
Computer Science Journal of Moldova, vol.32, no.1(94), 2024

A Binary Grey Wolf Optimizer with Mutation
for Mining Association Rules

KamelEddine Heraguemi, Nadjet Kamel,
Majdi M. Mafarja

Abstract

In this decade, the internet becomes indispensable in compa-
nies and people life. Therefore, a huge quantity of data, which
can be a source of hidden information such as association rules
that help in decision-making, is stored. Association rule mining
(ARM) becomes an attractive data mining task to mine hidden
correlations between items in sizeable databases. However, this
task is a combinatorial hard problem and, in many cases, the clas-
sical algorithms generate extremely large number of rules, that
are useless and hard to be validated by the final user. In this
paper, we proposed a binary version of grey wolf optimizer that
is based on sigmoid function and mutation technique to deal with
ARM issue, called BGWOARM. It aims to generate a minimal
number of useful and reduced number of rules. It is noted from
the several carried out experimentations on well-known bench-
marks in the field of ARM, that results are promising, and the
proposed approach outperforms other nature-inspired algorithms
in terms of quality, number of rules, and runtime consumption.

Keywords: Association rules mining, ARM, Grey Wolf Op-
timizer, support, confidence.

MSC2020: 62H20.

1 Introduction
Nowadays, the huge number of connected devices to INTERNET be-
come a relevant source of data. As a consequence, the saved data
needs to be explored and used in many other fields such as Marketing,

©2024 by Computer Science Journal of Moldova
doi:10.56415/csjm.v32.06

84

https://doi.org/10.56415/csjm.v32.06

A Binary Grey Wolf Optimizer with Mutation for ARM…

Engineering, and Medical [1]. Due to this huge amount of data, auto-
mated processing becomes an interesting research area for academic re-
searchers. The data mining field includes a huge number of techniques
that process data and attempt to collect accurate, relevant, engaging,
and comprehensible knowledge from huge databases. One of the most
attractive tasks in data mining is Association Rule Mining (ARM) [2].
It seeks to define correlations among items in a transactional dataset.

Agrawal et al. [3] introduced the Association rule (AR) concept
in 1993. Since that, ARM has been widely and successfully applied
in many hypersensitive domains such as healthcare, market analysis,
electric engineering, and web recommendation systems [4]. Basically,
ARM aims to identify important dependencies between items in a given
dataset in the form of an IF-THEN statement: IF < some conditions
are satisfied > THEN < some values of other attributes>. Conditions
in the IF statement are called Antecedents, and those within the THEN
clause are called Consequences. Obviously, numerous relations of this
kind can be extracted from a dataset, but only the useful relations in
the real life need to be selected.

Indeed, discovering ARs in a wide transactional dataset is an NP-
Hard problem [4]. In a database with n items, there exists 2n itemsets,
which generate a maximum number of 2k−2 association rules, where k
is the length of itemsets. This proves that the time consumption expo-
nentially increases with the increase of the number of items. Moreover,
the increase of items affects memory consumption too, especially nowa-
days, with huge stored data. This case makes traditional algorithms,
such as Apriori [3] and FP-Growth [4], require a considerable execu-
tion time. In order to overcome this drawback, many studies take
direction to evolutionary and bio-inspired algorithms, such as genetic
algorithms [5], particle swarm algorithms [6], bat algorithm [7], and re-
cently whale optimization algorithm [8], to select the most useful and
interesting ARs within a reasonable time and less hardware consump-
tion. Generally, for intelligent algorithms, the database is considered
as a search space, and the algorithm – as an exploration strategy that
aims to explore the search space and define the rules that maximize/
minimize an earlier defined fitness function that evaluates the rule qual-
ity based on its measures. Moreover, many researches deal with ARM

85

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

as a multi-objective optimization problem [9], [10]. This idea has been
motivated by the huge number of rules’ quality measures introduced
in various objective functions. Almost all the time, optimization algo-
rithms prove their robustness and efficiency to solve ARM issues within
an acceptable runtime and less hardware consumption.

Grey Wolf Optimization algorithm (GWO) is one of the most well-
known nature-inspired optimization approaches published recently [11].
It mimics the social hierarchy of the grey wolves in nature. GWO
confirmed its efficiency in various real-life applications such as elec-
trical engineering [12] and feature selection [13]. GWO confirmed its
competitivity compared to other swarm-inspired metaheuristics, such
as Particle swarm optimization (PSO), Bat Algorithm (BA), and Bee
swarm optimization algorithm (BSO) in terms of exploitation and ex-
ploration. Furthermore, GWO beats other metaheuristics in terms of
the number of variables that need to be initialized. In GWO, only one
variable has to be initialized. With this in mind, and motivated by
the success of GWO in various domains, we propose in this paper a
new binary version of GWO based on sigmoid function and mutation
technique to deal with ARM issue, namely BGWOARM. We use a new
bitmap database representation, and an updated wolf’s position up-
dating algorithm is introduced to generate candidate rules. Afterward,
a mutation operator is applied to get the fittest rule. To evaluate the
efficiency of the proposed approach, deep experimentations are carried
out on various famous benchmarks in the field of ARM defers in size
and item number. Also, a comparative study in terms of runtime and
rule quality is made with recently published method in the domain of
ARM. The computational results of BGWOARM are promising and
prove its efficiency.

The rest of this paper is organized as follows: Section 2 provides a
literature review that shows the recently published works in the field of
ARM. The section that immediately follows introduces a general back-
ground on association rule mining and the original grey wolf optimizer.
Section 4 presents the details of our proposed method to solve ARM
issue based on a binary grey wolf optimizer. Furthermore, the results of
our proposal are outlined. Finally, we conclude and outline our future
work and improvements.

86

A Binary Grey Wolf Optimizer with Mutation for ARM…

2 Related Works

Since its inception in 1993 by Agrawal et al. [2], the problem of ARM
got a lot of attention. In literary research, there are a remarkable
number of researchers that may be divided into two approaches; exact
and optimization. The first approach seeks to retrieve all the relation-
ships between objects that exist across the database, while the second
aims to produce essential and relevant rules. ARM has been dominated
by two major methods: 1) Apriori, a well-known traditional method,
identifies all associations depending on the minimal support specified
by the expert [3]; 2) FP-growth, which was established to solve Apri-
ori shortcomings, notably multiple dataset scans, in which the entire
dataset is only scanned twice [14]. These techniques now have to deal
with a lot of data, which makes them slower and memory eaters.

Afterward, studies have been made to deal with data mining prob-
lems as optimization problems, even for ARM which is considered as an
NP-hard problem. Thus, several researches started in applying genetic
algorithms (GA) to extract ARs from transactional databases [15].
GAs are evolutionary algorithms based on the natural reproduction of
DNA’s. Mainly, the application of such algorithms to tackle ARM has
three main tasks, which are: rule encoding, fitness function definition,
and generating new rules from the dataset. Yang et al. in [5] proposed
an approach based on GA for identifying the ARs. This method didn’t
use any user specified minimum thresholds. Whereas, the authors uti-
lized a relative minimum confidence as objective function to pick the
best rules. In 2014, Drias in [16] declared that most of the optimization
algorithms for ARM have two disadvantages: they generate false rules
and extract low support and confidence rules as a high-quality rule.
To cope with these drawbacks, the authors proposed two GA-based
approaches, the first one named IARMGA and the other based on a
Memetic algorithm, named IARMMA. In this work, the authors de-
scribed a new technique called delete and decomposition strategy, that
aimed to obtain rules with higher fitness. Their test results demon-
strate that IARMMA offers greater solution quality. Whereas, IAR-
MMA has increased processing time relative to IARMGA, especially
when the data growth.

87

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

Recently, in [17] a modified GA was proposed with the aim to ex-
tract interesting and non-redundant relationships between items in a
dataset. In order to concretize their objective, the authors consider
four different quality measures, support, confidence, comprehensibility,
and interestingness, to evaluate the rules. Also, they controlled the
redundant rules by designing a novel rules filter method. The results
obtained by the experimental study proves the efficiency of their idea.

With the development of bio-inspired techniques, numerous swarm-
based algorithms, such as the PSO algorithm, Bat algorithm (BA),
and Firefly algorithm (FA), etc., are recommended to cope with ARM
problem. In the work presented in [18], PSO has been used to discover
ARs in a transactional database. In this work, there were two phases:
preprocessing and mining phase. The first one was to evaluate the
objective function, while, the other one was to generate the rules based
on PSO algorithm. An enhanced technique based on PSO was designed
in [19]. This study proposed a Boolean variant of PSO to extract ARs
named (BPSO), whereby it obtains the best rules without imposing
any measurement criteria.

More recently, the authors in [6] proposed a technique, based on
a new binary PSO for detecting unseen correlations among both ma-
chine abilities and product characteristics without specified minimum
limits. At the same time, they provided a unique overlapping measure
indicator to remove less quality regulations. Derouiche et al., presented
in [20] an application of Chemical Reaction Optimization metaheuris-
tic (CRO) for solving ARM problem, namely CRO-ARM. Many ex-
periments were carried out on two datasets and compared to Apriori,
FP-growth, and BSPO. The outcomes were promising; however, this
approach needs to be tested on larger datasets.

There are several further papers in the literature that focus on Bee
swarm optimization techniques and provide an approach called BSO-
ARM to mine ARs [21]. Tests showed that BSO-ARM enjoys much
better results than genetic algorithms. As well, an additional study
was published using three processes to determine each bee’s study area
(Modulo, next, syntactic). Moreover, and based on the Penguin Search
Engine Optimization (Pe-ARM) method, the authors suggested an as-
sociation rule miner [22]. This approach is distinguished by thorough

88

A Binary Grey Wolf Optimizer with Mutation for ARM…

exploration of the search space. The efficiency of this proposal is proved
by numerous tests carried out on different biological data-sets.

As the first investigation of the ARM problem with the BAT algo-
rithm, an algorithm called BAT-ARM was proposed in [23]. The bat
algorithm mimics the echolocation behavior of microbats, where they
move toward the prey based on the processing of the echolocation.
In BAT-ARM, a new formulation of bat movements was introduced
according to ARM problem. In order to prove the efficiency of their
proposal, the authors carried out several tests and compared the results
to those of Apriori and FP-Growth algorithms. The major drawback of
this approach was those bats in the populations don’t share their infor-
mation about the preys. Consequently, the search space for exploration
is reduced. In the continuity of their work, the same authors proposed
an improvement for BAT-ARM by introducing communication strate-
gies, namely: master/slave [24], ring, and Hybrid [7]. All strategies
proved their superiority against BAT-ARM and other recently pub-
lished works in terms of runtime and rules quality [7]. Along with our
work on the bat algorithm, in [9] we suggested a multi-objective BA to
optimize 4 quality measurements in the field of ARs which are: interest-
ingness, comprehensibility, support, and confidence. Results show the
superiority of multi-objective approach to extract the best and useful
rules to the final user.

The approach proposed in [25] uses a sigmoid function binary
cuckoo search, and it was applied to extract categorical ARs. Re-
cently, Whale optimization algorithm (WOA) was adopted to extract
relationships between items in a dataset [8]. The researchers look into
the excellent trade-off between intensity and diversity that character-
ized the classic whale optimizer, which was founded on an encircling
methodology, a spiral-shaped pathway, and a hunt strategy. In terms of
execution speed, excellence, and memorial consumption, WOA-ARM
technique outperformed other works. A new review, that summarizes
several evolutionary-based computation methods used for solving an
ARM problem, was presented in [4].

A review of the works conducted on ARM detection from a large-
scale dataset shows the key role optimization algorithms to accelerate
the mining process. In most cases, SI algorithms suffer from the large

89

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

number of parameters, which makes the process to choose the best ones
hard for a final user. The main difference between the proposed method
of this paper and the existing methods is updating a binary version of
GWO to deal with ARM, which has only one parameter that needs to
be chosen by the final user. Also, a mutation technique is introduced
in order to improve the generated rules.

3 Background
In this section, some fundamental specifications of the proposed
methodology are described. First, we explain the basics of ARM. Then,
we present the GWO algorithm.

3.1 Preliminaries on Association rule mining

ARM problem was presented by Agrawal et al. in 1993, with the goal
of helping in decision-making and assisting grocery administrators in
designing discounts and placing products in the store to achieve max-
imized profitability. These decisions depend on connections that have
been created from a massive portion of previous transactions gathered
by the sellers [3].

Definition 1. “Formally, the association rule problem is defined as
follows: Let I = i1, i2, ..., in be a set of literals called items; let
Dt1, t2, ..., tm be a transactional database, where each transaction t con-
tains a set of items. An association rule is an implication like X ⇒ Y ,
where X,Y ∈ I and X

⋂
Y = Φ” [7], where X,Y are called antecedent

(If statement) and consequent (then statement), respectively.”

To calculate the quality of the generated patterns from whichever
datasets collected and in order to determine the highest notable in-
stances for the decision maker, several objective and subjective [26]
measurements are created and published over the time, that can be
used to judge ARs. Objective measures were utilized to examine the
produced rules in this research. Because of the huge number of frequent
item sets collected from a large scale dataset, a discovered pattern is
allowed as an AR only if its support and its confidence are equal or

90

A Binary Grey Wolf Optimizer with Mutation for ARM…

greater than the minimal limit imposed by the user, and disallowed if
they are not. Support and confidence are two measures that aim to
determine rules quality, which is defined as follows:

Definition 2. “Support is the proportion of transactions in D that
contains X, to the total of records in database. Support of item X
is calculated using equation 1 and the support of an association rule
X ⇒ Y is the support of X ∪ Y ” [7].

support(X) = (Number of transactions containing X)
(Total Number of transactions) . (1)

Definition 3. “Confidence is the proportion of transactions covering
X and Y, to the total of records containing X. When the percentage
exceeds a threshold of confidence, an interesting association rule can be
generated” [7].

For instance, a rule X ⇒ Y with a confidence level of 0.8 states
that 80 percent of the transactions containing X also include Y . The
confidence can be formulated as follows:

confidence(X ⇒ Y) = support(X
⋃

Y)
support(X) . (2)

3.2 Grey Wolf Optimization algorithm (GWO)

GWO algorithm is one of the well-known nature-inspired optimization
approaches that were published recently [11]. GWO was differenti-
ated from other swarm intelligence (SI) algorithms by a number of fea-
tures. There is just one variable that may be adjusted in this method.
Furthermore, with GWO, a suitable balance between diversity and in-
tensity may be established. Consequently, this proposed method has
shown promising convergence in dealing with a wide range of engineer-
ing challenges. Additionally, GWO is a basic approach which may be
simply applied and implemented. It mimics the hierarchical structure
of wolves’ pack and its collective hunting strategy in wildlife. Usually,
wolves desire being in a community with something like a consistent
hierarchy.

91

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

Figure 1. A graphic illustrating the hierarchical structure of wolves’
pack

Figure 1 provides an illustration of wolf hierarchy, in which α wolves
always considered as the most significant hunters and γ wolves have the
lowest strength in face to other classes. Mathematically the wolves’
hierarchy structure in the pack is presented by Mirjalili et al. [11]. The
remaining search agents have been declared as ω, which is driven and
guided by α, β, and γ to the search space which is full of promising
solutions in hope to find the best optimal solution. Essentially, the
mathematical formalism of GWO is stated in 3 key stages defined as
follows: surrounding the victim, hunting the prey, and attacking the
prey [12], and they are stated as follows:

3.2.1 Surrounding the victim

When a prey is found, the iteration begins (t = 1). Hence, α, β, and γ
wolves drive the ω group to chase and ultimately surround the victim,
this Gray wolf’s strategy can be formulated mathematically as:

~X(t+ 1) = ~Xp(t) + ~A. ~D, (3)

where ~X is the wolves’ actual location, ~Xp referes to the prey’s local-
ity, t presents the actual iteration, and ~A is an array of coefficients.
Whereas, ~D is defined as follows:

~D =| ~D. ~Xp(t)− ~X(t) | . (4)

92

A Binary Grey Wolf Optimizer with Mutation for ARM…

The parameters ~A and ~C are combinations of controlling parameters
which can be calculated as follows:

~A = 2~a.~r1 − ~a, (5)

~C = 2.~r2, (6)

where ~a are elements gradually reduced from 2 to 0 throughout the
optimization process, and ~r1, ~r2 are random arrays in [0,1].

3.2.2 Hunting the prey

The grey wolf is hunting by shifting the location of every wolf in the
pack by moving toward the prey; this habit is theoretically expressed
in the form: α is the leader with best position, β and γ are supposed to
have extra details regarding prey’s possible places. Thus, the ω group
will follow them and be forced to move in light of the leaders within the
next iterations. The location changing or hunting behavior is stated as
follows:

~Dα =| ~Ct
1.

~Xt
α −Xt |, ~Dβ =| ~Ct

1.
~Xt
β −Xt |, ~Dγ =| ~Ct

1.
~Xt
γ −Xt |, (7)

~Xt
1 =

~Xt
α −At

1.
~Dt
α,

~Xt
2 =

~Xt
β −At

2.
~Dt
β,

~Xt
3 =

~Xt
γ −At

3.
~Dt
γ , (8)

Xt+1 =
Xt

1 +Xt
2 +Xt

3

3
. (9)

3.2.3 Attacking the prey

The parameter ~a governs the attacking procedure, updates the values
of ~A, and guides the ω group to pursue / leave the victim (solution).
Theoretically, if | ~A |> 1, wolves are on the lookout for a new strategy
to expand their search area. Otherwise, they go toward their domi-
nants, implying that omega wolves would follow the leaders who take
advantage of the limited search area. ~a are carried on:

~a = 2(1− t/N), (10)

93

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

where N is the maximum iteration number, and t refers to the actual
iteration. The bounds of ~A will be inside [−2a, 2a]. Hence, the search
agents can touch any region between their position and the location of
the quarry when the ~A is in the interval of [−1, 1] by decreasing the
weighting values of ~a from 2 to 0. The motion rule when | ~A |< 1 or
| ~A |> 1 is vividly shown in Fig. 2.

A

B C

O

D

(X,Y)

(XP,YP)

(XP,Y)

(X,Y)(XP-X,Y)

(XP-X,YP)

(XP-X,YP-Y)

(XP,YP-Y)

(X,YP)

(X,YP-Y)

Position of

wolves

If |A|>1If |A|<1

Position of the

prey
History of

locationsA B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

A B CDE

PE

1

A

1

B

1

C

1

D

1O
P

1

Figure 2. Impact of ~A on the direction of motion in GWO

4 Proposed Algorithm

4.1 Dataset and rule representation

In data mining, the data preprocessing task is one of the most irrelevant
tasks. This task can influence directly on the model results. With this
in mind, as well as to avoid the multi-database scans that also affect
calculation time and memory consumption, datasets are transformed
to bitmap representation [2] which simplifies the process of support and
confidence computing. Let us consider, as shown in Figure 3, that there
are 5 transactions T1 to T5 in transactional database which contains
4 Items. All transactions are transformed to binary form. For more
illustration, consider T4 in which the consumer purchased 2 products
(I2, I3). Therefore, for B4, the rows under I2 and I3 will contain

94

A Binary Grey Wolf Optimizer with Mutation for ARM…

the value ‘1’. Whereas, I1 and I4 will contain the value ‘0’ because
these two items don’t exist in the transaction.

Figure 3. Database representation

Besides, in order to use nature-inspired algorithms, which are
mainly designed for continuous optimization problems, to solve an
ARM problem, rules need to be represented in a structural form that
can be used by the proposed algorithms. Indeed, the literature contains
two main representations for ARM which are the Pittsburgh method
and Michigan method [27]. The first supposed that a set of rules is
considered as a single individual; however, the other considers every
rule as one individual in the population. Our proposal opts for the
second one, where each rule (solution) is presented by an array of 2k
items, where k is the number of items in the database. The vector is
coded as follows:

• R[]i] = 1 if the ith item exists in the rule, and 0 otherwise.

• R[i+1] = 0 if the ith item exists in antecedent of the rule, and 1
if it appears in the consequence part.

For instance: let I = i1, i2, i3 be a set of items: the rule i2 → i1, i3.
It is coded as X1 = 1, 1, 1, 0, 1, 1. Figure 4 shows a rule encrypted.

Figure 4. Rule Encoding

95

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

4.2 Fitness function

The fitness function examines the quality of solutions in nature-inspired
algorithms. To get the optimum results, it must be maximized. Indeed,
to formulate a good objective function, that rewards the proper kind of
solutions, is important. As previously stated, an association rule is ap-
proved if its support and confidence levels meet the user’s requirements.
The fitness function of a rule R may be formulated as follows:

fit(R) =

{
α.Support(R) + β.Confidence(R) if R is accepted

−1 otherwise
(11)

4.3 Binary Grey Wolf Optimizer for ARM

This section describes the whole process of our binary GWO algorithm
to deal with the ARM problem. Our approach preserves the same phi-
losophy and process as in the original GWO, from which the described
algorithm has inherited its performance and advantages. The modi-
fications take the three main steps of GWO, Encircling, Hunting the
prey, and attacking, in relation to our application problem (ARM).

As mentioned above, our proposal is based on Pittsburgh encod-
ing which means that any individual in the population is a solu-
tion (rule). Thus, the wolves in the pack in the BGWOARM algo-
rithm represent the generated rules. The initialization step consists
of creating and assigning to each wolf a random rule from the search
space [11], evaluating the initial fitness values, and selecting the leaders,
(Xα = best agent,Xβ = Second best agent,Xγ = Third best agent),
that will lead the pack through the search space and guide the pack
to the prey. Algorithm 1 shows the Binary Grey Wolf Optimizer for
ARM.

When the prey is detected, the encircling task starts by i = 1. The
leader leads the rest of the agents toward the prey based on the new
proposed rule generation algorithm presented in Algorithm 2. The
algorithm consists of calculating the distance of the new rule based on
two steps according to rule encoding (Item existence and Item Posi-
tions). In order to evaluate each distance, equation 4 is used. After-

96

A Binary Grey Wolf Optimizer with Mutation for ARM…

Algorithm 1 Binary Grey Wolf Optimizer for ARM
Input: Number of MaxIte, number of wolves in Population, minSup,
MinConf
Output: Set of valid Association rules (ValidRules)
Initialize the swarm Xi (i = 1, 2, . . ., n),
Evaluate the initial fitness for all agents,
Select Xα, Xβ, Xγ . The Fittest wolves
i← 1
while i <= MaxIte do

for each wolf in the pack do
. Update positions by Algorithm 2

X1 = Generation of new rule (Xα, Xi, Ci);
X2 = Generation of new rule (Xβ, Xi, Ci);
X3 = Generation of new rule (Xγ , Xi, Ci);

. Generate new position (Rule) based on Mutation Algorithm 3
NewRule= Mutation (X1, X2, X3);

end for
Update a, A and C,
if NewRule is accepted then

Evaluate the fitness function Eq. (11)
Add NewRule to the set of rules ValidRules
Update Xα, Xβ, Xγ

end if
i← i+ 1

end while
Return ValidRules

97

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

ward, a sigmoid function, equation 12, is applied to convert the results
to binary, either for the item’s existence or appearance position. When
the sigmoid of the distance, in relation to the item, is less or equal to
a random value, the item exists and not otherwise. Whereas, if the
sigmoid of the distance, in relation to the position, is less or equal
to a random value, the item appears in the consequence, and in the
antecedent otherwise.

sigmoid(x) =
1

1 + e−10(A∗D−0.5)
, (12)

where A is the actual coefficient for the actual wolf and D is the distance
between the agent and the prey, which is divided into two values that
are Ditem, DPosition. The first refers to the item that exists or is not
in the rule, whereas, the second defines where the item appears, in the
antecedent or consequence of the rule.

Afterward, the hunting behavior is the process in which each wolf
in the pack has to change its position with the aim of approaching the
prey. In the mathematical formulation of the original GWO which is
appropriate for continuous optimizations, the hunting is presented by
the equations 7,8, and 9, in which the ω pack, that can move continu-
ously in the search space, is obliged to pursuit the leaders (α, β, and
γ). Thus, it is impossible to use the same hunting process for solving
the ARM problem. With this in mind, a crossover algorithm is pro-
posed to make the ω pack obliged to pursue the leaders in the hunting
process. To resume, three new rules are generated in relation to α, β,
and γ actual positions. Afterward, the crossover is applied between
them to generate the new position. Algorithm 3 shows the crossover
algorithm.

Moreover, the generated rule is evaluated against the user thresh-
olds (MinSup, MinConf); when the rule is accepted, it is added to a
set of valid rules, and its fitness is evaluated. Finally, the leaders are
updated based on the new fitness values. This search will be repeated
until the maximum number of iterations is reached.

98

A Binary Grey Wolf Optimizer with Mutation for ARM…

Algorithm 2 Generation of new rule
Input: Rulex, Rulei, C : coefficient
Output: Rule
i← 1
while i <= 2k do

. Calculate the prey Distance
Ditem =| C ∗Rulex(i)−Rule(i) |
DPosition =| C ∗Rulex(i+ 1)−Rule(i+ 1) |

. Identifying prey’s position
if sigmoid (Ditem) <= RAND then

Rule(i) = 1
else

Rule(i)=0
end if
if sigmoid (DPosition) <= RAND then

Rule(i+1) = 1
else

Rule(i+1)=0
end if
i← i+ 1

end while
Return Rule

99

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

Algorithm 3 Mutation Algorithm
Input: Rules (X1, X2, X3)
Output: NewRule (X)
i← 1
while i <= 2k do

. Mutate the rules
if (rand < 0.33) then

X(i) = X1(i)
X(i+2) = X1(i+2)

else
if (rand < 0.66) then

X(i) = X2(i)
X(i+2) = X2(i+2)

else
X(i) = X3(i)
X(i+2) = X3(i+2)

end if
end if
i← i+ 2

end while
Return NewRule

100

A Binary Grey Wolf Optimizer with Mutation for ARM…

5 Results and discussions

In order to show the efficiency of the presented proposal, several ex-
periments were carried out on different and well-known datasets in the
field, which are described in the next section. After that, we present
a comparative study in-face-of recently developed methods. To make
the comparison totally fair, all algorithms are written in Java and ex-
ecuted on Intel Core I5 machine with 4 GB of memory running under
Linux Ubuntu. Also, each algorithm is used with its best parameters
recommended in the original paper.

5.1 Benchmark and setup description

With the aim to test and compare our proposed algorithm BGWORM,
we use seven well-known benchmarks, that are frequently used in data
mining community, from numerous and well-known sources in data
mining field, such as Frequent and mining dataset repository [28] and
Bilkent University function approximation repository [29]. Table 1
shows the datasets utilized in our experiments. Moreover, we observe
from Table 1 that benchmarks vary in terms of transactions number
and elements in each one. For example, connect dataset has 100,000
records with 999 items, whereas BMS-WebView-1 has fewer transac-
tions and items.

Table 1. Benchmarks description

Dataset Transactions size Item size
IBM-Stand 1 000 20
Quack 2 178 4
Chess 3 196 37
Mushroom 8 124 119
Pumbs-star 40 385 7 116
BMS-WebView-1 59 602 497
Connect 100 000 999

101

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

5.2 Stability study

As mentioned above, one of the most known advantages of Grey Wolf
Optimizer is the minimum parameters number which are mainly, num-
ber of wolves in the pack and number of iterations. In order to choose
the best parameters, the comparison study is presented in the section,
which will prove the efficiency of our proposal. With this in mind and
to analyze the behavior of our method as a stochastic evolutionary
algorithm, in this section, we mainly aim to look into our algorithm
(BGWOARM) stability and how the algorithm deals with the objec-
tive function and CPU time when we vary numbers of wolves in the
pack and iterations. In these tests, we utilize five datasets (IBM-Stand,
Quack, Chess, Mushroom, Connect).

Table 2 presents the results attained by the execution of BG-
WOARM with varying wolves’ numbers in packs regularly from 10 to
50. Results in Table 2 were obtained with a fixed number of iterations
equal to 200. It is observed that the best results are achieved with
10 wolves in a pack in most datasets. Whereas, with Mushroom and
Connect datasets, the best fitness becomes acceptable starting from 30
wolves. This observation can be clarified by the transactions number
and items in these datasets. On the other hand, we can note that CPU
time grows with the iterations increment, which is a natural behavior
of each swarm-based algorithm.

Table 2. Evaluation of the GWOARM with several numbers of Wolves

Dataset Wolves 10 15 20 25 30 35 40 45 50

IBM-Stand Fitness 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96
CPU time 0,48 0,65 0,85 1.11 1,30 1,52 1,70 1,91 2,11

Quack Fitness 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
CPU time 0,37 0,46 0,60 0,69 0,84 0,96 1,12 1,25 1,37

Chess Fitness 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99
CPU time 1,02 1,42 1,86 2,24 2,81 3,21 3,84 4,53 4,78

Mushroom Fitness 0,76 0,80 0,82 0,86 0,92 0,90 0,83 0,97 0,92
CPU time 1,54 2,35 3,46 4,17 5,33 5,45 6,24 6,94 8,48

Connect Fitness 0,72 0,81 0,85 0,80 0,96 0,95 0,93 0,96 0,94
CPU time 27 42 57 72 85 103 111 126 155

On the other hand, the number of iterations is a substantial param-
eter for Grey Wolf Optimizer, which has an impact on algorithm stabil-

102

A Binary Grey Wolf Optimizer with Mutation for ARM…

ity and execution time. On this basis, we repeated our tests by fixing
the number of wolves to 30 and varying the number of iterations from
100 to 900, regularly. Table 3 illustrates the results achieved by our al-
gorithm. From the outcomes, the best values of the objective function
were obtained starting from 300 iterations with all the datasets. This
can be a sign that the best parameters for our algorithm are 30 and
300 for the number of wolves and iterations, respectively.

Table 3. Evaluation of the BGWOARM with several numbers of Iter-
ations

Dataset Iterations 100 200 300 400 500 600 700 800 900

IBM-Stand Fitness 0,77 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98
CPU time 0,83 1,57 2,28 2,96 3,67 4,42 5,26 5,73 6,55

Quack Fitness 1 1 1 1 1 1 1 1 1
CPU time 0,42 0,47 1,08 1,42 180 2,16 2,57 288 3,22

Chess Fitness 0,84 0,92 0,96 0,96 0,97 0,98 0,96 0,99 0,98
CPU time 1,18 2,27 3,52 4,68 5,97 7,11 8,43 9,34 10,65

Mushroom Fitness 0,55 0,76 0,69 0,73 0,77 0,64 0,73 0,78 0,76
CPU time 2 5 7 10 12 14 17 19 22

Connect Fitness 0,62 0,75 0,95 0,89 0,97 0,97 0,98 0,95 0,97
CPU time 44 91 144 178 223 268 308 353 402

5.3 Comparison against similar approaches

In order to prove the effectiveness of our approach, a series of compar-
isons were carried out with recently developed algorithms in the field
of rule mining by fixing the algorithm parameters to the best values
detected from the stability study, 30 and 300 for the number of wolves
and iterations, respectively.

The outcomes from the binary gray wolf optimizer for ARM were
compared against the following algorithms: Whale Optimization Algo-
rithm for ARM (WO-ARM) [8], Bat algorithm for ARM (BAT-ARM)
[23], Bees swarm optimization algorithm for ARM (BSO-ARM) [30],
Penguins Search Optimization Algorithm for ARM (Pe-ARM) [22], and
multi-swarm bat algorithm for ARM (MSB-ARM) [7].

The outcomes illustrate the overage obtained by 20 executions for
every algorithm. Table 4 presents the results obtained in our tests by
each algorithm in terms of CPU time consumption with four middle

103

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

size benchmarks. It is clearly noted that BGWOARM outclasses the
other algorithms. The exception is with IBM-Stand datasets where
the Whale Optimization algorithm outguesses our proposal with 0.3
seconds, which is negligible. From the previous section, we observe
that the number of iterations can affect on the CPU time in direct
proportion, which is the case for all swarm-based algorithms. Based
on this, a comparison study for our proposal in the face of BAT-ARM
and MSB-ARM was carried out. Results are presented in Figure 5,
in which the evolution of CPU time in terms of iteration number is
shown. Results prove the efficiency of BGWOARM. Also, we can note
the reduced time consumed by the proposed algorithm over all datasets.

Table 4. Comparing our approach to existing approaches w.r.t
Time (sec)

Dataset Pe-ARM BSO-ARM MSB-ARM BAT-ARM WO-ARM BGWO-ARM
IBM-Stand 1.68 1.92 13 19 1.2 1.57
Quack 3.35 4.5 40 76 2.3 1.08
Chess 4.92 5.1 13 141 7.7 3.52
Mushroom 10.68 9.1 144 341 10 7

Actually, CPU time is an important fact to judge an evolutionary
algorithm, but it’s not enough. The optimal value of the fitness func-
tion is also critical which describes the solution quality, in our tests, the
fitness function aims to maximize two main measures in the ARM field
which are support and confidence. With this in mind, we compare our
results in the face of other swarm-based algorithms in terms of max-
imum fitness function values. The outcomes illustrate the superiority
of BGWOARM against other algorithms with all the datasets.

Table 5 presents the outcomes of our comparison in terms of fitness
function values. On another side, swarm-based algorithm needs to ex-
plore the search space to extract the best rules, which needs to extract
the maximum number of rules from the dataset that satisfied the mini-
mum threshold support and minimum threshold confidence introduced
by the final user. So, another comparison is accomplished.

Figure 6 and Figure 7 summarize the evolution of the number of
generated rules from five different datasets in terms of minimum sup-

104

A Binary Grey Wolf Optimizer with Mutation for ARM…

Figure 5. CPU time performance in terms of the iterations number.

port and minimum confidence, respectively. It can be noticed that the
proposed algorithm outperforms the other algorithms in the majority
of cases. This superiority can be argued by the great exploration of the
search space extended from the original gray wolf algorithm.

Table 5. Comparing our approach to existing approaches, w.r.t Fitness

Dataset Pe-ARM BSO-ARM MSB-ARM BAT-ARM WO-ARM BGWO-ARM
IBM-Stand 0.92 0.93 0.84 0.41 0.94 0.98
Quack 0.91 1 1 0.52 1 1
Chess 0.89 0.88 0.97 0.92 0.99 0.99
Mushroom 0.88 0.75 0.68 0.93 0.93 0.97

Therefore, as it is shown in these results, the binary gray wolf opti-
mizer for ARM generated rules with competitive measures in terms of
support and confidence compared to similar algorithms. Also, the re-
sults prove the superiority of the proposed algorithm in terms of CPU
time against the other algorithms. These results were obtained thanks

105

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

Figure 6. Number of generated rules performance in terms of minimum
support.

to the newly introduced binary encoding of the rules, which reduces
the algorithm complexity. Moreover, the original gray wolf optimizer
algorithm simplicity, power exploitation, and exploration have been
bequeathed to our algorithm.

5.4 Comparison against exact approaches

With the aim to discover the coverage rate of our proposal on the
datasets, we calculate the proportion of valid rules generated (PVR).
This proportion is calculated based on the full number of valid rules
generated by the exact exhaustive algorithms (Apriori [3], FP-Growth
[14]). PVR is defined by the following rule:

PV R = 100 ∗ Number of generated rules

Total number of V alid rules
. (13)

The obtained results are the overage of twenty executions on

106

A Binary Grey Wolf Optimizer with Mutation for ARM…

Figure 7. Number of generated rules performance in terms of minimum
confidence

medium size datasets that have more than 40 000 transactions. Ta-
ble 6 presents how the CPU time varies w.r.t different datasets. Again,
it is clearly observed that BGWOARM surpasses the exact algorithms
in terms of CPU time, thanks again to the fast search mechanism of
the gray wolf algorithm and the new binary encoding proposed for the
rules. Table 7 illustrates the percentage of valid rules relative to di-
verse benchmarks. We noticed that our method proves its superiority
against MSBARM and BSO-ARM in terms of PVR, which exceeds 70%
for all the datasets. Furthermore, the CPU time consumption of the
proposed method is very small in the face of exhaustive approaches,
whereas the PVR is not less than 70%. These results prove the power
and the necessity of optimization approaches instead of exact ones.

According to the obtained results, it can be noted the BGWO-ARM
superiority against other approaches. This outperforming in terms of
CPU time and number of generated rules can be explained by the

107

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

Table 6. Comparing our approach to exact approaches w.r.t CPU time
(sec)

Datasets BGWO-ARM MSB-ARM BSO-ARM FP-Growth Apriori
Pumbs-star 307 315 300 600 500
BMS-WebView-1 272 348 400 850 1100
Connect 402 1094 950 2900 2600

Table 7. Comparing our approach to exact approaches w.r.t PVR (%)

Datasets BGWO-ARM MSB-ARM BSO-ARM FP-Growth Apriori
Pumbs-star 70 54 60 100 100
BMS-WebView-1 81 46 62 100 100
Connect 77 49 55 100 100

low complexity of our approach, which comes from the original GWO.
Moreover, the new generation method based on the sigmoid function
can lead our mining process to the best rules. Also, the mutation
operator has an important role in the generated rule quality based on
three fittest rules α, β, and γ. On the other hand, we can observe
that BGWO-ARM generates maximum of valid rules thanks to the
good exploration of the search space, inherited from GWO, and the
exploitation to extract the best local rules.

6 Conclusion and Future Works

In this paper, a new binary grey wolf optimizer with mutation for min-
ing ARs in large database, called BGWOARM, has been presented.
The proposed algorithm used a bitmap representation for the database,
which reduces runtime and simplifies rule measures calculation. More-
over, a new rule generation method based on the sigmoid function is
introduced, which produces a powerful rule generator. Afterward, the
mutation algorithm is applied to generate the fittest candidate rule.
The BGWOARM performances have been compared to five similar ap-
proaches recently published in the field of ARM in terms of quality,
number of rules, and run time. Results proved the efficiency of the
proposal, and that it outperformed these methods within most exper-
iments. Moreover, our results are compared in the face of the classic

108

A Binary Grey Wolf Optimizer with Mutation for ARM…

methods in terms of rule validity, which shows the efficiency of the
method in search space exploration. The technique must be upgraded
and evaluated with a massive database. We also plan to further paral-
lelize the technique and implement it on a GPU to improve both the
quality of the solution and its execution time.

References

[1] I. Bose and R. K. Mahapatra, “Business data mining—a machine
learning perspective,” Information and management, vol. 39, pp.
211–225, 2001.

[2] J. Han, J. Pei, and M. Kamber, Data mining: concepts and tech-
niques. Elsevier, 2011.

[3] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” vol. 22, 1993, pp.
207–216.

[4] A. Telikani, A. H. Gandomi, and A. Shahbahrami, “A
survey of evolutionary computation for association rule mining,”
Information Sciences, vol. 524, pp. 318–352, 2020. [Online].
Available: https://doi.org/10.1016/j.ins.2020.02.073

[5] X. Yan, C. Zhang, and S. Zhang, “Genetic algorithm-based strat-
egy for identifying association rules without specifying actual min-
imum support,” Expert Systems with Applications, vol. 36, pp.
3066–3076, 2009.

[6] Z. Kou and L. Xi, “Binary particle swarm optimization-based
association rule mining for discovering relationships between
machine capabilities and product features,” 2018. [Online].
Available: https://doi.org/10.1155/2018/2456010

[7] K. E. Heraguemi, N. Kamel, and H. Drias, “Multi-swarm bat algo-
rithm for association rule mining using multiple cooperative strate-
gies,” Applied Intelligence, vol. 45, pp. 1021–1033, Dec 2016.

[8] K. Heraguemi, H. Kadrii, and A. Zabi, “Whale optimization
algorithm for solving association rule mining issue,” International

109

https://doi.org/10.1016/j.ins.2020.02.073
https://doi.org/10.1155/2018/2456010

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

Journal of Computing and Digital Systems, vol. 10, pp. 2210–142,
2021. [Online]. Available: http://journals.uob.edu.bh

[9] K. E. Heraguemi, N. Kamel, and H. Drias, “Multi-objective bat
algorithm for mining numerical association rules,” International
Journal of Bio-Inspired Computation, vol. 11, pp. 239–248, 2018.

[10] E. V. Altay and B. Alatas, “Performance analysis of multi-
objective artificial intelligence optimization algorithms in nu-
merical association rule mining,” Journal of Ambient Intel-
ligence and Humanized Computing, 2019. [Online]. Available:
https://doi.org/10.1007/s12652-019-01540-7

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, Mar 2014.

[12] Z. Abderrahim, K. E. Herraguemi, and M. Sabir, “A new improved
variable step size mppt method for photovoltaic systems using
grey wolf and whale optimization technique based pid controller,”
Journal Europeen des Systemes Automatises, vol. 54, pp. 175–185,
Feb 2021.

[13] Q. Al-Tashi, H. M. Rais, S. J. Abdulkadir, H. Alhussian,
and S. Mirjalili, “A review of grey wolf optimizer-based
feature selection methods for classification,” pp. 273–286, 2020.
[Online]. Available: https://link.springer.com/chapter/10.1007/
978-981-32-9990-0_13

[14] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” ACM sigmod record, vol. 29, no. 2, pp.
1–12, 2000.

[15] S. M. Ghafari and C. Tjortjis, “A survey on association
rules mining using heuristics,” WIREs Data Mining and
Knowledge Discovery, vol. 9, Jul 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1307

[16] H. Drias, “Genetic algorithm versus memetic algorithm for asso-
ciation rules mining,” 2014 6th World Congress on Nature and
Biologically Inspired Computing, NaBIC 2014, pp. 208–213, Oct
2014.

[17] A. Derouiche, A. Layeb, and Z. Habbas, “Mining interesting

110

http://journals.uob.edu.bh
https://doi.org/10.1007/s12652-019-01540-7
https://link.springer.com/chapter/10.1007/978-981-32-9990-0_13
https://link.springer.com/chapter/10.1007/978-981-32-9990-0_13
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1307

A Binary Grey Wolf Optimizer with Mutation for ARM…

association rules with a modified genetic algorithm,” Pattern
Recognition and Artificial Intelligence, vol. 1322, p. 274, 2021.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7972016/

[18] R. J. Kuo, C. M. Chao, and Y. T. Chiu, “Application of parti-
cle swarm optimization to association rule mining,” Applied Soft
Computing, vol. 11, pp. 326–336, 2011.

[19] K. Sarath and V. Ravi, “Association rule mining using binary par-
ticle swarm optimization,” Engineering Applications of Artificial
Intelligence, vol. 26, pp. 1832–1840, 2013.

[20] A. Derouiche, A. Layeb, and Z. Habbas, “Chemical reaction opti-
mization metaheuristic for solving association rule mining prob-
lem,” vol. 2017-Octob. IEEE Computer Society, 3 2018, pp.
1011–1018.

[21] Y. Djenouri, H. Drias, and Z. Habbas, “Bees swarm optimisa-
tion using multiple strategies for association rule mining,” Inter-
national Journal of Bio-Inspired Computation, vol. 6, pp. 239–249,
2014.

[22] Y. Gheraibia, A. Moussaoui, Y. Djenouri, S. Kabir, and P. Y.
Yin, “Penguins search optimisation algorithm for association rules
mining,” CIT. Journal of Computing and Information Technology,
vol. 24, pp. 165–179, 2016.

[23] K. E. Heraguemi, N. Kamel, and H. Drias, “Association rule min-
ing based on bat algorithm,” Journal of Computational and The-
oretical Nanoscience, vol. 12, no. 7, pp. 1195–1200, 2015.

[24] K. E. Heraguemi, N. Kamel, and H. Drias, “Multi-population co-
operative bat algorithm for association rule mining,” in Computa-
tional collective intelligence, 2015, pp. 265–274.

[25] U. Mlakar, M. Zorman, and I. Fister, “Modified binary cuckoo
search for association rule mining,” vol. 32, 2017, pp. 4319–4330.

[26] P. N. Tan, V. Kumar, and J. Srivastava, “Selecting the right objec-
tive measure for association analysis,” vol. 29, 2004, pp. 293–313.

[27] A. A. Freitas, Data mining and knowledge discovery with evolu-
tionary algorithms. Springer Science & Business Media, 2002.

111

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7972016/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7972016/

KamelEddine Heraguemi, Nadjet Kamel, M. Mafarja

[28] B. Goethls and M. J. Zaki, “Frequent itemset mining dataset
repository,” 2003. [Online]. Available: http://fimi.ua.ac.be/data/

[29] H. A. Guvenir and I. Uysal, “Bilkent university function
approximation repository,” 2000. [Online]. Available: http:
//funapp.cs.bilkent.edu.tr/DataSets/

[30] Y. Djenouri, H. Drias, Z. Habbas, and H. Mosteghanemi, “Bees
swarm optimization for web association rule mining,” vol. 3, 2012,
pp. 142–146.

KamelEddine Heraguemi, Nadjet Kamel, Received December 10, 2023
Majdi M. Mafarja Accepted January 26, 2024

KamelEddine Heraguemi
ORCID: https://orcid.org/0000-0001-6992-5536
The Networks & Distributed Systems Laboratory.
National School of Artificial Intelligence
Algiers, Algeria
E–mail: kameleddine.heraguemi@ensia.edu.dz

Nadjet Kamel
ORCID: https://orcid.org/0000-0003-3608-8895
The Networks & Distributed Systems Laboratory.
University Setif1 Ferhat Abbas.
Sétif, Algeria
E–mail: nkamel@univ-setif.dz

Majdi M. Mafarja
ORCID: https://orcid.org/0000-0002-0387-8252
Department of Computer Science, Faculty of Engineering and Technology, Birzeit
University
Birzeit, Palestine
E–mail: mmafarja@birzeit.edu

112

http://fimi.ua.ac.be/data/
http://funapp.cs.bilkent.edu.tr/DataSets/
http://funapp.cs.bilkent.edu.tr/DataSets/

	Introduction
	Related Works
	Background
	Preliminaries on Association rule mining
	Grey Wolf Optimization algorithm (GWO)
	Surrounding the victim
	Hunting the prey
	Attacking the prey

	Proposed Algorithm
	Dataset and rule representation
	Fitness function
	Binary Grey Wolf Optimizer for ARM

	Results and discussions
	Benchmark and setup description
	Stability study
	Comparison against similar approaches
	Comparison against exact approaches

	Conclusion and Future Works

