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Integer programming models for colorings of
mixed hypergraphs

Dumitru Lozovanu Vitaly Voloshin

Abstract

A mixed hypergraph H = (X,C,D) consists of the vertex
set X and two families of subsets: the family C of C-edges and
the family D of D-edges. In a coloring, every C-edge has at least
two vertices of common color, while every D-edge has at least
two vertices of different colors. The largest (smallest) number of
colors for which a coloring of a mixed hypergraph H using all the
colors exists is called the upper (lower) chromatic number and is
denoted x(H) (x(H)).

We consider integer programming models for colorings of
mixed hypergraphs in order to show that algorithms for opti-
mal colorings may be transformed and used for finding optimal
solutions of the respective integer programming problems.

1 Mixed hypergraphs

A mized hypergraph is a triple H = (X,C, D), where X is the vertex
set, and each of C, D is a family of subsets of X, called C-edges and
D-edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping from X
into a set of k colors so that each C-edge has at least two vertices of a
common color and each D-edge has at least two vertices of different
colors. That means that in every coloring no C-edge is polychromatic
(i.e. no C-edge has all the colors different) and no D-edge is monochro-
matic. A mixed hypergraph is k-colorable if it has a coloring with at
most k colors. If H admits no coloring then it is called uncolorable. A
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strict k-coloring of a mixed hypergraph is a proper coloring using all k
colors.

The minimum number of colors in a coloring of H is its lower chro-
matic number x(H); the maximum number of colors in a strict coloring
is its upper chromatic number x(H).

Classical coloring theory of hypergraphs with edge set £ [1] is the
special case where the family of C-edges is empty and we color the
mixed hypergraph (X, 0,&).

Coloring of mixed hypergraphs is a new topic introduced in [3, 4].

2 Integer programming models

There are several ways to formulate the colorability problem for mixed
hypergraphs as an integer programming problem.

Consider H = (X,C, D), where X = {z1,z9,...,2,}, n > 1, C =
{C1,C4,..., Ci}, 1 > 1, and D = {D1,Ds,...,Dp}, m > 1. Let us
have n colors. and A = (a;;) be a (0,1)-matrix allocating vertices to
colors in such a way that

s — 1 if vertex z; is colored with colorj,
Y1 0 otherwise.

Then the condition that each vertex receives exactly one color is:

n
ZO@J‘:L izl,n. (1)
j=1

The constraints for proper coloring of D-edges are the following:

> i <|Dil—1, ¥DyeD, j=Tn (2)
1€Dy

The left side of the inequality represents the number of vertices in a
D-edge Dy, colored with the color j. The right side assures that at least
two vertices of D;, have different colors.
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The constraints for proper coloring of C-edges have the form:
n
Zmaxaij <|Cx| =1, VCeC. (3)
=1 1€Cl,

The left side of the inequality equals to the number of different colors
used in the C-edge CY, since

max iy =

1€Cl

1 if the color j is used in the coloring of vertex x;,
0 otherwise.

The right side provides that at least two vertices of each C-edge have
a common color.

In this way, the proper coloring of a mixed hypergraph H with
at most n colors is completely described by the relations 1-3 where
Q45 € {0, 1}.

Integer programming model for the problem of finding the lower
chromatic number may be formulated in the following way:

n
minimize z = E max o, (4)
1 1€X
=

subject to the following constraints:

n
g o =1, i=1,mn;
j=1

Y aiy <D 1, VDreD, j=Tn

n
Zmaxozij <|Cxl =1, VCye€C;
= i€Cl,

Q45 € {0, 1}.

The last problem reduces to the following integer linear program-
ming problem:
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n
minimize 2’ = E ul
Jj=1

subject to the constraints:

n
g o =1, i=1,mn;
j=1

> iy <Dyl =1, VD,€eD, j=1Lmn;
1€ Dy,

> ey < |Ckl =1, VO, € (7)
j=1

aij <nej, VO €C,i=1,n, j=1mn;

Q5 Snja 1= 17”7 ]: 17”7

Theorem 1 If aj;, t=1,n, j =1,n make the optimal solution of the
problem (4),(5), then o, i =

. A . . %
ijs ¢ 1,7’L, J = 1,7’L, nckj = INaxX &, Ck €
1€Cl

C, j =1,mn n; = mf}?afj, j = 1,n make the optimal solution of
1€

the problem (6), (7). If af;, i = L,n, j = 1,n, N> Crk € Cij =

1,n, n5,j = 1,n make the optimal solution of the problem (6), (7),

then of, i =1,n, j = 1,n make the optimal solution of the problem

(4), (5).

Proof. Let oj;, i =1,n, j =1,n is optimal solution of the problem

(3); (4). Then «j;, i =1,n,j=1mn, n ;= ?elgicafj, Cpel,j=

Lin; n; = max a;;, j = 1,n satisfies the conditions (7). Consequently
1€

L= 17”7 J :1777 ngk]7ck € C7 ] = 1,77,7 77;')7 .] = 17” is the

o}
177
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optimal solution of the problem (6), (7), then

n n
Z0 = E n;g g maxoz;kj:z*.
Jj=1 Jj=1

Let us show that it is impossible to have the strict inequality in
this relation. If that would be so, then it would mean that «

f— i ij?
1,n, j = 1,n do not make the optimal solution of the problem (3), (4),
because «;; satisfies (5). The last is implied by:

n

o . .
g a; =1, 1=1,mn
j=1

Z a?j S |Dk‘|717 DkGD, .]Zlvna
1€ Dy,

7 =

(

n

n
Zgrel%i{a% < anw’ <|Crl =1, VCi €C;
' i=1

J=1
aj; € {0,1},  ne,; € {0,1}.

The value of the goal function for this solution is

n n n
20 = g max ag; < E n; < E max a;; = 2"
Jj=1 Jj=1 Jj=1

This contradicts the fact that a;‘j, 1 =1,n, 7 =1,n make the optimal
solution of the problem (3), (4).
The second part of the theorem is proved by analogy. Let «

- - — S i’
1,n, j=1,n ngkj, Cr€C,j=1n, nj, j=1,n make the optimal
solution of the problem (6), (7). Then it is easy to check that numbers
aS:, i =1,n, j =1,n satisfy the conditions (3) (see (8)). Therefore, if

7=

o
757

o

we assume the contrary, i.e. that «f;, ¢ =1,n, j =1,n do not make

n n
the optimal solution of the problem (4). (Z ag; > Z max a;;) , then
j=1 j=1
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o

we obtain the contradiction to the fact that ag, ngk j» 15 is not the
optimal solution of the problem (6), (7), because

n
o

n n
* *
E = E max a,;, < max o
2 Mewd = 2l M S L el Y
The theorem is proved. ]

Now we consider the problem: does a mixed hypergraph H =
(X,C,D) admit at least one strict coloring with p colors, where
p<n?

Theorem 2 Mized hypergraph H = (X,C,D) s strictly colorable
with p colors if and only if the following system admits an integer

solution:
P
E Q5 = 1, 1= 1,n;
j=1

Zaij > 17 j :mv
i€X

D i <Dl =1, j=T,p;

;

p
D e S1Ck =1, YCp €
j=1

Qij < Neyjy L E Ck, YCr €C,j =1,p;

Qi c {0, 1}, Neyj c {O, 1}.

Proof. The condition that every vertex z; € X is colored, is ex-
pressed by

P
E Q5 = 1, 1= 1,n.
J=1
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The condition that every color from the set of p colors {1,2,...,p} is
used (the coloring is strict), is expressed by:

Y aij>1,j=1p
i€X

We don’t care here about which p colors from the set {1,2,...,n} colors
are really used: if some strict coloring with the other subset of colors
exists then we can permute the colors and obtain the strict coloring
with the first p colors.

The inequalities

D i <Dyl -1, j=Tp
1€ Dy,

express that all D-edges are colored properly. The proper coloring of
C-edges is written in the following way:

P
Zmaxaij <|Cx| -1, VCeC.
= 1€Cl

Therefore the strict coloring using p colors has the following constraints:

p
E Q5 = 1, 1= 1,n;
J=1

Zaij >1, j=1,p;
i€X

Z aij < |Dg| =1, j=1,p;
1€ Dy,

,

p
Zmaxaij <|Cx| -1, VCj €C;
= 1€Cy

Qij € {0,1}.

It is easy to check that this system has the solution if and only if the
system (8) has one. O
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If follows from the theorem 2 that the problem of finding the upper
chromatic number is reduced to the problem of finding the maximal
number p for which (8) has the solution.

3 Fractional colorings

The following model is taken from [2]. We show that not only the
colorability but also the upper and lower chromatic numbers of a mixed
hypergraph can be simultaneously determined by the solutions of an
integer programming problem.

Let H = (X,C,D) be a mixed hypergraph, where X = {x1, o, ...,
zpt,n>1,C={C1,Cq...,Ci}, 1 >1,and D = {D;1,Ds,...,Dp},
m > 1.

A set S C X is called D-stable if it contains no D-edge; and S
is called C-stable if it contains no C-edge as a subset. We denote by
Sc and Sp the collection of all C—stable and all D-stable sets of H,
respectively.

By definition, a mapping ¢ : X — {1,2,...,p} is a coloring of H if and
only if every S C X satisfies the following two requirements:

(i) if S is monochromatic, then S € Sp, and
(ii) if S is polychromatic, then S € Se.

It will be convenient for our purpose to review colorings from an-
other point, namely as vertex partitions into stable sets satisfying con-
dition (77). Thus we consider a more general coloring/covering concept,
assigning stable sets to real weights in the half-open interval (0, 1] as
follows.

A fractional coloring of H with t colors is a collection S = {S1,..., S}
C Sp of t distinct D-stable sets together with a weight function

w:S — (0,1]
satisfying the following properties:
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e For each vertex ¢ € X,

e For each C-edge C € C,

> w(s) <IC] 1.

S;eS
CcNS; #0

It is convenient to extend the domain of w to the entire Sp, by defining
w(SZ) =0 VS, €Sp \ S.

Then the extended w on Sp and its restriction to S can be considered
equivalent, without ambiguity. The latter becomes important only in
contexts where the number of colors assigned to fractional weights is
relevant.

The value of a fractional coloring (S, w) is defined as

w(S) = Zw(&)'

=1

The quantities
*(H) = min w(S
X' () = min w()
and
Y'(H) = max w(S
¥ (1) = max u(S)
are called the fractional lower chromatic number and the fractional
upper chromatic number of H, respectively, where the corresponding
minimum or maximum is taken over all ¢ and all feasible fractional
t-colorings (S, w).
It can be seen that the problem of determining x* and x* can
be solved by linear programming on an |Sp|-dimensional polyhedron
defined by constraints over | X| + [Hc].
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Observe that the minimum and maximum values of the objective
function coincide with x(H) and x(H), respectively, if we restrict the
range of the weight function w to the integers 0,1.

Unfortunately, |Sp| can be exponential in | X| even if Hp is ‘ nicely
structured’ and has a polynomial number of mazimal stable sets.
Therefore, further structural investigations may be needed in order
to compute x*(H) and x*(H) efficiently.

At last, it is worth mentioning that fractional colorings may exist
even in the case when a mixed hypergraph is uncolorable [2].

4 Generalizations

The colorability problem for mixed hipergraph can be formulated in
a more general form. Let us consider that each C-edge Ci € C has
at least sy vertices of a common color and each D-edge Dy € D has
at least rj vertices of different colors. Then the integer programming
model for the colorability problem with p colors has the following form:

p
E Oéij:L i=1,n;
j=1

Y =1, j=Tp;
ieX

S ay <D~ +1, j=1p VieD;
1€ Dy,

p

E maxaijS\Ck]—sk—i—l, i=1,n, VC€C;
- 1i€Ck

]:

a;j €4{0,1}, Vi=1,n, Vj=1,p.

If we consider the problem when the C-edge C) € C has exactly s
P

vertices of a common color the constraint g max a;j <|Ckl —sk+1
— ieCy,
—1
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P
must be replaced by Z max «;j = |C| — s + 1. The problem in the
1 i€Cl,

case when the D-edge Dy € D has exactly r; vertices of different
colors, the constraint Z a;j < |Dg| — 7, + 1 must be replaced by

i€Dy,
Z Qyj = ’Dk‘ —r. + 1.
1€Dy
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