
Computer Science Journal of Moldova, vol.31, no.2(92), 2023

PN2Maude: An automatic tool to generate
Maude specification for Petri net models

Ammar Boucherit Messaoud Abbas
Mohammed Lamine Lamouri Osman Hasan

Abstract
Currently, Model-Driven Engineering (MDE) plays a key role

in the software development process as it aims to handle their
increasing complexity and focuses on the automatic generation
of code and/or specifications from system models. This paper
presents a very useful tool for the automatic generation of Maude
specifications from both Petri net PNML (Petri Net Markup Lan-
guage) descriptions or incidence matrices. At the end of this pa-
per, a simple but complete Petri net example will be presented
to demonstrate the usefulness of the developed tool.

Keywords: Maude, Rewriting Logic, Petri Nets, Code Gen-
eration.

MSC 2020: 68N30, 68Q60.
ACM CCS 2020: Grammars and Other Rewriting Systems,

Formal Languages.

1 Introduction
Nowadays, computer systems have become more and more indispens-
able not only in the industrial field, telecommunication, and energy
production but in almost all areas of our daily life. On the other hand,
because of the increasing complexity and the involvement of several
heterogeneous and distributed components interactions in these sys-
tems, they are also responsible for an ever-increasing number of errors
of varying severity. Therefore, it becomes necessary that the develop-
ment of software systems should be based on powerful modeling for-
malisms facilitating the analysis and verification of these systems before

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.14

272

https://doi.org/10.56415/csjm.v31.14


PN2Maude: Maude specification for Petri net models …

their actual implementation. Moreover, since graphical modeling tech-
niques are of increasing interest, formal approaches accompanied with
a graphical representation are becoming more interesting.

Petri nets [1] have been widely used as a graphical and semi-
formal tool for specification and analysis of concurrent and complex
systems [2], [3]. They are gaining more popularity in recent years since
they allow an easy structural and behavioral description of studied
systems [4], [5]. Due to their popularity, a large number of tools have
been developed for editing, modeling, and analyzing Petri net model’s
properties [6]. However, the lack of interoperability between such tools,
manual preparation, and ad hoc validation of system specifications rep-
resent some of their major shortcomings.

In this context, rewriting logic is a very expressive logic that is
particularly suitable for formalizing concurrent, complex, and real-time
systems [7]. In addition, it is a unifying framework for a wide range
of Petri nets [8] and many other concurrency models [9]. Nevertheless,
specifications based on the rewriting logic of Petri net-based systems
are often voluminous and/or more difficult to refine or correct. Hence,
it is necessary to automate such an operation to save time and avoid
errors in the process of writing (preparing) specifications.

Model-Driven Engineering (MDE) is known as a promising solution
to handle the increasing complexity of software architecture through
the automatic generation of code and/or specification from system
models. In fact, it helps the designer to integrate formal specifica-
tion and verification techniques at earlier stages in the software devel-
opment life-cycle. Therefore, looking for a solution integrating MDE
technologies and allowing system designers to quickly, easily, and au-
tomatically generate formal specifications of Petri nets are expected to
be very advantageous. In addition, we believe that the use of standard
input format like the Petri Net Markup Language (PNML) and/or in-
cidence matrices will enlarge the usefulness of this solution and allows
designers to use Petri net tools while preparing their system models.

The main objective of this work is to present a tool (PN2Maude)
that offers a simple and quick way for Maude practitioners to automat-
ically generate the specification for their Petri net models from both
PNML description and incidence matrices. Once the Maude specifi-

273



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

cation of a Petri net is generated, designers can then use the Maude
LTL model checker or Maude reachability tool to analyze and verify its
behavioral properties. This can greatly simplify the process of mod-
eling and verifying concurrent and distributed systems and can help
to ensure their correctness and reliability. In fact, this tool is an en-
hancement and extension of our previous work [10], in which we have
proposed an algorithm for the automatic generation of Maude speci-
fication based only on the existing rewriting logic semantics by using
incidence matrices for pure Petri nets without inhibitor arcs.

The remainder of this paper is structured as follows. In Section
2, we give a brief introduction to the Petri nets descriptions and the
classical and improved semantics based on the rewriting logic for Petri
nets. Section 3 discusses related works and is followed by Section 4
that presents a brief description of the process of translating the PNML
Petri net description into rewriting logic as well as the structure of the
tool PN2Maude and its main modules. In Section 5, we present the
PN2Maude tool with a simple illustrative example. Finally, Section 6
concludes the paper and draws some perspectives.

2 Preliminaries

2.1 Petri nets Descriptions

Petri nets are typically regarded as one of the widely used modeling
tools for the specification and analysis of concurrent and distributed
systems. A Petri net can be viewed as a directed bipartite graph, in
which arcs are labeled with their corresponding weights and connect
nodes from different types. While the first type of nodes represents
events, and they are depicted by rectangles or bars (called, Transitions),
the second ones represent conditions or objects, and they are depicted
by circles (called, Places). Places may contain a discrete number of dots
(called, Tokens). Figure 1 below shows a simple Petri net consisting of
four places and four transitions.

The distribution of tokens over the Petri net places represents its
configuration and is called a marking. A particular transition t is en-
abled if all its input places (places leading to that transition) contain

274



PN2Maude: Maude specification for Petri net models …

sufficient tokens. Thereafter, an enabled transition t may be uncondi-
tionally fired, and, therefore, it changes the Petri net marking.

Practically, one can distinguish two sets of places for a transition t:

• pre-set(t): is composed of the input places of t, also referred to
as •t. For instance, in our example of Petri net, the pre-set(T4)=
{P3, P4}.

• post-set(t): is composed of the output places of t, also denoted
by t•. Consequently, the post-set(T4)= {P1}.

Accordingly, a tuple (p,t) is called a self-loop if p belongs to both the
pre-set(t) and post-set(t). Accordingly, a Petri net that does not con-
tain any self-loop is called pure. In addition, a transition that does not
have any input place is called a source transition, and a transition that
does not have any output place is called a sink transition. Moreover,
a particular kind of arcs is called inhibitor arcs which is denoted by
an arc with a small circle attached to a transition. Such kind of arcs
is generally used for tests and does not consume tokens after firing.
A transition connected by an inhibitor arc with a place will only be
enabled if such a place contains fewer tokens than the weight of the
inhibitor arc. Figure 1 gives an example of a Petri net.

Figure 1. Example of Petri net

2.1.1 Matrix Representation

The easiest mathematical way to represent the structure of a Petri net
with N places and M transitions is by using matrix representation. Be-
sides the fact that matrices can provide an alternative way to describe

275



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

Petri nets from conventional graphical representation, one of the main
motivations for this representation is that it facilitates mathematical
analysis of the behavior and properties of Petri nets, such as deadlock
and liveliness. The three main types of matrices used for Petri net
representation are given as follows:

• PRE-Matrix (Input matrix): It is a matrix (N,M) that captures
all the input places to all transitions. An element of matrix (N,M)
equals the weight of the arc linking a place pi to the transition
tj if it exists and 0 otherwise. The PRE-Matrix may contain
negative values in some particular cases, such as the Petri net
with inhibitor arcs, to reflect the weights of the inhibitor arcs
and to distinguish them from ordinary arcs.

• POST-Matrix (Output matrix): It is a matrix (N,M) that cap-
tures all the input places to all transitions. An element of matrix
(N,M) equals the weight of the arc linking the transition tj to a
place pi if it exists and 0 otherwise.

• INC-Matrix (Incidence matrix): It basically represents POST-
Matrix - PRE-Matrix. It can only be used for pure Petri nets.
Otherwise, the static structure of a non-pure Petri net will not be
properly described, and, in that case, POST-Matrix and PRE-
Matrix have to be used instead.

For example, the Petri net in Figure 1 can be specified in matrix rep-
resentation as follows:

PRE


2 0 0 0
0 1 2 0
0 0 0 1
0 0 0 1

 POST


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 INC


−2 0 0 1
1 −1 −2 0
0 1 0 −1
0 0 1 −1

 (1)

In these matrices, each row represents a place, and each column rep-
resents an input or output of a transition. The values in the matrix
represent the number of tokens that are either consumed or produced
by transitions, i.e., a positive value in the matrix represents tokens be-
ing produced, while a negative value represents tokens being consumed.

276



PN2Maude: Maude specification for Petri net models …

2.1.2 PNML Description

The Petri Net Markup Language (PNML) is a standardized XML-
based description of Petri net models. Indeed, a PNML description
(see Figure 2) is generally made up of a set of main nodes such as
“Place”, “Transition” and “Arcs” to describe the structure of a Petri
net in the form of a labeled directed graph. In addition, PNML provides
a universal interchange file format between various Petri net tools and
a common language that allows users and developers to interchange
Petri nets, which enables them to reuse models and integrate tools in
the analysis of complex systems. Practically, there are many tools, such
as WoPeD [11], P3 [12], and PIPE [13], that are capable of exporting
the Petri net model in the PNML format.

Figure 2. Example of the structure of a PNML description

As can be seen, the Petri net components are specified in detail
with three nodes. For instance, the three attributes id (identifier),
name, and initial marking are used to define a place (see node
<place id = ... > ... </place>). A transition is also described
with three attributes, id (identifier), name, and timed, a boolean at-
tribute that determines whether the transition is timed or not (see

277



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

node <transition id = ... > ... </transition>). Lastly, the at-
tributes id, inscription, and type are used to describe an arc (see
node <arc id = ... > ... </arc>). The source and target of the
arc are identified by the id attribute. The weight of the arc is written
in the inscription. The type indicates whether the arc is normal or
inhibitor.

2.2 Petri nets and Rewriting Logic

Since 1990, rewriting logic [14] has appeared as a promising logical
and semantic framework within which Petri nets [8] and many other
different concurrent systems and logics can be naturally specified [15].
Maude system is an implementation of rewriting logic that offers a
powerful verification toolkit so that Maude’s reachability analysis and
model-checking can be used to formally analyze and verify the Petri
net models with respect to different LTL properties [16].

Usually, a Maude specification is composed of a functional module
and/or a system module. While the functional module describes the
static part of a system by an equational theory, the dynamic part is
described by a set of rewrite rules and, possibly, equations in a system
module.

In the first proposed rewriting logic-based semantics for Petri nets
[8], there are two main types (Sorts), Place and Marking). The
Marking is a multiset of Place as it represents the distributions of
tokens over the Petri net. In addition, the names of places are used
to represent token instances. Moreover, each Petri net transition is
expressed with a rewrite rule as follows: [t] => [t'], where:

• [t] and [t']: are terms that represent a part of the global mark-
ing of the Petri net and describing the input and output of a
transition, respectively.

• => : describes the change to be made while firing a transition
([t] and [t'] are the parts to be consumed and produced, re-
spectively).

Therefore, the Maude specification of Petri net in Figure 1 is given
in Listing 1.

278



PN2Maude: Maude specification for Petri net models …

Listing 1. First Maude specification

In this context, it is worth noting that there is another enhanced
rewriting logic-based semantics [17], [18] for Petri nets, and, therefore,
the corresponding specification of our Petri net is given in Listing 2.

Listing 2. Second Maude specification

As can be seen, our Petri net has four places, P1, P2, P3, P4
and four transitions, T1, T2, T3, and T4. In addition, in Listing 1
(respectively, Listing 2), there are two modules.

While the first is a functional module that describes the static part
of the Petri net, the second is a system module that describes the
dynamic part of the Petri net.

279



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

However, the new semantics differs from the existing one in that
it encodes the sets of tokens in a place by their cardinality, which
allows for the natural expression of various high-level Petri nets such as
Petri nets with inhibitor arcs, variable arc weights, colored Petri nets,
etc. Additionally, the new semantics facilitates the expression and then
checking of behavioral properties such as boundedness, Deadlock, and
conservation by using the Maude LTL model checker.

2.3 XSLT Transformation

XSLT is a technology that transforms information from an XML doc-
ument to another type of document, such as XML, HTML, XHTML,
WML, PDF, etc. The process of transformation is mainly based on
an XSLT document, called stylesheet, which is an XML format file
that contains the information needed by the processor to perform the
transformation. Practically, an XSLT Stylesheet is associated with an
XML-based document in order to create a resulting document of a dif-
ferent or identical format. This principle is illustrated in Figure 3.

Figure 3. XSLT transformation principle

In the present work, XSLT functions and operators are used to
navigate, select nodes from an PNML document, and then generate a
purified file (see Figure 5(b)) that contains five blocks describing the set
of Petri net places, transitions, and arcs. The purified file is thereafter

280



PN2Maude: Maude specification for Petri net models …

used for the generation of Petri net matrix description.

3 Related Works

Petri nets have been widely used for modeling and simulation of dis-
tributed and concurrent systems, including communication protocols
and synchronization between system components. Unfortunately, most
Petri net tools are rarely accompanied by model-checking algorithms.
Therefore, Petri net models are often translated into other specific lan-
guages for formal analysis purposes [19], [20]. For instance, in [21],
authors presented a transcription tool from Petri net to PLC program-
ming languages. The tool makes the translation process more efficient
and less error-prone and allows for greater flexibility in system design.
Besides the translation process, the program supports stepwise simu-
lation of the Petri net model, allowing for error-checking during the
development. According to the authors, the proposed tool can be use-
ful for dynamic integration projects by providing a more efficient and
reliable process of design and implementation. In addition, in [22],
PetriNet2NuSMV, a tool for the automatic translation of reachability
graphs for colored Petri nets and place-transition Petri nets into the
NuSMV language, was introduced by the authors. The reachability
graphs used as input for this tool are those generated by the TINA and
CPN Tools software. This tool allows the formal verification of Petri
nets designed with these environments using model-checking techniques
for LTL and CTL temporal logics.

In this context, Maude is a very powerful system for which some
works have been realized for the transformation of Petri nets [8], [23].
However, very few works have been reported on the automatic trans-
lation of Petri nets into Maude. For instance, a tool for the editing,
simulation, and analysis of a special extension of Petri nets, so-called
ECATNets (Extended Concurrent Algebraic Terms Nets), is presented
in [24]. Similarly, a graphic tool allowing a bidirectional translation of
colored Petri nets to Maude and vice versa is reported in [25]. Then, a
graph transformation-based approach is proposed in [26] for the auto-
matic generation of ECATNets specification in Maude for simulation
and analysis purposes.

281



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

Moreover, to the best of our knowledge, all the existing works are
related to some extension of Petri nets (ECATNets and Colored Petri
nets) and their authors did not give any details about the generation
algorithm for their approaches, and none of them had made the pre-
sented tool available for users, which made the use of such tools too
limited.

In addition, the most closely related work is that presented in [10],
where authors have proposed an algorithm for the automatic generation
of Maude specification based on the existing semantics of Petri nets.
However, this work is limited to pure Petri nets without supporting
inhibitor arcs.

Finally, the main advantage of the present work over the latter one
is that now we generate Maude specification based on both existing
and improved semantics to provide a large and solid theoretical basis
and thus facilitate the simulation and formal analysis of Petri nets with
inhibitor arcs using the Maude system analysis tools.

4 The Translation Approach

This section provides an overview about the proposed approach for
translating PNML description into the Maude specification. The tool
PN2Maude, developed based on this approach is accessible for users 1.

4.1 Overview of the Process

The following Figure 4 shows a general description of the developed
tool.

The main idea behind the PN2Maude tool is to generate Maude
specification in six steps as follows:

1. Create a Petri net model and export it as a PNML file, or use
incidence matrices and pass it to Step 5.

2. Translate the importation of the PNML file. . The current ver-
sion of PNML2Maude supports Petri nets with inhibitor arcs and

1PN2Maude is available at: https://drive.google.com/file/d/
1I2DeysLPZzK5i-0sWtFdlPCuShc_0DqV

282

https://drive.google.com/file/d/1I2DeysLPZzK5i-0sWtFdlPCuShc_0DqV
https://drive.google.com/file/d/1I2DeysLPZzK5i-0sWtFdlPCuShc_0DqV


PN2Maude: Maude specification for Petri net models …

Figure 4. General Description of PN2Maude Tool
is exported by PIPE or P3 tools.

3. Extract data and values from the PNML file and create a purified
file (PF) using XSLT.

4. Create incidence matrices from PF.

5. Start translation by using incidence matrices and Maude specifi-
cation templates.

6. Export the generated specification into the Maude file.

4.2 Details of the transformation Process

There are two primary steps in the process of generating a Maude
specification from a Petri net description. The first one deals with
creating the incidence matrice from a PNML file, while the second one
focuses on creating a Maude specification for a Petri net using the
incidence matrices. The subsections that follow provide more details
on these two steps.

283



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

4.2.1 From the PNML file to the incidence matrices

As we have previously noted, a PNML file typically contains informa-
tion about the places, transitions, arcs, and other elements of the Petri
net, which can be used to construct the incidence matrix. Therefore,
the process of obtaining matrices from a PNML file (exported from
the P3 or PIPE tools) is based on the use of XSLT language and goes
through the following steps:

1. Purification: It allows extracting more or less essential informa-
tion, such as Petri net places, transitions, arcs as well as the
initial marking in order to facilitate the operation of creating
the incidence matrices. Figure 5(a)) shows the XSLT code de-
veloped to navigate and select the essential nodes describing the
Petri net from the input PNML file. Subsequently and in or-
der to facilitate the creation of PRE and POST matrices, these
nodes (see Figure 5(b))) are organized into five blocks describing
lists of places with their initial markings, transitions, input arcs,
inhibiting arcs, and out arcs, respectively.

2. Creation of matrices: This operation is based on the previous
operation, where the purified file is manipulated to create and
fill in the incidence matrices. This step can be summarized as
follows:

i. The number of lines (N) of Block 1 (list of places) represents
the number of lines for the incidence matrices, and the num-
ber of lines (M) of Block 2 (list of transitions) represents the
number of columns for the incidence matrices.

ii. The elements of the incidence matrices are filled from Blocks
3, 4, and 5.

284



PN
2M

aude:
M

aude
specification

for
Petrinet

m
odels

…

Figure 5. XSLT Code and Purified File with Blocs Description

285



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

4.2.2 From incidence matrices to Maude Specification

The principle of generating Maude specifications from incidence matri-
ces can be summarized in the following steps:

i. The number of rewrite rules is equal to the number of transitions
of the Petri net (number of columns in the incidence matrices).

ii. A rewrite rule is made to describe the firing of a transition. This
rule may often be conditional to describe the enabling condi-
tion for such a transition, especially in the enhanced semantics.
Therefore, such a rule is given as follows:
crl[Label] : <Left_hand_side> => <Right_hand_side> if Cond .

– Label: a given name to represent the transition.
– Left-Hand-Side: the left part of the rule (LHS), which de-

scribes the marking of the Petri net before firing.
– Right-Hand-Side: the right part of the rule (RHS), which

describes the marking of the Petri net after firing.
– Cond: a logical expression represents the enabling condition

of the transition and is picked up from the PRE-Matrix.

iii. Each transition is represented by one column in both PRE-Matrix
and POST-Matrix. Therefore, some special cases can be deter-
mined as follows:

– Source Transition: It is a transition that has columns
with null values in the PRE-Matrix.

– Sink Transition: It is a transition that has columns with
null values in the POST-Matrix.

– Transition with inhibitor arcs: This transition must
have negative values in the PRE-Matrix.

– Normal Transition: It is a transition that is not source,
sink, or with inhibitor arcs.

We recapitulate the Maude specification — by using the existing and
improved semantics — of the different possible cases of a Petri net
transition in Table 1.

286



PN
2M

aude:
M

aude
specification

for
Petrinet

m
odels

…

Table 1. Maude specification of different Petri net Transitions Cases (Continue)

287



A
.B

oucherit,M
.A

bbas,M
.L.Lam

ouri,O
.H

asan

Table 1. Maude specification of different Petri net Transitions Cases

288



PN2Maude: Maude specification for Petri net models …

4.3 Generation Algorithm

As stated previously, the process of generating a Maude specification
of a Petri net is based on its mathematical description or PNML. The
general algorithm illustrating the generation process is given as follows
in the Listing 3.

Algorithm 1 Automatic Generation of Maude Specifications (Existing
and Improved semantics)
Inputs: XML File : Petri net PNML description

PRE(N,M) : Input incidence Matrix
POST(N,M) : Output incidence Matrix
Maude_Spec : Maude specification Templates
XSLT_Code : XSLT Stylesheet

Outputs: Maude Specification 1 : Existing semantics specification
Maude Specification 2 : Improved semantics specification

Uses: MSXSL : Microsoft Command Line XSL Transformation
Begin

1: if (User_Choice = Import_PNML_File) then
2: Select_and_Import_PNML_File
3: Create_PF_Import_PNML_File . PF : is the purified file
4: Automatic_Fill_matrices (PRE(N,M),POST(N,M)) . filling

PRE-Matrix and POST-Matrix
5: else
6: Fill_PRE_Matrix(PRE(N,M))
7: Fill_POST_Matrix(POST(N,M))
8: end if
9: NB_Rules ←M . M : number of columns of incidence matrices = number of

transitions
10: for (each semantics_template) do . templates for existing and improved

semantics
11: for (j ← 1 to NB_Rules) do
12: TType← Get_Transition_Type(j, PRE_Matrix, POST_Matrix) .

source, sink, inhibitor or normal tansition
13: RewriteRule← Generate_Rule(j, TType)
14: Insert_Rule(semantics_template, RewriteRule)
15: end for
16: end for

End

Listing 3. First Maude specification

289



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

5 Presentation of the PN2Maude tool

PN2Maude is developed using the Delphi 7 language, which is a
strongly typed language that supports the structured and object-
oriented design, allowing rapid application development (RAD) run-
ning on Windows. In practice, the declarative programming language
XSLT has been used to purify a PNML file and extract only the infor-
mation necessary for the transformation and save it in the file purify
(PF). This file is then used to create the incidence matrices, which will
be used in the process of generating the Maude specification. The latter
can be saved in a Maude file. On the one hand, we have used MSXSL,
which is Microsoft’s free command-line XSLT processor for perform-
ing XSL transformations. In the next subsections, we will present the
PN2Maude interface windows with a case study for the following Petri
net (see Figure 6).

Figure 6. Example of Petri net (Case study)

5.1 Main Interface Window

The main interface window of PN2Maude tool is given in the following
Figure 7).

290



PN2Maude: Maude specification for Petri net models …

Figure 7. Main Interface Window of PN2Maude Tool

5.2 Using Incidence Matrices choice Interface Window

To introduce the Petri net, one can use the choice of “using incidence
matrices” as shown in Figure 8.

Figure 8. PN2Maude Interface Window for Using Incidence Matrices

5.3 Using PNML File choice Interface Window

The same Petri net may be introduced via a PNML file if it is edited by
a Petri net tool, such as PIPE or P3. Therefore, the interface window

291



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

for importing a PNML file is given in Figure 9).

Figure 9. PN2Maude Interface Window for Importing PNML File

5.4 Generated Specification Interface Window

Figure 10 shows the interface window with the generated specification.

Figure 10. PN2Maude Interface for the generated Specifications

292



PN2Maude: Maude specification for Petri net models …

6 Conclusion and Future Work

In this paper, we presented PN2Maude, which is a developed tool for
the automatic generation of the Maude specification for a Petri net fol-
lowing the existing and improved semantics based on its mathematical
or PNML descriptions. We intend — in the near future — to include a
Petri net editor within PN2Maude in order to facilitate the process of
Petri net-based modeling for developers and users of our tool. In addi-
tion, we aim to develop a web version of PN2Maude and/or a plug-in
for Eclipse in order to ensure its wide distribution for users.

References

[1] W. Reisig and G. Rozenberg, Carl Adam Petri: Ideas, Personality,
Impact. Springer, 2019.

[2] E. Huang, L. F. McGinnis, and S. W. Mitchell, “Verifying sysml
activity diagrams using formal transformation to petri nets,” Sys-
tems Engineering, vol. 23, no. 1, pp. 118–135, 2020.

[3] P. Singh and L. Singh, “Verification of safety critical and con-
trol systems of nuclear power plants using petri nets,” Annals of
Nuclear Energy, vol. 132, pp. 584–592, 2019.

[4] D. Buchs, S. Klikovits, and A. Linard, “Petri nets: A formal
language to specify and verify concurrent non-deterministic event
systems,” in Foundations of Multi-Paradigm Modelling for Cyber-
Physical Systems. Springer, 2020, pp. 177–208.

[5] J. Dong, J. Jiao, H. Xia, and J. Chu, “Safety simulation and
analysis for complex systems concurrency based on petri net and
stateflow model,” in 2019 Annual Reliability and Maintainability
Symposium (RAMS). IEEE, 2019, pp. 1–7.

[6] W. J. Thong and M. Ameedeen, “A survey of petri net tools,” in
Advanced Computer and Communication Engineering Technology.
Springer, 2015, pp. 537–551.

293



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

[7] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña, “Exploring
conditional rewriting logic computations,” Journal of Symbolic
Computation, vol. 69, pp. 3–39, 2015.

[8] M.-O. Stehr, J. Meseguer, and P. C. Ölveczky, “Rewriting logic
as a unifying framework for petri nets,” in Unifying Petri Nets.
Springer, 2001, pp. 250–303.

[9] J. Meseguer, “Conditional rewriting logic as a unified model of
concurrency,” Theoretical computer science, vol. 96, no. 1, pp.
73–155, 1992.

[10] A. Boucherit, A. Khababa, and L. M. Castro, “Automatic gen-
erating algorithm of rewriting logic specification for multi-agent
system models based on petri nets,” Multiagent and Grid Systems,
vol. 14, no. 4, pp. 403–418, 2018.

[11] T. Freytag, “Woped–workflow petri net designer,” University of
Cooperative Education, pp. 279–282, 2005.

[12] D. Gasevic and V. Devedzic, “Software support for teaching petri
nets: P3,” in Proceedings 3rd IEEE International Conference on
Advanced Technologies. IEEE, 2003, pp. 300–301.

[13] P. Bonet, C. M. Lladó, R. Puijaner, and W. J. Knottenbelt, “Pipe
v2. 5: A petri net tool for performance modelling,” in Proc. 23rd
Latin American Conference on Informatics (CLEI 2007), 2007.

[14] J. Meseguer, “Rewriting as a unified model of concurrency,” in
International Conference on Concurrency Theory. Springer, 1990,
pp. 384–400.

[15] ——, “Twenty years of rewriting logic,” The Journal of Logic and
Algebraic Programming, vol. 81, no. 7-8, pp. 721–781, 2012.

[16] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-
Oliet, J. Meseguer, R. Rubio, and C. Talcott, “Maude manual
(version 3.0),” SRI International–University of Illinois at Urbana-
Champaign. URL: http://maude. cs. uiuc. edu, 2019.

294



PN2Maude: Maude specification for Petri net models …

[17] A. Boucherit, K. Barkaoui, and O. Hasan, “An enhanced rewrit-
ing logic based semantics for high-level petri nets,” in The Inter-
national Workshop on Petri Nets and Software Engineering 2021
co-located with the 42nd International Conference on Application
and Theory of Petri Nets and Concurrency (PETRI NETS 2021),
2021.

[18] A. Boucherit, L. M. Castro, A. Khababa, and O. Hasan, “Petri
net and rewriting logic based formal analysis of multi-agent based
safety-critical systems,” Multiagent and Grid Systems, vol. 16,
no. 1, pp. 47–66, 2020.

[19] K. Korenblat, O. Grumberg, and S. Katz, “Translations between
textual transition systems and petri nets,” in International Con-
ference on Integrated Formal Methods. Springer, 2002, pp.
339–359.

[20] O. R. Ribeiro and J. M. Fernandes, “Translating synchronous petri
nets into promela for verifying behavioural properties,” in Indus-
trial Embedded Systems, 2007. SIES’07. International Symposium
on. IEEE, 2007, pp. 266–273.

[21] A. T. F. de Mello, M. C. Barbosa, D. J. dos Santos Filho, P. E.
Miyagi, and F. Junqueira, “A transcription tool from petri net
to clp programming languages,” in ABCM Symposium Series in
Mechatronics—Vol. 5, Section IV—Industrial Informatics, Dis-
crete and Hybrid Systems, 2012.

[22] M. Szpyrka, A. Biernacka, and J. Biernacki, “Methods of transla-
tion of petri nets to nusmv language.” in CS&P, 2014, pp. 245–256.

[23] L. J. Steggles, “Rewriting logic and elan: prototyping tools for
petri nets with time,” in International Conference on Application
and Theory of Petri Nets. Springer, 2001, pp. 363–381.

[24] N. Boudiaf, A. Chaoui, and H. Bakha, “A rewriting logic based
tool for ECATNet’s analysis: Edition and simulation steps de-
scription,” European Journal of Scientific Research, vol. 6, no. 2,
pp. 16–27, 2005.

295



A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

[25] N. Boudiaf and A. Djebbar, “Towards an automatic translation
of colored petri nets to maude language,” International Journal
of Computer Science & Engineering, vol. 3, no. 1, pp. 1078–1083,
2009.

[26] E. Kerkouche and A. Chaou, “A graphical tool support to process
and simulate ecatnets models based on meta-modelling and graph
grammars,” INFOCOMP, vol. 8, no. 4, pp. 37–44, 2009.

Ammar Boucherit, Messaoud Abbas, Received April 17, 2023
Mohammed Lamine Lamouri, Revised June 15, 2023
Osman Hasan Accepted June 15, 2023

Ammar Boucherit1, Messaoud Abbas2, Mohammed Lamine Lamouri3
1,2,3LIAP Laboratory, University of El Oued,

PO Box 789, El Oued 39000, Algeria
1ORCID: https://orcid.org/0000-0002-1617-0050
E–mail: ammar-boucherit@univ-eloued.dz
2ORCID: https://orcid.org/0000-0002-7998-9020
E–mail: messaoud-abbas@univ-eloued.dz
3ORCID: https://orcid.org/0000-0002-1074-624X
E–mail: lamouri-mohamedlamine@univ-eloued.dz

Osman Hasan
ORCID: https://orcid.org/0000-0003-2562-2669
SEECS, National University of Sciences and Technology (NUST),
Islamabad, Pakistan
E–mail: osman.hasan@seecs.nust.edu.pk

296


	Introduction
	Preliminaries
	Petri nets Descriptions
	Matrix Representation
	PNML Description

	Petri nets and Rewriting Logic
	XSLT Transformation

	Related Works
	The Translation Approach
	Overview of the Process
	Details of the transformation Process
	From the PNML file to the incidence matrices
	From incidence matrices to Maude Specification

	Generation Algorithm

	Presentation of the PN2Maude tool
	Main Interface Window
	Using Incidence Matrices choice Interface Window
	Using PNML File choice Interface Window
	Generated Specification Interface Window

	Conclusion and Future Work

