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Abstract

In this paper, we will solve an important form of hidden dis-
crete logarithm problem (HDLP) and a generalized form of HDLP
(GHDLP) over non-commutative associative algebras (FNAAs).
We will reduce them to discrete logarithm problem (DLP) in a fi-
nite field through analyzing the eigenvalues of the representation
matrix. Through the analysis of computational complexity, we
will show that HDLP and GHDLP are not good improvements
of DLP. With all the instruments in hand, we will break a series
of corresponding schemes. Thus, we can conclude that all ideas
of constructing cryptographic schemes based on the two solved
problems are of no practical significance.
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1 Introduction

1.1 Backgrounds

We first recall the integer factorization problem (IFP) and the discrete
logarithm problem (DLP):

IFP Given a big number of the form n = pq, find the two prime
divisors p and q.
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DLP Given g, h in a cyclic group G, find t ∈ N such that gt = h.

IFP and DLP have been used as the mathematical basis of cryp-
tography for a long time. RSA [1] and ElGamal [2] may be the most
famous two. Until now, a lot of digital signatures and cryptosystems
based on them still work since there is no polynomial algorithm to
break them in classical computers.

However, quantum computers can solve the two difficult problems
in a very short time [3]. So, new difficult mathematical problems are in
urgent need. In this background, a great many problems are proposed
and announced to be secure under quantum computers. A possible
try is to construct equations with several variables instead of one. For
example, Rainbow in [4] is built based on the difficulty of solving mul-
tivariable polynomial systems. The hidden discrete logarithm problem
(HDLP) proposed in [5] is also such a try which extends the one vari-
able problem DLP to an equation of several variables. In HDLP, units
(or just local units) are used to hide the initial element. This is similar
in spirit to the methods in [6]–[10]. Also, in [11]–[13], matrices are used
in multivariate schemes to diffuse the initial functions or to change the
basis of the initial space.

1.2 HDLP and GHDLP

HDLP is defined in a finite non-commutative associative algebra
(FNAA) in [5], [14].

HDLP Suppose A is an FNAA, B ⊂ A is a given subspace. Given
two elements x, y in A, find a unit (invertible element) u ∈ B, and an
integer t, such that uxtu−1 = y, if they exist.

The solution to HDLP may not be unique, but all of them are
equivalent in the schemes. On the other hand, in most cases, t is
unique in Z/o(x), where o(x) is the order or local order of x. This is
to say, if (u, t) and (u′, t′) are solutions to uxtu−1 = y, then xt = xt

′
.

There may be other forms of HDLP, but in this paper, when we tell
about HDLP, we mean the HDLP defined above.

A generalized form of hidden discrete logarithm was proposed in
[15], [16]. We may abbreviate it as GHDLP (Generalized Hidden Dis-
crete Logarithm). GHDLP is still defined in an FNAA.
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GHDLP Given two elements x, y in A, B ⊂ A, compute a triple
(t, u, v), such that u, v ∈ B, uxtv = y, and xvu = x.

Still, the solution may not be unique, and we need just one of them.

In the definition above, xvu = x can be replaced with vux = x,
then a similar problem is proposed, which is also called GHDLP.

One can easily observe that in the case of a reversible vector x, in an
FNAA with a global two-sided unit, the definition of GHDLP coincides
with the definition of HDLP. That is, the generalization applies to the
following two cases:

1) A is an FNAA with a global two-sided identity and x is an
irreversible vector;

2) A is an FNAA with many single-sided global units.

Still, other generalization of HDLP can exist, but now we just care
about the defined one.

1.3 Systems

1.3.1 The KEA

Moldovyan constructed a key exchange agreement (KEA) [5] based on
HDLP:

Publicly choose a big prime number p, a positive integer θ, an
FNAA A of dimension m over GF (pθ), a big commutative subalgebra
B of A, and an element x /∈ B. Now (p,A,m,B, x) are known to all
people.

To exchange secrets, Alice chooses secretly a unit g ∈ B together
with a secret integer t while Bob chooses secretly another unit h ∈
B and integer s. Now, only Alice knows (g, t) and only Bob knows
(h, s). Then Alice computes k1 = gxtg−1 and sends it to Bob. Bob
computes k2 = hxsh−1 and sends it to Alice. Now Alice knows (g, t, k2)
and computes kA = gkt2g

−1 = ghxsth−1g−1. Bob knows (h, s, k1) and
computes kB = hks1h

−1 = hgxtsg−1h−1. Now, since g and h are chosen
in a commutative subalgebra B of A, gh = hg, thus kA = kB and they
share a common secret k = kA = kB.
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1.3.2 The digital signature

In [14], a digital signature (DS) is constructed.

Suppose H is a publicly known hash function. (pθ, A,B,m) are
also publicly known as above. Now, if Alice wants to sign something,
she secretly chooses a number t, x, h, g, v ∈ A, such that x, g, h do
not commute with one another, x is only invertible in B with a local
unit v. This is to say, x ∈ B and there exists some x′ ∈ B such
that xx′ = x′x = v, with vb = bv = b, for all b ∈ B. Now (z, y, w),
where z = hxh−1, y = gxtg−1, w = gvh−1 are published as public keys,
(x, h, g, t) are kept as secret keys.

Now, if Alice wants to sign a message M , she will first randomly
choose k and compute u = gxkh−1, e = H(M,u), and then she signs
M with e and s = k − te mod o(x), where o(x) is the order of x.

Suppose Bob gets (M, e, s) from Alice. He can verify it in the
following procedure. He will compute u′ = yewzs, e′ = H(M,u′) and
then he checks whether e = e′. If the signature is valid, then u′ =
yewzs = gxteg−1gvh−1hxsh−1 = gxkh−1 = u. Here we have used that
s + te = k and that xv = vx = x because v is a local unit to the
subalgebra containing x.

1.4 Existing attacks towards HDLP and GHDLP

There are many attacks towards the two problems.

Moldovyan [17] gave an attack towards HDLP in special cases where
x admits a nonzero and non-identity determinant. But this attack can
be avoided by taking other elements.

Kuzmin gave an algebraic attack towards HDLP in [18]. He reduced
HDLP into DLP over an extended finite field of the original one. More-
over, he gave a concrete algorithm towards HDLP with time O(|x|1/2),
where |x| is the multiplication order of the base element x. The in-
vertible element u was also computed in his paper. Kuzmin did not
analyze all the issues corresponding to HDLP, and his algorithm is not
of high-efficiency. Now we can solve DLP in a much more faster way,
but this was not mentioned in his paper. In this paper, all situations
are analyzed in detail and better algorithm will be proposed.

In [19], the author gave a quantum attack towards two concrete
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signatures [20] using HSP (Hidden subgroup problem). This method
also works for the signatures in [16], [21], [22]. But it can not deal with
all the systems based on HDLP and GHDLP.

1.5 Methods and objectives of this paper

We have two important propositions.

Proposition1 Eigenvalues of a power of a matrix are just the pow-
ers of the original eigenvalues.

Proposition2 Conjugation of a matrix does not change the eigen-
values.

So, if we use matrix representation of algebra to change HDLP
into matrix forms, everything will become clear when we compare the
eigenvalues of both sides. For GHDLP, we will show, with a small
modification, similar algorithm still works.

Using the method above, we will solve HDLP and GHDLP com-
pletely by reducing them to DLP in finite fields, which is of polyno-
mial time using quantum computers [3]. Once HDLP and GHDLP are
solved, all the schemes based on them are broken. Also, other schemes
relevant to HDLP and GHDLP may also be broken with these tech-
niques. We will break several representative ones.

2 Cryptanalysis of the cryptosystems

In this section, suppose we can solve HDLP and GHDLP. We will show
how to use HDLP and GHDLP to break the cryptosystems based on
them.

2.1 Cryptanalysis of the systems in the introduction

2.1.1 Cryptanalysis of the KEA

Suppose Carol wants to obtain Alice and Bob’s common secret. By
listening to the internet, he can obtain (p,A,m,B, x, k1, k2). Now he
can solve the HDLP of k1 = gxtg−1, and then he will know a pair t′, g′

with g′ ∈ B, such that k1 = g′x′t
′
g′−1. Carol can calculate h′ and s′ in
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the same way. Now Carol can compute the secret g′h′xs
′t′h′−1g′−1 =

ghxsth−1g−1, as one can easily check.

The schemes in [23], [24] can be similarly broken as well.

2.1.2 Cryptanalysis of the DS

Suppose now Carol wants to forge Alice to sign messages. He knows z =
hxh−1, y = gxtg−1, w = gvh−1 for some h, x, t, g, v. So, if d = gh−1,
then y = dztd−1. By solving HDLP, Carol now knows (t′, d′), such
that y = d′zt

′
d′−1. Then Carol can compute wzk

′
= gvh−1hxk

′
h−1 =

gxk
′
h−1, where k′ is randomly chosen. Furthermore, he can compute

e = H(M,u), s = k′ − t′e and thus he can sign as if he was Alice.

2.2 Cryptanalysis of other cryptosystems

2.2.1 Cryptanalysis of a zero-knowledge protocol

In [23], a zero-knowledge protocol based on a special form of GHDLP
is constructed: Suppose x is locally invertible, a, b, x is known to all,
gab = g.

Now Alice wants to prove to Bob that she knows the private key
(t, s) corresponding to the public key y, where y = btxsat; they can do
as follows:

Step 1 Bob randomly chooses t′, s′, computes y′ = bt
′
xs

′
at

′
, z =

bt
′
ys

′
at

′
, h = H(z) and sends y′, h to Alice.

Step 2 Alice computes z′ = bty′sat, h′ = H(z′) and sends z′ to Bob
if h = h′.

Step 3 Bob verifies that z = z′.

Now we will disguise ourselves as Alice. This is to say, we can go
through the verification of the three steps above.

From open channels we may get (x, y, a, b,H). Solve GHDLP
of x and y with a linear constraint, we obtain (u, v, s′′) such that
y = uxs

′′
v, ub = bu, va = av. For (y′, h) from Bob, we can com-

pute z′′ = uy′s
′′
v, h′′ = H(z′′), and send z′′ to Bob. Then because

z′′ = uy′s
′′
v=ubt

′
xs

′s′′at
′
v = bt

′
uxs

′′s′vat
′
= bt

′
ys

′
at

′
= z, we can go

through the verification.

Similar arguments go to the cryptosystems in [24].
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2.2.2 Cryptanalysis of the new DS of Moldovyan D.

Moldovyan D. [25] recently proposed a new digital signature.

We still use the system (V, x, pθ,m,H). Suppose Alice is a signer;
she first generates the keys:

Step 1 Select two commutative elements g, h ∈ V , some units
a, b, d, f , and some positive integers x,w, s, t.

Step 2 Compute and publish the six elements as public keys:

y1 = agxb, z1 = fhwa−1,

y2 = dhsb, z2 = fgtd−1,

y = ahb, z = fgd−1.

(1)

To sign the message M , Alice will randomly choose two integers k, j
and compute: (The third line means to divide the bit string e evenly
into two parts e1 and e2.)

r = agkhjd−1;

e = H(M, r);

e = (e1, e2);

u =
k − xe1 − te2 − 1

e1 + e2 + 1
;

v =
j − we1 − se2 − 1

e1 + e2 + 1
;

s = b−1guhvf−1.

(2)

Finally, the message will be signed as (M, e, s).

To verify the signed message (M, e, s), one can compute

r′ = (y1sz1)
e1(ysz)(y2sz2)

e2 ;

e′ = H(M, r′)
(3)

and verify if e = e′.

Now we try to forge Alice using the public keys (y1, z1, y2, z2, y, z).

Step 1 Set m = df−1, n = fb, l = fa−1, η = db = mn, g′ =
fgf−1, h′ = fhf−1.
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This step seems rather abrupt, but one can understand these con-
structions in the following steps.

Step 2 Compute

z−1z2 = dg−1f−1fgtd−1 = dgt−1d−1;

z2z
−1 = fgtd−1dg−1f−1 = fgt

−1
f−1.

(4)

Analysis of the two equations reminds us to set m = df−1 in step
1, and other constructions are constructed similarly.

Now we have z−1z2m = mz2z
−1 and we can compute an m′, such

that z−1z2m
′ = m′z2z

−1.
Step 3 We have

m′z1yy
−1
2 = df−1fhwa−1ahbb−1h−sd−1 = dhw−s+1d−1;

y−1
2 m′z1y = b−1h−sd−1df−1fhwa−1ahb = b−1hw−s+1b.

(5)

so, m′z1yy
−1
2 η = ηy−1

2 m′z1y, and we can compute a η′ such that
m′z1yy

−1
2 η′ = η′y−1

2 m′z1y.
Step 4 By η′ = m′n we can solve an n′ such that η′ = m′n′.
Step 5 Now

z1yn
−1 = fhwa−1ahbb−1f−1 = fhw+1f−1;

yn−1z1 = ahbb−1f−1fhwa−1 = ahw+1a−1.
(6)

we have z1yn
′−1l = lyn′−1z1, so we can solve an l′ such that z1yn

′−1l′ =
l′yn′−1z1.

Step 6 Rewriting the public key equations, we get:

l′y1n
′−1 = fa−1agxbb−1f−1 = fgxf−1 = g′x;

z1l
′−1 = fhwa−1af−1 = fhwf−1 = h′w;

m′−1y2n
′−1 = fd−1dhsbb−1f−1 = fhsf−1 = h′s;

z2m
′ = fgtd−1df−1 = fgtf−1 = g′t;

l′yn′−1 = fa−1ahbb−1f−1 = fhf−1 = h′;

zm′ = fgd−1df−1 = fgf−1 = g′.

(7)

Then (g′, h′) is known and we can compute a group of equivalent
keys (g′, h′,m′, n′, l′, x′, w′, s′, t′).
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The following steps show how we can sign M as if we were Alice.

Step 7 Choose randomly two integers k′, j′ and compute:

R = l′−1g′k
′
h′j

′
m′−1;

E = H(M,R);

E = (E1, E2);

U =
k′ − x′E1 − t′E2 − 1

E1 + E2 + 1
;

V =
j′ − w′E1 − s′E2 − 1

E1 + E2 + 1
;

S = n′−1g′Uh′V .

(8)

Step 8 Sign the message M as (M,E, S).

This signature can be verified because

R′ =(y1Sz1)
E1(ySz)(y2Sz2)

E2

=(y1n
′−1g′Uh′V z1)

E1(yn′−1g′Uh′V z)(y2n
′−1g′Uh′V z2)

E2

=(l′−1g′x
′+Uh′w

′+V l′)E1(l′−1g′U+1h′V+1m′−1)

·(m′h′s
′+V g′U+t′m′−1)E2

=l′−1g′(x
′+U)E1+U+1+(U+t′)E2h′(w

′+V )E1+V+1+(s′+V )E2m′−1

=l′−1g′U(E1+E2+1)+x′E1+t′E2+1h′V (E1+E2+1)+w′E1+s′E2+1m′−1

=l′−1gk
′
hj

′
m′−1 = R.

(9)

where for the third equation we have used the equations

y1n
′−1 = l′−1g′x, z1 = h′wl′,

yn′−1 = l′−1h′, z = g′m′−1;

y2n
′−1 = h′sm′, z2 = g′tm′−1.

(10)

These equations are just reformulations of what we have rewritten
in Step 6.

Signatures in [22], [26]–[28] can be broken similarly.
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3 Reduction of HDLP and GHDLP

In this section, we will reduce HDLP and GHDLP in any FNNA into
HDLP and GHDLP in matrix form.

3.1 Structure constants

To describe multiplication in an FNNA A, we choose a basis (as a
vector space) {e1, ..., em} of A, then if all the multiplications of any
two elements of B are given: ei · ej =

∑m
k=1 Γ

k
i,jek, then we can know

all the multiplications of any two elements of V by the bi-linearity of
the multiplication.

The coefficients of ei · ej , say, Γk
i,j are called the structure constants

of A corresponding to the basis {e1, ..., em}. Clearly, for a given basis,
the structure constants and the multiplication determine each other.

3.2 Algebraic representation

A representation of an associative algebra A is by definition an alge-
braic homomorphism ϕ from A to End(W ), the algebra of all linear
transformations of W , with trivial addition and composition as multi-
plication.

Now we consider the left regular representation L, with L(a) = La ∈
End(A), where La(r) = a · r, for all r ∈ A. Respectively, we can also
consider the right regular representation R, with R(a) = Ra ∈ End(A),
where Ra(r) = r · a, for all r ∈ A. In most cases, the left regular repre-
sentation is enough, but sometimes the right regular representation is
more convenient.

L is in fact a homomorphism:(L(a)L(b))(r) = abr = L(ab)(r), so
L(a)L(b) = L(ab). The same argument goes to R, the only difference
is that R is an antihomomorphism: R(ab) = R(b)R(a).

Besides the left and right representation, other presentations can
also be used, when it is convenient or more natural. For example,
when an FNAA is constructed from a group, then the irreducible rep-
resentations can always extend to the FNAA, which is often of less
dimension than the regular representations.

298



Cryptanalysis of of the cryptosystems based on GHDLP

3.3 Representation described as structure constants

Now suppose we are given an algebra A with a basis {e1, ..., em}, to-
gether with the structure constants {Γk

i,j}. We will determine explicitly
the representation, using matrix language.

For any vector v ∈ A, we have v =
∑m

s=1 v
ses, for some vs ∈

GF (pθ), then

Lv(ej) = v · ej

= (
m∑
s=1

vses) · ej

=
m∑
s=1

vses · ej

=

m∑
s=1

vs(

m∑
i=1

Γi
s,jei)

=

m∑
i=1

(

m∑
s=1

vsΓi
s,j)ei.

(11)

Let cij =
∑m

s=1 v
sΓi

s,j , then we have Lv(ej) =
∑m

i=1 c
i
jei. So, the

matrix of Lv is {cij}, that is, cij lies on the ith row crossing the jth
column.

If we identify (v1, ...vm)T with v, and rename L as ϕ, then we get the
homomorphism from an FNAA to the matrix algebra: ϕ(v1, ...vm)T 7→
{
∑m

s=1 v
sΓi

s,j}i,j .

3.4 Reduction of HDLP and GHDLP to matrix algebra

In the above subsection, we have shown that any FNAA can be mapped
to some matrix algebra. Applying ϕ to both sides of uxtu−1 = y, one
can get ϕ(u)(ϕ(x))t(ϕ(u))−1 = ϕ(y). This new HDLP is in matrix
algebra. Any solution (u, t) to the initial HDLP will give a solution
(ϕ(u), t) to the new HDLP. So, if we can compute all possible t in the
matrix form, one of them must be a solution to the initial HDLP.

For GHDLP, the equation is ϕ(u)(ϕ(x))t(ϕ(v)) = ϕ(y), with
ϕ(x)ϕ(v)ϕ(u) = ϕ(x). Any solution (u, v, t) to the initial GHDLP will
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give a solution (ϕ(u), ϕ(v), t) to the new HDLP. So, we can find t for
the initial HDLP as long as we can find all t for its matrix form.

3.5 Computation of the conjugation element

In this subsection, suppose we have known t for the HDLP and GHDLP.

For HDLP uxtu−1 = y, we have uxt = yu. Since t, x, y is known,
this is a linear system for the coefficients of u, and thus can be computed
quickly.

For GHDLP uxtv = y, xvu = x, we have uxt = yu. Since t, x, y is
known, u can be computed quickly. In this case, xvu = x is a linear
system for v, and so v can also be computed easily.

4 Solving HDLP and GHDLP in matrix form

In this section, we will reduce HDLP and GHDLP in matrix algebra
into DLP in finite field, and thus solve HDLP and GHDLP in any
FNAA, considering the previous section.

4.1 Solving HDLP in matrix form

Rewriting HDLP in matrix form, we get:

HDLP(M) Given two matrices X,Y of dimension m over the field
F = GF (pθ), find a tuple (U, t) ∈ GL(m,F ) × Z/o(X), such that
UXtU−1 = Y , where o(X) is the multiplication order of X.

Our objective is to find all possible t.

Suppose Jλ,k is the Jordan block with eigenvalue λ of dimension k.
Then we have the next lemma.

Lemma 1 The Jordan form of J t
λ,k is Jλt,k if λ ̸= 0.

Proof J t
λ,k is similar to Jλt,k if and only if J t

λ,k − λtE is similar

to Jλt,k − λtE. We can compute J t
λ,k − λtE = (Jλ,k − λE)Q, where

Q = J t−1
λ,k + λJ t−2

λ,k + ... + λt−1E is invertible because it is a sum of

nilpotent matrix J t−1
λ,k +λJ t−2

λ,k + ...+λt−2Jλ,k and an invertible matrix

λt−1E considering that λ ̸= 0. Q commutates with Jλ,k − λE because
they are both polynomials of Jλ,k.
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So, (J t
λ,k − λtE)i = (Jλ,k − λE)iQi = (Jλt,k−λtE)iQi and thus, the

two nilpotent matrices A = J t
λ,k − λtE and B = Jλt,k − λtE)i satisfy

rank(Ak) = rank(Bk) for all k = 1, ...,m. So, the two matrices are
similar.

4.1.1 All eigenvalues of X are 0 or 1

One can easily check that if all eigenvalues of X are 0 or 1, then for
t ≥ m, Xt is similar to Xm. So, m is always a suitable solution for t.
One will never use such cases in cryptosystems.

4.1.2 Other cases

Since UXtU−1 = Y , the eigenvalues of X to the power of t will match
the eigenvalues of Y . In addition, there are special eigenvalues of X
that are neither 0 nor 1. To these eigenvalues, some eigenvalues of Y
are matched, and we can compute t from such non-trivial DLP tuples.

4.1.3 The procedure of solving HDLP

We give the following steps:

Step 1 Extend the field by the roots of the characteristic polyno-
mial of X.

Step 2 Compute all the eigenvalues of X and Y , and rewrite them
as a vector in the reverse order of multiplicities.

Step 3 Select an eigenvalue λ of X and an eigenvalue σ of Y , whose
multiplicity no less than that of λ.

Step 4 Compute the DLP λt = σ.

Step 5 If the eigenvalues of X to the power of t match the eigen-
values of Y , keep this t and go to the initial FNNA to compute u.
Otherwise, select another eigenvalue σ of Y and go to Step 4.

The steps are of high efficiency because we can find the root of a
polynomial in polynomial time. [29]

One can show that using these steps, we can solve HDLP by com-
puting at mostm DLPs, which can be done in sub-exponential time [29]
with classical computer, or be done in polynomial time with quantum
computer [3].
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4.2 Solving GHDLP in matrix form

4.2.1 Analysis of GHDLP

Rewriting GHDLP in matrix form, we get:

GHDLP(M) Given two matrices X,Y of dimension m over the
field F = GF (pθ), find a tuple (U, V, t) ∈ M(m×m,F )2×Z/o(X), such
that UXtV = Y,XV U = X, where o(X) is the local multiplication
order of X. Similar to HDLP, for t ≥ m, Xt is similar to Xm. So, m is
always a suitable solution for t in such GHDLP. For other cases, recall
the root space decomposition of vector space. We have

V =
⊕

λ∈Spec(X)

N ((X − λE)rλ) , (12)

where rλ + 1 equals to the dimension of Jordan block of eigenvalue λ.

Suppose v ∈ N((X − λE)rλ), then (X − λE)rλv = 0, so

rλ∑
j=0

(−λ)rλ−j

(
rλ
j

)
Xjvλ = 0. (13)

Then

U

 rλ∑
j=0

(−λ)rλ−j

(
rλ
j

)
XjV Uvλ

 = 0. (14)

or

(UXV − λE)rλ(Uvλ) = 0. (15)

This is to say, if vλ is a generalized eigenvector of eigenvalue λ, then
Uvλ is either a generalized eigenvector of eigenvalue λ, or a zero vector.
But it can not always be zero, or Y = UXtV will become zero because
all the generalized eigenvectors generate the column space of X. So
there is always an eigenvalue λ of X, such that λt is an eigenvalue of
Y .

4.2.2 Steps for solving GHDLP

We give the following Steps:
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Step 1 Extend the field by the roots of the characteristic polyno-
mial of X.

Step 2 Compute all the eigenvalues of X and Y and rewrite them
as a vector in the reverse order of multiplicities.

Step 3 Select a nonzero eigenvalue λ of X and a nonzero eigenvalue
σ of Y .

Step 4 Compute the DLP λt = σ.

Step 5 If the eigenvalues of X(some replaced by zero if necessary),
to the power of t match the eigenvalues of Y , keep this t and go to the
initial FNNA to compute u and v. Otherwise, select another eigenvalue
tuple λ′ of X and σ′ of Y and go to Step 4.

One can show that using these steps, we can solve HDLP by com-
puting at most m2 DLPs.

5 Conclusion

Now we have completely solved HDLP and GHDLP. We have also
break several schemes based on them. Our methods do not use the
features of the specific FNAA. So, the steps are independent of the
fancy designs [30], [31] of the FNAAs.

As we have analyzed, for classical cryptography, there is little
improvement from DLP to HDLP and GHDLP, considering the effi-
ciency and length of keys; for post-quantum cryptography, HDLP and
GHDLP can be solved in polynomial time. Therefore, constructing
cryptosystems based on HDLP and GHDLP of the form we have solved
is of no practical significance in any sense.
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