] is the
special case where the family of C-edges is empty and we color the
mixed hypergraph (X, ∅, E).

Coloring of mixed hypergraphs is a new topic introduced in [3, 4].

2 Integer programming models

There are several ways to formulate the colorability problem for mixed
hypergraphs as an integer programming problem.

Consider H = (X, C,D), where X = {x1, x2, . . . , xn}, n ≥ 1, C =
{C1, C2, . . . , Cl}, l ≥ 1, and D = {D1, D2, . . . , Dm}, m ≥ 1. Let us
have n colors. and A = (αij) be a (0,1)-matrix allocating vertices to
colors in such a way that

αij =
{

1 if vertex xi is colored with colorj,
0 otherwise.

Then the condition that each vertex receives exactly one color is:

n∑

j=1

αij = 1, i = 1, n. (1)

The constraints for proper coloring of D-edges are the following:

∑

i∈Dk

αij ≤ |Dk| − 1, ∀Dk ∈ D, j = 1, n. (2)

The left side of the inequality represents the number of vertices in a
D-edge Dk colored with the color j. The right side assures that at least
two vertices of Dk have different colors.
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The constraints for proper coloring of C-edges have the form:

n∑

j=1

max
i∈Ck

αij ≤ |Ck| − 1, ∀Ck ∈ C. (3)

The left side of the inequality equals to the number of different colors
used in the C-edge Ck since

max
i∈Ck

αij =
{

1 if the color j is used in the coloring of vertex xi,
0 otherwise.

The right side provides that at least two vertices of each C-edge have
a common color.

In this way, the proper coloring of a mixed hypergraph H with
at most n colors is completely described by the relations 1-3 where
αij ∈ {0, 1}.

Integer programming model for the problem of finding the lower
chromatic number may be formulated in the following way:

minimize z =
n∑

j=1

max
i∈X

αij , (4)

subject to the following constraints:




n∑

j=1

αij = 1, i = 1, n;

∑

i∈Dk

αij ≤ |Dk| − 1, ∀Dk ∈ D, j = 1, n;

n∑

j=1

max
i∈Ck

αij ≤ |Ck| − 1, ∀Ck ∈ C;

αij ∈ {0, 1}.

(5)

The last problem reduces to the following integer linear program-
ming problem:
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minimize z′ =
n∑

j=1

ηj

subject to the constraints:





n∑

j=1

αij = 1, i = 1, n;

∑

i∈Dk

αij ≤ |Dk| − 1, ∀Dk ∈ D, j = 1, n;

n∑

j=1

ηCkj ≤ |Ck| − 1, ∀Ck ∈ C;

αij ≤ ηCkj , ∀Ck ∈ C, i = 1, n, j = 1, n;

αij ≤ ηj , i = 1, n, j = 1, n,

αij ∈ {0, 1}, ηj , ηCkj ∈ {0, 1}.

(7)

Theorem 1 If α∗ij , i = 1, n, j = 1, n make the optimal solution of the
problem (4),(5), then α∗ij , i = 1, n, j = 1, n, η∗Ckj = max

i∈Ck

α∗ij , Ck ∈
C, j = 1, n; η∗j = max

i∈X
α∗ij , j = 1, n make the optimal solution of

the problem (6), (7). If α◦ij , i = 1, n, j = 1, n, η◦
Ckj , Ck ∈ C, j =

1, n, η◦j , j = 1, n make the optimal solution of the problem (6), (7),
then α◦ij , i = 1, n, j = 1, n make the optimal solution of the problem
(4), (5).

Proof. Let α∗ij , i = 1, n, j = 1, n is optimal solution of the problem
(3), (4). Then α∗ij , i = 1, n, j = 1, n, η∗Ckj = max

i∈Ck

α∗ij , Ck ∈ C, j =

1, n; η∗j = max
i∈X

α∗ij , j = 1, n satisfies the conditions (7). Consequently

if α◦ij , i = 1, n, j = 1, n, η◦
Ckj , Ck ∈ C, j = 1, n, η◦j , j = 1, n is the
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optimal solution of the problem (6), (7), then

z0 =
n∑

j=1

η◦j ≤
n∑

j=1

maxα∗ij = z∗.

Let us show that it is impossible to have the strict inequality in
this relation. If that would be so, then it would mean that α∗ij , i =
1, n, j = 1, n do not make the optimal solution of the problem (3), (4),
because α◦ij satisfies (5). The last is implied by:





n∑

j=1

α◦ij = 1, i = 1, n;

∑

i∈Dk

α◦ij ≤ |Dk| − 1, Dk ∈ D, j = 1, n;

n∑

j=1

max
i∈Ck

α◦ij ≤
n∑

i=1

η◦Ckj ≤ |Ck| − 1, ∀Ck ∈ C;

α◦ij ∈ {0, 1}, ηCkj ∈ {0, 1}.
The value of the goal function for this solution is

z0 =
n∑

j=1

maxα◦ij ≤
n∑

j=1

η◦j <
n∑

j=1

maxα∗ij = z∗

This contradicts the fact that α∗ij , i = 1, n, j = 1, n make the optimal
solution of the problem (3), (4).

The second part of the theorem is proved by analogy. Let α◦ij , i =
1, n, j = 1, n η◦

Ckj , Ck ∈ C, j = 1, n, η◦j , j = 1, n make the optimal
solution of the problem (6), (7). Then it is easy to check that numbers
α◦ij , i = 1, n, j = 1, n satisfy the conditions (3) (see (8)). Therefore, if
we assume the contrary, i.e. that α◦ij , i = 1, n, j = 1, n do not make

the optimal solution of the problem (4). (
n∑

j=1

α◦ij >
n∑

j=1

maxα∗ij) , then
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we obtain the contradiction to the fact that α◦ij , η◦
Ckj , η◦j is not the

optimal solution of the problem (6), (7), because

n∑

j=1

η∗Ckj =
n∑

j=1

max
i∈Ck

α∗ij , <
n∑

j=1

max
i∈Ck

α◦ij .

The theorem is proved. ¤

Now we consider the problem: does a mixed hypergraph H =
(X, C,D) admit at least one strict coloring with p colors, where
p ≤ n ?

Theorem 2 Mixed hypergraph H = (X, C,D) is strictly colorable
with p colors if and only if the following system admits an integer
solution: 




p∑

j=1

αij = 1, i = 1, n;

∑

i∈X

αij ≥ 1, j = 1, p;

∑

i∈Dk

αij ≤ |Dk| − 1, j = 1, p;

p∑

j=1

ηCkj ≤ |Ck| − 1, ∀Ck ∈ C;

αij ≤ ηCkj , i ∈ Ck, ∀Ck ∈ C, j = 1, p;

αij ∈ {0, 1}, ηCkj ∈ {0, 1}.

(8)

Proof. The condition that every vertex xi ∈ X is colored, is ex-
pressed by

p∑

j=1

αij = 1, i = 1, n.
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The condition that every color from the set of p colors {1, 2, . . . , p} is
used (the coloring is strict), is expressed by:

∑

i∈X

αij ≥ 1, j = 1, p

We don’t care here about which p colors from the set {1, 2, . . . , n} colors
are really used: if some strict coloring with the other subset of colors
exists then we can permute the colors and obtain the strict coloring
with the first p colors.
The inequalities ∑

i∈Dk

αij ≤ |Dk| − 1, j = 1, p

express that all D-edges are colored properly. The proper coloring of
C-edges is written in the following way:

p∑

j=1

max
i∈Ck

αij ≤ |Ck| − 1, ∀Ck ∈ C.

Therefore the strict coloring using p colors has the following constraints:





p∑

j=1

αij = 1, i = 1, n;

∑

i∈X

αij ≥ 1, j = 1, p;

∑

i∈Dk

αij ≤ |Dk| − 1, j = 1, p;

p∑

j=1

max
i∈Ck

αij ≤ |Ck| − 1, ∀Ck ∈ C;

αij ∈ {0, 1}.
It is easy to check that this system has the solution if and only if the
system (8) has one. ¤
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If follows from the theorem 2 that the problem of finding the upper
chromatic number is reduced to the problem of finding the maximal
number p for which (8) has the solution.

3 Fractional colorings

The following model is taken from [2]. We show that not only the
colorability but also the upper and lower chromatic numbers of a mixed
hypergraph can be simultaneously determined by the solutions of an
integer programming problem.

Let H = (X, C,D) be a mixed hypergraph, where X = {x1, x2, . . .,
xn}, n ≥ 1, C = {C1, C2, . . . , Cl}, l ≥ 1, and D = {D1, D2, . . . , Dm},
m ≥ 1.

A set S ⊂ X is called D-stable if it contains no D-edge; and S
is called C-stable if it contains no C-edge as a subset. We denote by
SC and SD the collection of all C–stable and all D-stable sets of H,
respectively.
By definition, a mapping c : X → {1, 2, . . . , p} is a coloring of H if and
only if every S ⊂ X satisfies the following two requirements:

(i) if S is monochromatic, then S ∈ SD, and

(ii) if S is polychromatic, then S ∈ SC .

It will be convenient for our purpose to review colorings from an-
other point, namely as vertex partitions into stable sets satisfying con-
dition (ii). Thus we consider a more general coloring/covering concept,
assigning stable sets to real weights in the half-open interval (0, 1] as
follows.
A fractional coloring of H with t colors is a collection S = {S1, . . . , St}
⊆ SD of t distinct D-stable sets together with a weight function

w : S → (0, 1]

satisfying the following properties:
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• For each vertex x ∈ X,
∑
Si∈S
x∈Si

w(Si) = 1,

• For each C-edge C ∈ C,
∑
Si∈S

C∩Si 6=∅

w(Si) ≤ |C| − 1.

It is convenient to extend the domain of w to the entire SD, by defining

w(Si) = 0 ∀Si ∈ SD \ S.

Then the extended w on SD and its restriction to S can be considered
equivalent, without ambiguity. The latter becomes important only in
contexts where the number of colors assigned to fractional weights is
relevant.

The value of a fractional coloring (S, w) is defined as

w(S) =
t∑

i=1

w(Si).

The quantities
χ∗(H) = min

(S,w)
w(S)

and
χ̄∗(H) = max

(S,w)
w(S)

are called the fractional lower chromatic number and the fractional
upper chromatic number of H, respectively, where the corresponding
minimum or maximum is taken over all t and all feasible fractional
t-colorings (S, w).

It can be seen that the problem of determining χ∗ and χ̄∗ can
be solved by linear programming on an |SD|-dimensional polyhedron
defined by constraints over |X|+ |HC |.
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Observe that the minimum and maximum values of the objective
function coincide with χ(H) and χ̄(H), respectively, if we restrict the
range of the weight function w to the integers 0,1.

Unfortunately, |SD| can be exponential in |X| even if HD is ‘ nicely
structured ’ and has a polynomial number of maximal stable sets.
Therefore, further structural investigations may be needed in order
to compute χ∗(H) and χ̄∗(H) efficiently.

At last, it is worth mentioning that fractional colorings may exist
even in the case when a mixed hypergraph is uncolorable [2].

4 Generalizations

The colorability problem for mixed hipergraph can be formulated in
a more general form. Let us consider that each C-edge Ck ∈ C has
at least sk vertices of a common color and each D-edge Dk ∈ D has
at least rk vertices of different colors. Then the integer programming
model for the colorability problem with p colors has the following form:





p∑

j=1

αij = 1, i = 1, n;

∑

i∈X

αij ≥ 1, j = 1, p;

∑

i∈Dk

αij ≤ |Dk| − rk + 1, j = 1, p, ∀k ∈ D;

p∑

j=1

max
i∈Ck

αij ≤ |Ck| − sk + 1, i = 1, n, ∀Ck ∈ C;

αij ∈ {0, 1}, ∀i = 1, n, ∀j = 1, p.

If we consider the problem when the C-edge Ck ∈ C has exactly sk

vertices of a common color the constraint
p∑

j=1

max
i∈Ck

αij ≤ |Ck| − sk + 1
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must be replaced by
p∑

j=1

max
i∈Ck

αij = |Ck| − sk + 1. The problem in the

case when the D-edge Dk ∈ D has exactly rk vertices of different
colors, the constraint

∑

i∈Dk

αij ≤ |Dk| − rk + 1 must be replaced by

∑

i∈Dk

αij = |Dk| − rk + 1.
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