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Abstract

The aim of this paper is to explore how efficient is the Fish
School Search (FSS) algorithm in building a Decision Support
System (DSS) for healthcare facility managers in order to opti-
mize both the number of beds in their facilities and their budget.
We have used a finite capacity queueing model with phase-type
service distribution combined with a compartmental model and
associated cost model. The Fish School Search algorithm was
used to optimize the queueing model. To illustrate the proposed
approach, we used the available data reported by a department
of geriatric medicine of a hospital. Our findings showed that by
encoding the whole information provided by the queueing system
and the cost model in a fish, the Fish School Search is a poten-
tially beneficial tool for optimizing healthcare resources and the
facility’s budget. The model can be extended to different medical
facilities with respect to the objective parameters.

Keywords: biology inspired models, collaborative decisions,
evaluation criteria, health information technology, swarm intelli-
gence.
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1 Introduction

In [1], a historical account was presented about the contribution of
IT and automation to human well-being with particular emphasis on
intellectual and occupational facets. Another important dimension of
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well-being is good physical and psychical health condition [2]. Over the
years, the contribution of healthcare-specific IT methods and tools has
been analyzed and debated. Albeit it has been recognized that IT can
contribute to improving the physical health condition of the people,
it has been admitted that the negative aspects cannot be overlooked.
For example, Karsh et al. [3] identified 12 fallacies of the early Health
Information Technologies (HIT) and proposed measures mainly based
on cognitive and human factors engineering research to improve the
situation. Since then, new methods and technologies have been devised
and numerous practical experiences paved the way for yielding better
results. It is worth noting the increasing usage of automation and
Artificial Intelligence (AI)-based information tools in healthcare [4],
including the pacing Generative AI (Gen AI) [5], [6]. A particular
subclass of problems to be encountered in the healthcare systems is
composed of the decision-making actions meant to optimize the usage
of various resources of healthcare facilities with a view of the benefit
of human health conditions and medical sector sustainability. Optimal
inpatient bed occupancy is a resource that received a lot of attention
since it has a serious impact on inpatient conditions and healthcare
facility costs [7], [8], [9]. It goes without words that an optimal or even
satisfactory solution can only be obtained through the collaboration of
the involved persons such as investors, facility managers, medical staff,
and IT people using the appropriate methods and information tools
[10], [11].

Recent developments have made the problems critical. After the
COVID-19 pandemic hit mankind in 2020, the healthcare resources
allocation problem became more pressing than it had ever been be-
fore. The images of COVID patients crowding the hospital hallways,
the lack of necessary ventilators and Intensive Care Unit (ICU) beds,
and people gasping for air, had made a great impact on society. On
average, a COVID patient spent 13 days in the ICU [12]. Managing
hospitals resources is crucial during pandemics or wars, but it is of
high importance in other cases too when the health situation appar-
ently deteriorates. For instance, the number of patients who need to
be admitted to hospices has increased over the last few years. In 2018,
the number of medicare hospice residents increased by 4% compared to
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2017 (http://www.cdc.gov, nhpco.org/hospice-facts-figures). The av-
erage length of stay (LoS) of a hospice patient was 89.6 days. Besides
the increase in the number of people in need of hospices, the number of
low-birth-weight premature infants has increased too. The LoS in the
Neonatal Intensive Care Units (NICU) for an infant of less than 1500
g is 62 days [13].

One potential solution for better management is using optimization
techniques such as swarm intelligence to improve bed occupancy and
associated costs. In general, the decisions are made using operational
research methods, such as queueing theory. The queueing systems are
designed to be of finite capacity. For instance, in [14], the authors used
a queueing system with a two-phase Cox distribution [14] for service
and finite capacity buffer to model a geriatric care unit. A simulation
model for bed inventory planning in hospitals was developed in [15],
while another queueing model was applied in [16]. While in [17], a
Coxian phase-type model and multiple absorbing states were used to
represent the management of stroke patients, other researchers used
a non-homogeneous discrete-time Markov chain with time-dependent
covariates for the same task [18]. Different machine learning meth-
ods such as linear regression, multilayer perceptron, support vector
machine, k-nearest neighbor, and random tree forests, were used to
compute the LoS of preterm infants [19].

An uncharted territory in improving hospital resources is the use of
queueing models together with swarm intelligence. Few medical studies
have tackled this issue. For instance, genetic algorithms and artificial
immune systems merged with different queueing models were used for
managing elderly persons, surgical department patients, mental health
patients, or the ICU departments during the COVID-19 pandemic [20],
[21].

The aim of this study is to present a new approach for patient man-
agement in different healthcare facilities by optimizing queueing models
by using the Fish School Search (FSS) algorithm. The study is two-
fold: a) to design a new policy for bed allocation, and b) to simulate
different scenarios using the newly designed policy. The number of beds
in different medical facilities was considered as servers in the queueing
model. We used phase-type distribution to represent the length of stay.
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The patient arrivals were described by Poisson processes, and the cost
assessment and bed allocation policy were optimized using the FSS
method.

The paper is organized as follows. In Section 2, we present the
FSS algorithm and how we merged it with the operational research
methods. The experimental results are presented in Section 3, and in
the discussion Section 4, we highlight the research findings.

2 The model

The core idea of this study is to optimize the patient throughput in
different medical facilities and the associated costs. For this task, we
used specific performance measures such as the average length of stay,
arrival rate, the size of a potential waiting room, the holding costs, bed
inventory, and so on. Depending on the clinical services offered in dif-
ferent medical facilities, the components of the healthcare service were
classified as short-term, medium-term, and long-stay care. Technically,
the bed occupancy configuration was translated into the patient flow
of the clinical system. The patients are not homogeneous, due to the
fact that they belong to different categories. Initially, all patients are
inbounded into the clinical facility. Some patients might require emer-
gency care, while others need medium or long recovery. Therefore,
from the emergency care block, they can either be released or trans-
ferred to another compartment, medium care or long care, where they
will remain until outbound cured or dead. To model the process, we
used a mixed exponential distribution to describe the average LoS, and
a compartmental model associated with the different states. The bal-
ance between holding and penalty costs and bed policy was optimized
by using FSS.

2.1 Compartment model

Even if healthcare facilities are complex and admit different types of
patients, we were able to identify comparable patterns, since the con-
text is quite similar. So, we were able to define a common approach
to the patient flow. A one-compartment model regards only one type
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of patients (e.g., acute care), while using two- or three-compartment
models, we model two or three types of patients. Obviously, depending
on the situation, more than three compartments should be used [22],
[23].

The two-compartmental model can be described as follows: let us
presume that we have a constant admission rate when the system is
in an equilibrium state. We denote each one of the two compart-
ments as A and B, and the number of patients in each compartment as
Ni (s) , i = 1, 2, where s is the length of stay. The rates of discharge
from compartments A and B are r1 and r2, making the presumption
that the discharge rate from B is smaller than that from A. We denote
as v the rate of transfer from compartment A to compartment B. We
can mathematically describe the model as follows [24]:

N1 (s+ 1) = (1− r1 − v1)N1(s) (1)

N2 (s+ 1) = v1N1 (s) + (1− r2)N2(s) (2)

The initial condition of the two-compartmental model states that
N1 (0) = A0, N2 (0) = 0. The starting point of the two-compartmental
model was the empirical observation, that the two-term mixed expo-
nential distribution (phase-type) fits the best the pattern of bed occu-
pancy, Ae−Bs + Ce−Ds, where

A
(1− k)A0

v1 + r1
, k =

v1
v1 + r1 − r2

, e−B = 1− v1 − r1,

C =
A0k

r2
, e−D = 1− r2.

In order to use a compartment model in practice, we must assume that:

� The admission rate is random, all being Poisson arrivals. This
presumption is quite reasonable if the healthcare facility is stable.

� The models are regarded as phase-type, having a number of com-
partments equal to the number of components. This assumption
lets us describe the time of immersion of a finite Markov chain in
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continuous time when we have a single immersion state and the
stochastic process begins in a transient state.

In this study, we represented the healthcare facilities by using the
multiple-server queueing models viewing the hospital beds are servers.
An important matter that deserves to be noted is that we assume that
the system is in a steady state. We started with Erlang B queue-
ing system (M/PH/c/c) [8], which is the simplest model. In this
type of model, all patients arrive at the healthcare facility following
a Markov/memoryless (M) Poisson process, where the distribution of
the service is phase-type (PH), that is the number of phases is equal to
the number of compartments. The number of beds with no waiting po-
sitions is given by c. The fact that there is no waiting list, means that
if a patient arrives at the healthcare facility and finds all the c beds
occupied, he is lost for the system. We denote as λ the Poisson arrival
rate, making the LoS have the following probability density function:

f (t) =
l∑

i=1

αiρie
−αit (3)

with the corresponding average:

τ =

l∑
i=1

ρi/αi, (4)

where l is the number of compartments or phases, αi (i = 1, l) are
the mixing proportions, and ρi (i = 1, l) are the transition rates, and∑l

i=1 ρi = 1.
The probability of all c beds to be occupied is computed using

Erlang’s loss B equation:

pc =
ac/c!∑c

k=0 a
k/k!

, (5)

where a = λ · τ is the offered load, [25], [26].
It is obvious, that in a real-world scenario, we must have waiting

lists. A solution to this problem is having back-up beds. We must
keep in mind that an extra bed means extra medical personnel, so, the
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costs rise up in more than one department. If we allocate extra beds
and they do not get occupied, the penalty costs rise up too. In this
case, we must extend the loss model to estimate how many back-up
beds are necessary as buffers. Our queueing model can be extended by
having a waiting room. Hence, we shall have M/PH/c/N , where N ≥ c
represents the maximum capacity. Evidently, N is fixed, so, when a
patient goes to the healthcare facility and finds out that the maximum
N capacity is reached, he/she will be turned away.

Our new queueing model is described by the following two proba-
bilities:

Pj =

{
aj

j! , if j = 1, 2, . . . , c
ac

c! ·
(
a
c

)j−c · P0, if j = c+ 1, . . . , N
, (6)

where Pj represents the steady-state probability that there are j pa-
tients in the system. P0 is the steady-state probability that the system
is empty, no patients, and is computed as:

P0 =

 c∑
j=0

aj

j!
+
ac

c!
·
N−c∑
j−1

(a
c

)j

−1

.

We compute the long-run fraction of rejected arrivals as follows:

PN =
ac

c!
·
(a
c

)N−c
· P0. (7)

To compute the average number of patients, technically the average
bed usage, in the system, we use Little’s formula L = λ · τ · (1− pN ).
To compute the bed occupancy, we use ρ = L

c .

2.2 Cost model design

Our study’s aim is to find the trade-off between the maximum usage of
resources and the best medical service provided to the patients. Thus,
we need to add costs to the queueing mode and also penalties in order
to determine a cost-effective strategy. For this, we have used the base-
stock policy from inventory theory [27]. For each unused bed, we will
consider the cost φ units per day, and for each unused back-up bed,
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we will consider the cost ψ units per day. If the system turns away a
patient, it will pay a penalty cost π units. The average cost per day in
a healthcare facility will be computed as:

g (λ, τ, c,N, π, φ) =

{
π · λ · PN + φ · (c− L) + ψ · (N − x) , if c ≥ L

π · λ · PN + ψ · (N − L) , if c < L
.

(8)

2.3 Fish School Search for cost optimization

Our aim is to optimize the healthcare facility’s bed occupancy and its
associated costs. Technically, this implies finding the balance between
inventory costs and penalty costs. Using FFS, we will optimize the
cost function g and rejection probability PN . A collection of fish that
have gathered in the same place is called an aggregation of fish. A
fish school consists of individuals of the same species. If a member
of the pack stands out with a certain characteristic, it will become a
target for predators. That is why, in fish schools, all the members are
identical, making the school homogeneous. In a fish school, all fish
swim synchronously, having the same speed and the same direction,
showing some sort of group intelligence. Fish, that are part of the
same school, share information and control the members’ behavior from
a close distance.

FFS is a swarm intelligence algorithm used for optimization prob-
lems [28]. The agents in this algorithm are called fish, and each fish is
assigned a weight that measures its success gained during the search.
As the weight varies, the individual and collective movements are af-
fected. Different functions such as built-in feeding or coordinate action
mechanism, influence the fish school to move in the direction of a pos-
itive gradient in order to increase the weight and find the best local or
global spot.

Let us imagine an aquarium, in which the walls are the boundaries
of the domain of the function definition. The fish need to find the food
that is encoded as the problem’s solution. The fish weight is the fitness
value, that measures how well the fish performed in finding the food.
Through the weight, the fish have memory. The FSS algorithm has two
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types of operators: a) the feeding operator that validates how well the
search area has been explored, and b) the swimming operators that
implement migration algorithms for the fish as well as for the entire
school.

Through the feeding operator we update the weights of every fish
using the formula:

Wi (t+ 1) = Wi (t) +
∆fi

max(|∆fi|)
, (9)

where Wi(t) is the weight of fish i, ∆fi measures how the fitness has
varied between the current and the past position, and max(|∆fi|) is
the maximum value of the fitness variation between all the fish from
the school.

Fish move around using movement operators that are of three types:
a) individual fish movement, b) collective-instinctive movement, and
c) collective-volitive movement. During an individual fish movement,
a fish performs a local search in the search space. The fish is moved
around using the following equation:

xi (t+ 1) = xi (t) + rand (−1, 1) stepindividual, (10)

where xi (t+ 1) and xi (t) represent fish i’ s position before and after the
individual operator produced its effect, and stepindividual is a parameter
used to define the maximum displacement of the present movement.
The fish does not move into the next position unless the fitness is
improved, otherwise, the fish keeps the initial position.

The collective-instinctive movement is computed as follows:

I =

∑N
i=1∆xi∆fi∑N

i=1∆fi
. (11)

Having computed I, all fish will move in the same direction using
the formula:

xi (t+ 1) = xi (t) + I. (12)

The third movement operator is the collective-volitive one. It is
used to regulate the exploration ability of the entire fish school. The
school’s barycenter, B, is computed using the position and the weight
of each fish:
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B(t) =

∑N
i=1 xi(t)Wi(t)∑N

i=1Wi(t)
. (13)

If the school’s weight,
∑N

i=1Wi, has increased since the last move-
ment, then all fish move toward the barycenter using the following
formula:

xi (t+ 1) = xi (t)− stepvolrand (0, 1)
xi (t)−B (t)

distance (xi (t) , B (t))
. (14)

Otherwise, the fish move away from the barycenter using the fol-
lowing formula:

xi (t+ 1) = xi (t) + stepvolrand (0, 1)
xi (t)−B (t)

distance (xi (t) , B (t))
, (15)

where stepvol is the maximum displacement performed with this oper-
ator. The distance is computed using the Euclidian distance.

The steps of the FFS algorithm are:

1. Initialize parameters and the fish positions randomly.

2. While the stopping criterion is not reached:

2.1 compute the fitness of each fish

2.2 apply the individual operator movement

2.3 compute the fitness of each fish

2.4 apply the feeding operator

2.5 apply the collective-instinctive movement operator

2.6 apply the collective-volitive movement operator
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3 Results

We have used FSS to optimize the queueing model and created a
simulation using the data collected from the Department of Geriatric
Medicine – St. George’s Hospital London, UK [29], [30], and data from
the American Hospital Association Annual Survey of Hospitals [31].
The healthcare assistance regarding geriatric patients has three com-
partments: acute, rehabilitative, and long-stay. Depending on all sorts
of factors, such as influenza epidemic in the 70s, economic pressure, etc.,
the bed allocation, mean LoS, and annual admission changed. Hence,
the number of allocated beds per year is 186, with a mean arrival of
5.9 patients/day and a mean LoS of 24.9 days. A patient costs per
day £168, out of which the bed costs £50, and £118 – the treatment.
The cost of an unoccupied bed is £50 per day, while an unoccupied
back-up bed is £15. Given these numbers, if we assume that the total
cost of refusing a patient is 25% out of the cost per day multiplied by
the expected LoS, we will have π = 168× 24.9× 0.25 = 1046£.

We have applied the FFS algorithm to find the best trade-off when
it comes to resource utilization. The search space for each fish in the
fish school is the following:

- The number of beds c ∈ [130, 250],

- The arrival rate λ ∈ [4, 9],

- The length of stay τ ∈ [17, 32],

- The cost per day φ ∈ [35, 65],

- The penalty cost ψ ∈ [730, 1370].

We have considered that the back-up beds number is computed as
5% of the total number of allocated beds. Please keep in mind, that
if the healthcare facility has around 95% of beds occupied, it means
that it is fully occupied, and if the beds are occupied in a proportion
of 100%, that means that the system is in real crisis. Hence, the 5%
extra beds should reduce the pressure.

The aim of this paper is to use the FSS algorithm to minimize
the objective function PN taking into account different constraints. In
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general, in geriatric medicine, the percentage of lost demands that is
considered as being tolerable is obtained if the percentage of occupied
beds is above 80%. Therefore, we have considered a maximum rejection
rate of 15%, and the bed-occupancy rate ρ between 63% and 97%.

In the cases of bed occupancy optimization, the fitness function for
the FSS is represented by the rejection probability PN , a fish is defined
as a single parameter c, while parameters λ and τ have the default
values 5.9 and 24.9, respectively. In Table 1, we have the results ob-
tained after applying the FSS method to optimize bed management.
We present the rejection probability as a function of c, together with
the corresponding bed-occupancy. For our algorithm, we have used 100
generations and 150 fish. We have discovered that the minimum rejec-
tion rate, no patient turned away, is reached if we have 192 beds plus
extra 10 beds in the waiting ward. It might seem that this is a good
outcome, when in fact it is not, because the bed-occupancy is approx-
imately 77%, which is below our acceptable threshold of 85%. Hence,
if we increase the bed occupancy to 92%, which benefits economically
the management, we will have a rejection rate equaling 1%, which can
be realized with 159 beds plus an extra 9 back-up beds. Please note
the fact that this is a far better management solution than the geriatric
standard.

Table 1. Values (%) of PN and ρ taking into account the number of
beds

c N PN ρ

192 202 0.00 75.6

159 168 1.01 90.4

154 163 2.22 93.2

148 155 4.44 95.5

139 148 8.52 96.8

135 143 10.34 97.2

131 138 13.11 98.3

The second approach that we tried was considering all parameters
as being subjective, hence a fish is represented through (c, λ, τ). This
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is an imaginary exercise because, in real practice, a manager cannot
modify the arrival and LoS as he/she/they please. Nevertheless, we
were interested in how our method would work in the given situation.
The results are presented in Table 2.

Table 2. Values (%) of PN and ρ taking into account all queueing
parameters

c N λ τ PN ρ

134 141 6.02 25.10 10.65 98

146 155 6.01 25.01 4.56 97

157 164 5.88 24.94 1.34 92

181 191 5.01 22.21 0.34 56

211 221 6.42 21.23 0.00 87

219 232 5.92 20.67 0.00 56

The FSS algorithm computed that for achieving the best scenario,
no turned away patients, we would need 211 beds or 219 beds, an
arriving rate of 6.42 or 5.92, respectively, and a LoS of 21.23 or 20.67.

Another purpose of this study was to optimize, using FSS, the corre-
sponding healthcare costs. This task can be achieved by minimizing the
cost function g, using fish that have the following structure (c, φ, ψ, π),
subjective parameters, while λ, τ remain objective, being the default
values in a standard geriatric department. The results are presented in
Table 3.

We can see that if we use the same bed allocation of 141 beds, with
6 back-up beds, and a rejection probability of 7.16%, it would require
different costs ranging from 950 to 527, depending on the holding and
penalty costs 60 vs 35, 18 vs 11, and 1360 vs 720. If we were to have
the same holding and penalty costs, with different bed allocations of
155 vs 183, it would result in different costs but increased healthcare
service. The last two lines show us that improving the bed allocation
with lower costs will result in a reduction of the turned away patients
percentage, saving at the same time £64.

In conclusion, a manager can simulate different scenarios regarding
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Table 3. The values of the fitness function g in terms of c, φ, ψ, π

c N φ ψ π g PN

141 147 60 18 1360 950 7.16

141 147 35 10 720 526 7.16

155 163 51 15 1046 1172 2.05

183 192 51 15 1046 1180 0.31

135 141 40 18 1240 1190 0.08

194 201 59 18 1262 1254 10.44

bed allocation and other resources to choose the best value of g.

4 Discussion

We were interested in comparing our results with the ones obtained us-
ing evolutionary computation-EC algorithm on the same dataset [20].
We have found that the results are quite similar, the differences between
bed allocation being 1-2 beds, whereas the cost differences are £2. Even
if there are no statistically significant differences between the results,
the differences between the usage of computational effort and the effi-
ciency of exploration and exploitation of the two algorithms need to be
stated. EC requires significant computational resources. The compu-
tational effort is influenced by the population size, the number of genes
in the chromosomes, and the number of generations. The EC requires
more resources as the fitness function complexity increases. FSS, on
the other hand, has lower computational requirements, compared to
EC, because it relies on the iterative updates of the fish positions and
social interactions, whereas EC uses operators such as reproduction
and mutation, which require more memory usage and thus increase the
computational complexity.

In terms of efficiency of exploration and exploitation, as EC bal-
ances searching diverse regions in the solution space with refining
the potential solutions by applying mutation, crossover, and selection,
the computation effort involves adjusting this exploration-exploitation
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trade-off dynamically. On the other hand, FSS emphasizes collective
movement and coordination in exploring the search space. The trade-
off implies the balance between the step size and weight factors.

Another advantage of using FSS, instead of EC, is the fact that
while FSS converges more slowly in comparison with EC, it better ex-
plores complex and uncertain search space, leading to better solutions.

In conclusion, albeit the results are similar, the FSS is preferable
in terms of algorithmic complexity compared to EC.

5 Conclusions

Healthcare management is a growing field for research. New approaches
that merge operational research methods and artificial intelligence are
making a significant impact on patient and resource management. In
order to achieve the best management strategies, healthcare facility
managers should be able to understand the patient flow characteristics,
have knowledge regarding the financial resources and the healthcare
facilities’ needs, and be able to effectively collaborate with IT people
who maintain the system. The manager must also know how to identify
the strategies that mind improve resource usage and be able to get the
forecast of different government changes regarding financial support
and stocks in order to be prepared to act accordingly. The model must
be built or adapted taking into account the patient flow so that the
queueing model parameters are correctly estimated, the history of bed
allocation so that different scenarios could be prepared, and potential
financial cuts. Once all this information is known, different scenarios
can be tested and strategies provided.

This paper explored how feasible is the FSS algorithm in such an ap-
proach, using empirical knowledge and theoretical results. FSS proved
to be efficient in simulation different scenarios taking into account di-
verse parameters and changing their roles from objective to subjective
depending on the case.

We have used the standard M/PH/c/N finite capacity queueing
model and FSS to optimize the beds and resources in such a manner
that a reasonable number of patients to be turned away, with respect
to an affordable budget. Using the base-stock policy we were able
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to tackle different values for the parameters to optimize the rate of
rejection and healthcare costs. The hospital manager can choose the
values that keep the percentage of turned-away patients at a minimum.

The FSS algorithm proved to be feasible and demonstrated that
our approach can be extended to different medical departments by just
changing the values of different objective parameters. The results are
potentially useful. In order to make the method become usable and
actually used by the relevant actants, the computerized versions of the
models and solving algorithms should be “bolt on” the practical deci-
sion-making support systems (DSS) meant to facilitate a collaborative
work of the relevant people involved [32].

Future work will focus on exploring other swarm intelligence algo-
rithms and comparing their results.
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