
Computer Science Journal of Moldova, vol.31, no.2(92), 2023

Comprehensive Performance Study of Hashing
Functions

G. M. Sridevi, M. V. Ramakrishna, and D. V. Ashoka

Abstract

Most literature on hashing functions speaks in terms of hash-
ing functions being either ‘good’ or ‘bad’. In this paper, we
demonstrate how a hashing function that gives good results for
one key set, performs badly for another. We also demonstrate
that, for a single key set, we can find hashing functions that
hash the keys with varying performances ranging from perfect to
worst distributions. We present a study on the effect of chang-
ing the prime number ‘p’ on the performance of a hashing func-
tion from H1 Class of Universal Hashing Functions. This paper
then explores a way to characterize hashing functions by studying
their performance over all subsets of a chosen Universe. We com-
pare the performance of some popular hashing functions based
on the average search performance and the number of perfect and
worst-case distributions over different key sets chosen from a Uni-
verse. The experimental results show that the division-remainder
method provides the best distribution for most key sets of the
Universe when compared to other hashing functions including
functions from H1 Class of Universal Hashing Functions.

Keywords: H1 Universal Class of Hashing Functions, Radix
transformation, Mid-Square method, Multiplicative Hashing,
Division-remainder method.

MSC 2020: 68P05, 68P10, 68P20.
ACM CCS 2020: Information systems—Database manage-

ment system engines, Information systems—Information Storage
Systems

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.10

183

https://doi.org/10.56415/csjm.v31.10


G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

1 Introduction
Hashing techniques have been used extensively in various applications
involving storage and retrieval, cryptography, networking, cloud, etc.
Hashing functions map keys to table indexes and provide fast retrieval
of data on different types of storage. The terms ‘good hashing function’
and ‘bad hashing function’ are usually used while talking about how
a hashing function distributes the data in the hash table. While some
hashing functions might distribute keys perfectly without any collisions,
a few others may result in all collisions. The term ‘collision’ refers to
the event where more than one key gets mapped to the same location
in memory. In general, a hashing function causing fewer collisions is
said to be ‘good’ and is said to be ‘bad’ otherwise. Different textbooks
on database and data structures talk about characteristics of a ‘good’
hashing function.

The performance of a hashing function is dependent on the input
key set and cannot be considered to be ‘good’ or ‘bad’ independent
of the input. It is reasonable to evaluate the performance of a hash-
ing function over all possible subsets of a Universe and not just over
one key set. This idea was proposed by Lum [1]. Lum recommends
considering all the subsets of a Universe to study the performance of
hashing functions. To our surprise, there is no reported literature which
studies the performance based on this strategy so far. Carter and Weg-
man’s H1 class of Universal Hashing functions was proved to provide
practical performance on real files and is expected to provide better
results [2], [3]. A comparison of the hashing functions with H1 class
of Universal Hashing functions has not been done so far as per our
knowledge.

In this paper, we demonstrate the effect of the prime number on the
performance of functions from H1 class of Universal Hashing functions.
We then present an exhaustive study on the performance of some of the
known hashing functions in comparison with functions from H1 class
of hashing functions based on Lum’s model. While functions from
Universal Class were expected to give the best results, experimental
results show that the division-remainder method performs better than
the functions from H1 class of Universal Hashing functions for the
Universe chosen.

184



Comprehensive Perf. Study of Hashing Functions …

The rest of the paper is organized as follows: Section II presents the
related work; Section III demonstrates that the performance of hashing
functions is dependent on the input, followed by a study on H1 class of
hashing functions and presents the model used for the study of hashing
functions; Section IV presents the results and the paper is concluded
in Section V.

2 Related Work
Most of the studies on hashing functions was presented in the 60s. Sur-
prisingly, there has been no study on the performance of hashing func-
tions since 70s. Peterson presented an early study on hashing functions
based on the number of probes required to find a record [4]. Buchholz
provided an analysis of hashing functions covering different aspects of
hashing functions including an analysis of overflow handling methods
but with minimal experimental results [5]. According to the author,
a hashing function that involves division of the key by a prime value
provides efficient distribution of keys. Few other studies on hashing
techniques were presented by Mc Ilroy [6], Roberts [7] and Schay et
al. [8], [9]. The performance of different hashing functions over differ-
ent sets of keys of varying datatypes was presented by Lum et al. with
a conclusion that the division method provides the best search results
with fewer collisions [10].

Later, Lum proposed a way to characterize the hashing functions
by selecting key sets from a key space and hashing the keys using
different hashing techniques [11]. Sorenson et al.’s survey on different
hashing techniques along with collision-resolution techniques presents
an analysis from a practitioner’s point of view [12]. Deutscher et al.
provide an excellent characterization and comparison of distribution-
dependent hashing functions with that of division method [3].

Ramakrishna’s study on H1 class of Universal hashing functions de-
fined by Carter and Wegman concludes that functions from this class
can provide practical performance on real files [10]. In this paper, we
present a comparison of the performance of some of the hashing tech-
niques with functions from H1 class. In the next section, we demon-
strate that any hashing function cannot be declared as ‘good’ or ‘bad’
without considering the input given to the hashing function.

185



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

3 Hashing Functions: ‘good’ or ‘bad’

In this section, we consider a few examples to illustrate that the same
hash function can perform differently for different key sets. We chose
functions from H1 class of Universal hashing functions defined by
Carter and Wegman which have been claimed to be good for providing
practical performance on real files [2]. A separate chaining method is
applied to link the keys that result in collisions for our examples. For
the demonstration, we consider 2 different scenarios:

Case 1: Same hashing function, different key sets.
We hashed 4 different key sets with the hashing function h(x) =
((519x + 703)mod 36373)mod 13 to a hash table of size 13. The key
sets considered for the demonstration of the first case are as follows:

K1 = {936, 748, 996, 815, 864, 867, 730, 971}
K2 = {772, 841, 738, 907, 876, 932, 713, 816}
K3 = {757, 861, 929, 744, 755, 797, 808, 836}
K4 = {715, 952, 899, 754, 860, 913, 992, 781}

Figure 1. Good/Normal Distribution of K1 by h(x)

Fig. 1 shows the distribution of the keys in key set K1 to the hash
table using the hash function h(x). The hash function h(x) causes only
2 collisions for key set K1. The function h(x) distributes the keys from
K2 without any collisions making it a perfect hashing function for key

186



Comprehensive Perf. Study of Hashing Functions …

set K2. On the other hand, it results in a larger number of collisions
for K3, with all keys hashing to either table index 8 or to index 10,
and in all collisions for K4. The average search performance of h(x) for
different key sets is shown in Table 1. The hash function’s performance
over the key sets was found to be good for K1; perfect for K2; bad for
K3 and worst for K4 with all keys hashing to table index 11. As we can
see, a hashing function’s performance depends on the key set chosen.

Table 1. Average Search Performance of h(x) over different key sets

Key Set Average Successful
Search Length

Performance

K1 1.25 Good
K2 1 Perfect
K3 2.625 Average/Normal
K4 4.5 Worst

Case 2: Same key set, different functions.
In the previous scenario, we showed the performance of a single hashing
function on different key sets. In another scenario, we show that, for a
single key set, we can find functions h1, h2... such that h1 is perfect,
h2 is average and so on.

For our demonstration of the second case, we consider a key set K5

= {763, 789, 841, 867, 893, 919, 945, 997} of size 8 chosen randomly
from a Universe U ranging from 700 to 1000. For the demonstration,
the key setK5 is hashed using 4 different hashing functions listed below:

h1(x)= ((412x+ 371)mod 5443)mod 13
h2(x)= ((321x+ 576)mod 27283)mod 13
h3(x)= ((513x+ 413)mod 106759)mod 13
h4(x)= ((417x+ 294)mod 158647)mod 13

Fig. 2 shows the distribution of the key set K5 by the hashing func-
tion h1(x) which is found to be perfect with no collisions. The same
key set K5 results in a few collisions when hashed with the function
h2(x). A larger number of collisions is seen when K5 is hashed with

187



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

h3(x) with all keys getting hashed to either index 0 or index 3 of the
hash table. The hashing function h4(x) hashes the key set with all col-
lisions by mapping all the keys to the address 0. The average successful
search performance of the hash functions over the key set K5 is shown
in Table 2. This shows that, for the same key set, different hashing
functions may perform differently. Choosing a hashing function that
provides the best results is vital for any application.

Figure 2. Perfect distribution for K5 by h1(x)

Table 2. Average Search Performance of different hashing functions
over K5

Hashing
Function

Average Successful
Search Length

Performance

h1(x) 1 Perfect
h2(x) 1.625 Good
h3(x) 3 Bad
h4(x) 4.5 Worst

We have illustrated with examples that the performance of any
hashing function is dependent on the key set and, for any given key
set, we can find functions that vary in performance. Also, given any
hashing function, we can find key sets for which the performance of
the hashing function varies from perfect to good, bad, or even worse.

188



Comprehensive Perf. Study of Hashing Functions …

This can be done for any other class of hashing functions such as radix
transformation, division-remainder method, and so on.

3.1 The effect of the prime ‘p’ on the performance of H1

Class of Hashing Functions

We demonstrated that a hashing function cannot be considered ‘good’
or ‘bad’ without taking the input into consideration. For the demon-
stration, we used hashing functions from H1 class of Universal hashing
functions defined by Carter and Wegman of the form

h(x) = ((c ∗ x+ d)mod p)modm, (1)

where c and d are chosen at random, p is a large prime, and m is the
table size. Functions from H1 class are said to be Universal indicating
that the maximum number of collisions expected is nearly n/m, where
n is the size of the key set and m is the hash table size. We can observe
that the performance of the hashing functions varied depending on the
values chosen for ‘c’, ‘d’, and ‘p’. This motivated us to study the effect
of varying the values of ‘p’ on the performance of H1 class of Universal
hashing functions.

In particular, we chose a key set with keys that generate the same
remainder on dividing by the hash table size m taken as 13. We studied
the performance of functions from H1 class over a key set K of size 10
ranging from 700 to 1000. The key set considered for the study is

K = {737, 945, 763, 815, 867, 841, 893, 789, 919, 997}.

We can see that the keys chosen would result in all collisions if hashed
using the modulo method. The keys from the key set K were hashed
to the hash table using hashing functions of the form in Eq. (1). The
values for ‘c’ and ‘d’ were kept constant at c = 453 and d = 657. The
performance of the hashing function was evaluated for different values
for ‘p’ to study the effect of the prime number on the performance of the
hashing function and is shown in Table 3. The results indicate that as
the ratio of ‘(cx+d)’ to ‘p’ decreases, the number of collisions increases.
Larger values of ‘p’ result in a higher number of collisions. If the value

189



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

of ‘p’ is too large, it results in all collisions. Whereas, smaller values
result in fewer collisions and can also provide perfect distribution. In
the next subsection, we present a comprehensive study of some of the
popular hashing functions.

Table 3. Performance variation of a hashing functionh(x) on varying ’p’

pvalue No. of
overflow
records

Average
Search
length

(c∗x+d)
p Search Per-

formance

226637 9 5.5 1.47 Worse
170689 8 4.6 1.95 Bad
156967 9 5.5 1.1 Worse
128761 8 3.0 2.59 Average
70571 7 2.7 4.74 Average
36373 7 2.3 9.19 Average
32203 5 1.7 10.38 Good
30241 6 1.8 11.06 Good
19739 3 1.3 16.94 Good
13219 1 1.1 25.30 Good
10687 0 1 31.30 Perfect
7477 2 1.2 44.73 Good
5879 0 1 56.9 Perfect
2357 0 1 141.9 Perfect

3.2 Exhaustive Performance Study of Hashing Functions

We demonstrated that the performance of a hashing function is highly
dependent on the input. Based on this fact, the best strategy to study
the performance of a hashing function over any given Universe of keys
would be to consider the performance of the hashing function over all
the possible subsets of the Universe rather than on just a few key sets.
As already demonstrated, different hashing functions may provide var-
ied performance for same key set while they behave differently for other
key sets. Hence, we consider exhaustive subsets of the Universe, ac-
cording towhich all possible subsets of a Universe must be considered for

190



Comprehensive Perf. Study of Hashing Functions …

hashing to properly understand how a hashing function distributes the
data. This was suggested by Lum in his earlier studies. A study on
Universal hashing functions based on this idea is presented here in
comparison with other existing methods.

Consider a Universe of keys U = {k1, k2, k3, …, kn} of size n. There
are nCr possible subsetsKS (Key Set) of size r. Each of these subsets is
hashed to the Hash Table individually, and the average search perfor-
mance of the hashing function over all the subsets is taken into consider-
ation to study the performance. Some key setsmay get distributed per-
fectly without any collisions. Somemaybeworst cases (all keys colliding)
and others will be in between. We evaluate the performance of the hash-
ing functions by taking an average of all the extreme cases. The algorithm
for the comprehensive study is presented in Algorithm 1.

Algorithm 1.
Input:
Universe U= {10, 11, …..., 29}
Universe Size n = 20
Table Size m=10
Subset Sizes r = {3, 4, …., 10}

Begin:
1: For each r
Generate all subsets/key sets of U (KS) of size r
//KS = {KS1,KS2, ..KSnCr}
2: For each subset KSx //KSx = {k1,k2, …, kr}
Initialize Total Search Length for KSx to 0
3: For each key kx in a subset KSx

hash(kx)
Compute Search length for kx //(SL(kx))
Total Search Length for KSx= Total Search Length for
KSx + SL(kx)
End For3
Calculate Average Search Length over KSx (ASL(KS))
End For2
ASL(KS) = Average search Length over nCr subsets
End For1

191



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

4 Results and Discussion
For our experiment, we considered mid-square method, radix trans-
formation, division-remainder method, multiplicative method [2], [13],
and H1 class of hashing functions. A brief explanation of the hashing
functions considered for the study is given below.

Mid-square method extracts the middle portion of square value of
the key as the hash address for the key.
For example, for the key x = 2518, squaring the key gives
63,40,324. The middle of the squared value, i.e., ‘0’ is taken
as the hash address to store the key x.

Radix transformation transforms the key from decimal to a differ-
ent base and the resulting value is used to generate the hash
address. The key can be converted to any base of our choice. For
demonstration, we convert the key to base 9.
Consider a key x = 7698. Converting the decimal 7698 to base
9 gives the value 11503. The converted value is then used to
generate the hash address. For a table size of m = 10, we use
a modulo operation on the transformed value with the table size
to generate a hash address within the address range 0 to 9. For
m = 10, we get 3 (11503mod10) as the hash address.

Division-remainder method or modulo method is of the form
h(x) = xmodm, where x is the key and m is the hash table
size. The remainder obtained on dividing the key by table size is
taken as the hash address.
For x = 1893 and m = 10, we get 3 (1893 mod 10) as the hash
address.

Multiplication method is of the form h(x) = floor(m ∗ ((x ∗
c)mod 1)), where c is a floating-point value ranging between 0
to 1 and m is the table size. The key x is multiplied by c, and
the fractional part is extracted by applying a modulo operation
with 1 on the product obtained. The remainder is then multiplied
by the table size and the real part is taken as the hash address.

192



Comprehensive Perf. Study of Hashing Functions …

For example, for a key x = 1788, if c = 0.572593, x ∗ c is
1023.796284. Modulo operation on the product with 1 gives
0.796284 as the remainder which is multiplied with the table size
m. If m = 10, we get 7.96284 as a result, from which the floor
value is taken as the hash address, i.e., 7.

H1 class of hashing functions defined by Carter and Wegman are
of the form h(x) = ((cx + d)mod p)modm, where c and d are
integers chosen at random, p is a large prime, and m is the table
size. For x = 18, if c = 58, d = 67, p = 137, and m = 10, we get
5 as the hash address.

For any given set of size n, the number of possible subsets of size r
is exponential and is equal to nCr. Thus, we have to keep the size of
the Universe n to be small so that the total time taken to conduct the
experiments is within manageable limits. For n = 100, the number
of possible subsets of size r = 7 is 100C7 =16007560800 and the time
taken to generate all the subsets is nearly 42 hours. For r = 8, we get
186087894300 possible subsets which is estimated to take nearly 21 days
to generate. For larger values of r = 9 and 10, we get 1902231808400
and 17310309456440 possible subsets. It would take longer to generate
and hash all the subsets to the hash table; hence, we chose a smaller
Universe U of size n = 20, for which the number of subsets is 184756
for r = 10, which takes lesser time to generate. The Universe U chosen
ranges from 10 to 29. Subsets are constructed for different sizes ‘r’
ranging from 3 to 10. Each of these subsets is hashed to a Hash Table
of size m = 10, and the average search performance is calculated over
all the subsets.

Each of the hashing functions was used to hash all the possible
subsets of the Universe for subset sizes r = 3 to 10. For Universal
hashing functions, we generated 100 different functions by varying the
values of ‘c’, ‘d’ at random and keeping the prime ‘p’ as constant. The
average of Average search length for the 100 hashing functions was used
to compute the search performance of Universal hashing functions. For
example, if r = 3, for each hashing function, we get 1140 subsets;
we take the average search length for all the subsets for each hashing
function. This is repeated for 100 hashing functions. Later we take the

193



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

average of the 100 average search lengths to compute the performance
of Universal hashing functions.

Table 4. Comparison based on Average Successful Search Length

Subset
Size (r)

3 4 5 6 7 8 9 10

No. of
Subsets
(nCr)

1140 4845 15504 38760 77520 125970 167960 184756

Mid-
Square
method

1.12 1.19 1.25 1.31 1.38 1.44 1.5 1.57

Modulo
method

1.05 1.08 1.1 1.13 1.16 1.18 1.21 1.23

Multipli-
cation
method

1.13 1.19 1.25 1.31 1.38 1.44 1.5 1.57

Decimal
to base
11

1.06 1.09 1.12 1.16 1.19 1.22 1.25 1.28

Decimal
to base
15

1.16 1.23 1.31 1.39 1.47 1.55 1.63 1.71

Uni-
versal
Hashing

1.07 1.11 1.15 1.18 1.22 1.26 1.29 1.33

Table 4 shows the results of experiments based on successful search
length. The subset size r (shown in the first row) varies from 3 to
10. For each size, we generated all possible subsets of that size taking
the elements from our small Universe. The total number of subsets
generated in each case is shown in the second row (nCr). After hash-
ing all the keys in a subset, the successful search length is computed.
The average of this search length over all the subsets is computed and
shown in the next six rows corresponding to each method of the hashing

194



Comprehensive Perf. Study of Hashing Functions …

function used.

Table 5. Comparison based on Percentage of Perfect distributions

Subset
Size (r)

3 4 5 6 7 8 9 10

No. of
Subsets
(nCr)

1140 4845 15504 38760 77520 125970 167960 184756

Mid-
Square
method

65.96 42.13 21.96 8.79 2.41 0.34 0 0

Modulo
method

84.21 69.35 52.01 34.67 19.81 9.15 3.05 0.55

Multipli-
cation
method

67.63 50.09 33.69 20.52 10.79 4.65 1.46 0.25

Decimal
to base
11

81.40 64.75 46.31 29.05 15.40 6.49 1.94 0.31

Decimal
to base
15

59.65 36.12 18.78 8.31 3.04 0.88 0.18 0.02

Uni-
versal
Hashing

78.77 60.56 41.49 24.75 12.43 4.96 1.41 0.22

Tables 5 and 6 show the percentage of distributions that are per-
fect(P) and worst(W) respectively for different hashing functions. For
example, with r = 3, we have 1140 possible subsets. A distribution is
perfect if the resulting successful search length is precisely 1.0 or if there
were no collisions. With the mid-square method, out of 1140 subsets,
752 distributions gave a search length of 1.0. Thus, we get (752/1140)
* 100 = 65.96 % of perfect distributions for mid-square method de-
picted in Table 5. Conversely, out of 1140 subsets, 22 subsets result
in all collisions which gives us (22/1140) * 100 = 1.93% of the worst

195



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

Table 6. Comparison based on Percentage of worst-case distributions

Subset
Size (r)

3 4 5 6 7 8 9 10

No. of
Subsets
(nCr)

1140 4845 15504 38760 77520 125970 167960 184756

Mid-
Square
method

1.93 0.31 0.04 0 0 0 0 0

Modulo
method

0 0 0 0 0 0 0 0

Multipli-
cation
method

2.68 0.91 0.33 0.11 0.03 0.01 0.001 0.0001

Decimal
to base
11

0.18 0 0 0 0 0 0 0

Decimal
to base
15

3.51 0.62 0.08 0.01 0 0 0 0

Uni-
versal
Hashing

0.37 0.02 0 0 0 0 0 0

196



Comprehensive Perf. Study of Hashing Functions …

distribution for the mid-square method depicted in Table 6. Similarly,
the division-remainder method provides 960 perfect distributions and
0 worst-case distributions for r = 3. Our experiments show that the
division-remainder method gives the highest percentage of perfect dis-
tributions and the least percentage of the worst distributions for all
subset sizes when compared to other methods.

While we were inclined to believe that functions fromH1 class would
provide the best results when compared to other hashing techniques,
it was surprising to see that, contrary to our belief, the average search
performance of functions from H1 class was not as good as division-
remainder method. The performance of functions from H1 was closely
behind that of the remainder method and radix transformation to base
11. Even the number of subsets with perfect distribution was highest
with the remainder method.

5 Conclusions

In this paper, we have presented the performance of some popular
hashing techniques over all the possible subsets of a Universe. For the
Universe chosen, the remainder method distributed the subsets of dif-
ferent sizes with fewer collisions resulting in a smaller average successful
search. It was closely followed by the radix transformation method to
base 11. The division-remainder method also gave the highest percent-
age of perfect distributions followed by radix transformation to base 11
for all subset sizes r. A smaller value for the prime ‘p’ improved the
performance of the Universal Hashing function making it better than
the radix transformation but it did not do better than the division-
remainder method which was contrary to our belief.

Acknowledgments

This research was supported by Visvesvaraya Technological University,
Jnana Sangama, Belagavi.

Conflict of interest

The authors declare no potential conflict of interests.

197



G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

References

[1] V. Y. Lum, P. S. Yuen, and M. Dodd, “Key-to-address transform
techniques: A fundamental performance study on large existing
formatted files,” Communications of the ACM, vol. 14, no. 4, pp.
228–239, 1971.

[2] J. L. Carter and M. N. Wegman, “Universal classes of hash func-
tions,” in Proceedings of the ninth annual ACM symposium on
Theory of computing, 1977, pp. 106–112.

[3] R. Deutscher, P. G. Sorenson, and J. P. Tremblay, “Distribution-
dependent hashing functions and their characteristics,” in Pro-
ceedings of the 1975 ACM SIGMOD international conference on
Management of data, 1975, pp. 224–236.

[4] W. W. Peterson, “Addressing for random-access storage,” IBM
journal of Research and Development, vol. 1, no. 2, pp. 130–146,
1957.

[5] W. Buchholz, “File organization and addressing,” IBM Systems
Journal, vol. 2, no. 2, pp. 86–111, 1963.

[6] M. D. Mc Ilroy, “A variant method of file searching,” Communi-
cations of the ACM, vol. 6, no. 3, p. 101, 1963.

[7] D. C. Roberts, “File organization techniques,” in Advances in
Computers. Elsevier, 1972, vol. 12, pp. 115–174.

[8] G. Schay and N. Raver, “A method for key-to-address transfor-
mation,” IBM Journal of research and development, vol. 7, no. 2,
pp. 121–126, 1963.

[9] G. Schay Jr and W. G. Spruth, “Analysis of a file addressing
method,” Communications of the ACM, vol. 5, no. 8, pp. 459–462,
1962.

[10] M. V. Ramakrishna, “Hashing practice: analysis of hashing and
universal hashing,” ACM SIGMOD Record, vol. 17, no. 3, pp.
191–199, 1988.

[11] V. Y. Lum, “General performance analysis of key-to-address trans-

198



Comprehensive Perf. Study of Hashing Functions …

formation methods using an abstract file concept,” Communica-
tions of the ACM, vol. 16, no. 10, pp. 603–612, 1973.

[12] P. Sorenson, J. Tremblay, and R. Deutscher, “Key-to-address
transformation techniques,” INFOR: Information Systems and
Operational Research, vol. 16, no. 1, pp. 1–34, 1978.

[13] J. Von Neumann, “13. various techniques used in connection with
random digits,” Appl. Math Ser, vol. 12, no. 36-38, p. 3, 1951.

G. M. Sridevi, M. V. Ramakrishna, Received October 26, 2022
D. V. Ashoka Accepted January 25, 2023

G. M. Sridevi
ORCID: https://orcid.org/ 0000-0003-3864-9983
Research Scholar - Visvesvaraya Technological University (VTU),
Dayananda Sagar Academy of Technology and Management,
Department of Information Science and Engineering,
Udayapura, Kanakapura Road, Bengaluru-560082, India.
E–mail: sridevi.gereen87@gmail.com

M. V. Ramakrishna
ORCID: https://orcid.org/0000-0001-7058-7562
SJB Institute of Technology, Department of Information Science and Engineering,
BGS Health and Education City, Dr. Vishnuvardhan Road,
Bengaluru-560060, India.
E–mail: mvrama@yahoo.com

D. V. Ashoka
ORCID: https://orcid.org/ 0000-0003-1326-2387
JSS Academy of Technical Education
Department of Information Science and Engineering,
Dr. Vishnuvardhan Road,
Bengaluru-560060, India.
E–mail: dr.dvashoka@gmail.com

199


	Introduction
	Related Work
	Hashing Functions: ‘good’ or ‘bad’
	The effect of the prime ‘p’ on the performance of H1 Class of Hashing Functions
	Exhaustive Performance Study of Hashing Functions

	Results and Discussion
	Conclusions

