Computer Science Journal of Moldova, vol.5, no.1(13), 1997

An algorithm and a program
for finding the minimax path tree
in weighted digraphs

R.Boliac

Abstract

An algorithm for finding the minimax path tree in a weighted
digraph and a program in PASCAL, which implements this algo-
rithm, are presented in this paper.

1 Introduction

The minimax path problem, which generalizes the well-known classi-
cal combinatorial problems of the shortest and the longest paths in a
weighted directed graph is considered. This minimax problem arises
as an auxiliary one when searching optimal stationary strategies in
cyclic games [1, 2, 3] and solving some of network minimax transport
problems [4]. The algorithm for finding all minimax paths with com-
putational complexity O(nm), where n is the vertex number and m
is the edge number of G, and the program in PASCAL, implementing
this algorithm, are presented further.

2 Problem formulation

Let G = (V, E) be a directed graph with the vertex set V, |V| = n,
and the edge set E, |E| = m. Let the non-negative cost function
c: B — R}F be defined on the edge set. Asume that a vertex vy € V is

(©1997 by R.Boliac

55

R.Boliac

chosen so that for any vertex v € V there exists a path Pg(v,vg) from
v to vg. The vertex set V is divided into two disjoint subsets V4 and
Vg (V=VaUVg, VanVp=10).

Let sy and sp be two maps defined on V4 and Vp, respectively:

sa:v— V(v) for v € Vy,
sp:v—V(v) for v € Vp,

where V' (v) is the set of extremities of edges e = (v,u) originating in
v, le. V(v) ={u €V | e= (v,u) € E}. Denote by Ty = (V, Ey) the
subgraph of G generated by the edges e = (v, s4(v)) for v € V4 and by
the edges e = (v, sp(v)) for v € V. Obviously, for an arbitrary v € V'
either a unique directed path Pp(v,vg) exists in T, or such a path does
not exist in 7. In the second case, if we pass through the edges from
v, we get a unique directed cycle C.

For arbitrary (s4,sp) and v € V' we define the quantity ¢(s4,cp,v)
as the sum of edges in the path Py (v, vg), if exists. If such a path does
not exist in T , and the sum of edge costs in C is positive, then we
assume ¢(s4,$p,v) = 00; otherwise, if the sum of edge costs in Cj is
negative, ¢(sa,sp,v) = —oo. If the sum of edge costs in Cj is zero, then
c(sa,$p,v) equals the sum of edge costs in the path which connects v
and the cycle Cs.

The problem of finding the minimax path connecting the vertices
w and vy is: to find

p(w) = minmax (s 4, $p, w)
SA SB

and the maps s7%, sp for which

p(w) = ¢(s%, s, w) = minmax c(sa, sp, w).
sA $B
We consider the problem of finding the minimax paths from all
vertices of G to the vertex vg. There exist such maps s, s, for which
Ts» = (V, Es+) is a tree with the root vertex vg [3]. So, the considered
problem generalizes the well-known problem of the minimal path tree
in a weighted graph.

56

An algorithm and a program for finding the minimax path tree

The formulated problem can be interpreted as a dynamical game
of two players with integral-time cost [3].

If V = V4, then we have the shortest path problem in G (see [5]).
If V = Vp, then we have the longest path problem in G [5].

3 The algorithm and the program

Further is presented an algorithm which generalizes Dijkstra’s algo-
rithm for finding the minimal path tree in a weighted graph [7]. The
algorithm is based on the method of dynamical programming. We as-
sign labels /(v) to all vertices v of G. If a vertex v € V belongs to Vy,
then its label is the upper bound of the length of the minimax path
between v and wvg; otherwise the label of v gives the lower bound of
the length of the minimax path between the vertices v and vg. The
labels are gradually changing (the labels of vertices from Vy4 are de-
creasing and the labels of vertices from Vp are increasing, respectively)
by means of an iterative procedure, and at each step of this procedure
exactly one label becomes constant. This means that this label gives
the length of the minimax path between the considered vertex and the
vertex vyg.

The algorithm

Let I(v;) denote the label of a vertex v;.

Step 1. Set I(vg) = 0 and consider this label constant. For all
vertices v; (i # 0) set

I(v;) = o0, for v; € V4
Vi) = 0, for v; € Vp

and consider these labels temporary. Set p = vy, Vs = {vg}, Es = 0.

Step 2. For all vertices v; € V™ (p) (V™ (p) is the set of origin ver-
tices of edges which enter the vertex p) with temporary labels, change

o7

R.Boliac

the labels as follows:

I(v;) = min{l(v;), c(vi,p) +1(p)}, for v; € Vu
' max{l(vi), C(U’iap) + l(p)}, for v; € Vi

Step 3. Find the vertex set

Vo(V) = (U v—m)) \ Vi

v; €V

If V— (V) = 0, then go to step 7. Otherwise, find a vertex v} € V— (V)
with the minimum label.

Step 4. If v} € V4, then go to step 5. If v} € Vi and Vig(v)) C Vj,
then go to step 5. Oterwise, delete from G all edges connecting the
vertex v; with the vertices of V; and go to step 3.

Step 5. Consider the label of v constant and set p = v], Vi =
= Vs, U{v}}. Moreover, add to the set £, the edge which originates in
v} and for which the minimum or the maximum was reached in (1), for
vj € V4 or vj € Vp, respectively.

Step 6. If V; = V., then the directed tree Ts = (V, Ey) is con-
structed. The vertex labels give us the lengths of the minimax paths,
connecting these vertices with the vertex vg. Stop. If Vs £ V, then go
to step 2.

Step 7. There exists a directed cycle in G, so that if we pass from
any temporarily labeled vertex through the oriented edges of G, then
we find ourselves on this cycle. In this case the minimax paths to vg
exist only for the vertices with constant labels. For the vertices with
temporary labels these paths have the lengths equal to +oc. Set all
the temporary labels equal to +00 and consider them constant. Stop.

Note that if V' = Vj,, then this algorithm becomes Dijkstra’s al-
gorithm for finding the shortest paths tree in the directed graph G

[7].

58

An algorithm and a program for finding the minimax path tree

It should be observed that the above algorithm has the computa-
tional complexity O(nm). This can be easily deduced from the steps 2—
6 of the algorithm.

The above algorithm was programmed in PASCAL. The obtained
program works for graphs with up to 100 vertices. It has many possi-
bilities, such as: the possibility of loading the graph G from a file, the
possibility of drawing the graph G directly in the program, the pos-
sibility of editing the loaded or drawn graph, the possibility of saving
the graph G to a file. The interface with the user is implemented in a
pleasant manner. The user can communicate with the program using
the menu and program’s communications. As a result of this program’s
work the minimax path tree T, is obtained. This tree is represented
on the computer’s screen and is also saved to a file.

Further we present the procedure Min_Max, which implements the
algorithm. The vertices of G are numbered so that the vertex vy re-
ceives the number n. In this procedure the following types and variables
are used:

type vect=arrayl[l..n] of real;

type vector=arrayl[l..n] of integer;
type setl=set of 1..n;

var C:array[l..n,1..n] of real — the edge cost matrix, i.e. if
the edge (i,j) € E, then C[i,j] is the cost of this edge; otherwise
Cli,j1=0;

var l:vect — the vector of vertex labels, i.e. 1[i] is the label of
vertex 4;

var labeled:array[1l..n] of boolean — the vector containing
the information about the vertices with temporary labels, ie. if
labeled [i]=TRUE, then the vertex ¢ is temporarily labeled, otherwise
this vertex is not labeled;

var lab_c:array[1l..n] of boolean — the vector which contains
the information about the vertices with constant labels, i.e. if
lab_c[i]=TRUE, then the label of vertex 7 is constant and its label
1[i] is the length of the minimax path connecting the vertex ¢ with
the vertex n;

59

R.Boliac

var next:vector — the vector containing the information about
the minimax paths in G, i.e. next[i] gives the vertex which follows
the vertex ¢ in the minimax path connecting vertices ¢ and n.

The procedure Min_Max

procedure Min Max(var next:vector; var l:vect);
label S2,S3,54,55,S6,57;
var i,j,p,v_i,mn:integer;
labeled,lab_c:array[1l..n] of boolean;
VV_s, V_s,nb:setl;
begin
for i:=1 to n-1 do
begin labeled[i] :=FALSE;
lab_c:=FALSE;
end;
1[n]:=0;
labeled[n] :=TRUE;
lab c[n]:=TRUE;
p:=n;
V_s:=[p];
S2: for i:=1 to n do
if (C[i,pl<>0) and (not(lab_c[i])) then
if not(labeled[i])
then begin 1[i]:= c[i,pl+1[p];
labeled[i] :=TRUE;
end
else if (i in V_A)
then 1[i]:=min(1[i],C[i,pl+1[pl)
else 1[i]:=max(1[i],C[i,pl+1[pl);
S3: VV_s:=[];
for i:=1 to n do
if (i in V_s) then
begin nb:=[];
for j:=1 to n do

60

An algorithm and a program for finding the minimax path tree

S4:

S5

S6:
ST

if C[j,i]<>0 then nb:=nb+[j];
VV_s:=VV_s+nb;

end;
VV_s:=VV_s-V_s;
if VV_s=[] then goto S7;
v_1i:=0;
repeat inc(v_i);
until (v_i in V_s);
mn:=1[v_i];
for i:=v_i+l to n do

if (4 in VV_s) and (1[i]<mn) then
begin v_i:=i;

mn:=1[i];
end;
if (v_i in [1..n]-V_A) then
begin nb:=[];
for i:=1 to n do
if C[v_i,i1<>0 then nb:=nb+[i];
if not(nb<=V_s) then
begin for i:=1 to n do
if (4 in V_s) then
Clv_i,i]:=0;
goto S3;
end;
end;
lab_c[v_i] :=TRUE;
p:=v_i;
V_s:=V_s+[p]l;

if V_s<>[1..n] then goto S2;
for i:=1 to n-1 do
begin if lab_c
then begin j:=0;
repeat inc(j);
until (i<>j) and
(C[i,j1<>0) and

61

R.Boliac

(1[i1=1[j1+C[i,j1);

next[i]:=j;

end

else begin j:=0;

repeat inc(j);
until not(lab_c[jl);
next[i]:=j;

end;

end;
end;

There were provided experiments for different graphs and the mini-

max path trees in these graphs were obtained.

References

[1]

2]

3]

[4]

Moulin H., Prolongement des jeux a deux jouers de somie nulle,
Bull. Soc. math., 1976, Mem. 45.

Gurvitch V. A., Karzanov A. V., Khatchiyan L. G.,; Cyclic games:
Finding minimax mean cycles in digraphs, J. Comp. Mathem. and
Math. Phys., 28 (1988), 1407-1417 (in Russian).

Lozovanu D. D., Ezxtremal-combinatorial problems and the algo-
rithms for their solving. Stiinta, Chiginau, 1991 (in Russian).

Lozovanu D. D., A strongly polynomial time algorithm for finding
minimax paths in network and solving cyclic games, Cybernetics
and System Analysis, 5 (1993), 145-151 (in Russian).

Christofides N., Graph Theory: An Algorithmic Approach. Aca-
demic Press, London, 1975.

Lozovanu D. D., Trubin V. A., Minimax path problem in network
and the algorithm for its solving. Discrete Mathematics 6 (1994),
138-144 (in Russian).

62

An algorithm and a program for finding the minimax path tree

[7] Dijkstra E. W., A Note on Two Problems in Connection with
Graphs, Num. Mathem., 1 (1959), 269-271.

Rodica Boliac, Received September 2, 1996
Institute of Mathematics,

Academy of Sciences of Moldova,

5 Academiei str., Kishinev

2028, Moldova.

63

