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On the bondage, strong and weak bondage

numbers in Complementary Prism Graphs

Aysun Aytaç Tufan Turacı

Abstract

Let G = (V (G), E(G)) be a simple undirected graph of order
n, and let S ⊆ V (G). If every vertex in V (G) − S is adjacent to
at least one vertex in S, then the set S is called a dominating set.
The domination number of G is the minimum cardinality taken
over all sets of S, and it is denoted by γ(G). Recently, the effect
of one or more edges deletion on the domination number has been
examined in many papers. Let F ⊆ E(G). The bondage number

b(G) of G is the minimum cardinality taken over all sets of F such
that γ(G−F ) > γ(G). In the literature, a lot of domination and
bondage parameters have been defined depending on different
properties. In this paper, we investigate the bondage, strong and

weak bondage numbers of complementary prism graphs of some
well-known graph families.
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1 Introduction

Graph theory has become an important mathematical tool in many
different sciences. For example, the domination number is an important
graph parameter, and it has many different application areas [15]. In
the near past, some papers published about how the domination varies
when there are changes in edges or vertices by adding or removing. This
is important because vertices in the domination set can be considered
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transmitters that cover a wide variety of communication links. The
loss of certain links may make the transmitter set a non-dominating
set. i.e., the communications between some links can be disrupted by
a wrecker. Consider that a wrecker does not know which vertices in
the network serve as transmitters but knows that those vertices form
a minimum domination set in the network. What is the minimum
number of connections that the wrecker must disrupt such that at least
a new transmitter is needed to connect with all sites? With this in
mind, the concept of bondage has begun to be studied in graph theory.

Let G be a simple undirected graph without loops and multiple
edges with vertex set V (G) and edge set E(G). The order of G is the
number of vertices in G. The degree of a vertex v ∈ V (G) is the number
of edges incident to v and it is denoted by deg(v). Let S ⊆ V (G). If
every vertex in V (G) − S is adjacent to at least one vertex in S, then
the set S is called a dominating set. The domination number of G is
the minimum cardinality over all domination set of G, and it is denoted
by γ(G).

The following question about domination number is very impor-
tant: what is the minimum number of links that must be removed so
that the domination number increases? Bauer et al. [7] has given the
answer of this question. They have defined the bondage number for
the vulnerability of a graph. The bondage number b(G) of G is defined
as the minimum cardinality among all subsets of edges F ⊆ E(G) for
which γ(G−F ) > γ(G) [11]. There are different parameters depending
upon the domination number such as the reinforcement number [13],
the average lower bondage number [18], the average lower reinforcement
number [19], the residual domination number [20] and the link resid-
ual domination number [21]. Furthermore, different papers about the
domination and bondage numbers can be seen in [2],[4],[5],[11],[18],[19].

The concept of a strong dominating set (sd-set) has been introduced
by Sampathkumar and Pushpalatha [9]. Let u, v ∈ V (G). A set S ⊆
V (G) is a strong dominating set of G if every vertex u in V (G) −
S is adjacent to the vertex v in S such that deg(v) ≥ deg(u) and
(u, v) ∈ E(G). The strong domination number γs(G) is the minimum
cardinality over all strong dominating set of G. The strong bondage
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number bs(G) of G is defined as the minimum cardinality among all
subsets of edges F ⊆ E(G) for which γs(G−F ) > γs(G). This concept
has been introduced by J. Ghoshal et al. [12].

A set S ⊆ V (G) is a weak dominating set (wd-set) of G if every
vertex u in V (G)−S is adjacent to the vertex v in S such that deg(v) ≤
deg(u) and (u, v) ∈ E(G). The weak domination number γw(G) is the
minimum cardinality over all strong dominating set of G. The weak

bondage number bw(G) of G is defined as the minimum cardinality
among all subsets of edges F ⊆ E(G) for which that γw(G−F ) > γw(G)
[9].

There have been applications of strong and weak domination in
specific practical situations. For example, in a road network, where
certain locations are related, the degree of vertex v is the number of
roads that meet at v. If deg(u) ≥ deg(v), then the traffic at u is more
severe than that at v, and vice versa. If traffic between u and v is
considered, predilection should be given to the vehicles going from u
to v. Thus, u strongly dominates v and v weakly dominates u.

Complementary prism graphs have been introduced by Haynes et
al. [17]. Let G be a complemantary graph of a graph G. The comple-
mentary prism is denoted by GG. It is a graph formed from the disjoint
union of G and G by adding the edges of a perfect matching between
the corresponding vertices of G and G. The vertex v denotes the ver-
tex v in the copy of G, and it is defined for each v ∈ V (G) [16], [17].
Many well-known graphs may be actualized as complementary prism
graphs. For example, the corona Kn ◦K1 is the complementary prism
KnKn. Another example, the Petersen graph is the complementary
prism C5C5 (see [17]).

Throughout this paper, minimum degree, maximum degree, vertex
set and edge set of the graph G are denoted by δ(G), ∆(G), V and E,
respectively [8]. Similarly, the vertex set and the edge set of the graph
G are denoted by V and E, respectively [8]. Furthermore, euv denotes
the edges between the vertices u and v, N(u) denotes the neighborhood
of the vertex u.

The paper proceeds as follows. In Section 2, basic results of liter-
ature on the strong-weak bondage number of some special graphs are
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presented. Some results of the bondage, strong and weak bondage num-

bers for complementary prisms are given in Section 3. Finally, the
conclusion of paper is given in Section 4.

2 General Bounds on Strong and Weak Bon-

dage Numbers

In [14], sharp bounds were obtained for b(G), bs(G) and bw(G). Fur-
thermore, the exact values were determined for several classes of graphs
such as Kn, Cn, Pn, W1,n, Km,n. In this section, we will review some
of the known results.

Theorem 1 ( [14]). If G is a nonempty graph with a unique minimum

dominating set, then b(G) = 1.

Theorem 2 ( [7], [11]). If G is a nonempty graph, then b(G) ≤
minuv∈E(G)(deg(u) + deg(v) − 1).

Theorem 3 ( [6]). If G has edge connectivity k, then b(G) ≤ ∆(G) +
k − 1.

Theorem 4 ( [14]). If T is a nontrivial tree, then bs(T ) ≤ 3 and

bw(T ) ≤ ∆(T ).

Theorem 5 ( [14]). If any vertex of tree T is adjacent with two or

more end-vertices, then bs(T ) = 1.

3 Exact Values for b(GG), bs(GG) and bw(GG)

We begin this subsection by determining the bondage, strong and weak
bondage of the complementary prism GG when G is a specified family
of graphs, such as the star graph K1,n, the complete graph Kn, the
path graph Pn, the cycle graph Cn, the wheel graph W1,n, the complete
bipartite graph Km,n, the graph tK2 and the graph KnoK1. The graph
KnoK1 is obtained by adding a pendant vertex v that is deg(v) = 1 to
each vertex of the graph Kn. In order to understand the proofs of the
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theorems given in this section more easily, the set of vertices belonging
to the graph G in GG graph is shown as V and the set of vertices
belonging to the G graph are shown as V . Furthermore, when the
edges set of GG is divided into E(GG) = E1(GG)∪E2(GG)∪E3(GG),
the edge sets here are respectively expressed as the set of edges of the
graph G, the set of edges combining the graph G with the G graph,
and the set of edges of the G graph.

Theorem 6. If G = K1,n, then b(GG) = bs(GG) = bw(GG) = 1.

Proof. Let G = K1,n and u be the center vertex of the graph G.
For b(GG) and bs(GG); vertices u and u have to be in γ(GG) and
γs(GG)-strong dominating sets, where v ∈ V − {u}. γ(GG − euu) =
γs(GG − euu) = γ(GG) + |{u}| = γs(GG) + |{u}| when an edge euu ∈
E(GG) is removed from the graph GG, also it is easy to see that
b(GG) = bs(GG) = 1.

Now let’s calculate the bw(GG) value of the graph. It is easily seen
that the weak domination number of graph G is γw(GG) = n+1 from
[1]. There are n vertices of degree 2 and a vertex of degree 1, say
u, which is adjacent to center vertex in γw(GG)-weak dominating set.
This dominating set is unique. If an edge evv ∈ E(GG) is removed
from the graph GG, then the vertex v is not weakly dominated, where
the vertex v is degree of 2 and so the vertex v must be in γw(GG)-
weak dominating set. It can be easily seen that, γw(GG − evv) =
γw(GG) + |{v}| and it follows that bw(GG) = 1.

Theorem 7. If G = Kn, then b(GG) = bs(GG) = n and bw(GG) = 1.

Proof. Let G = Kn. The vertices of graphGG are of two kinds: vertices
of degree n+1 and one, respectively. The vertices of degree one will be
referred to as pendant vertices and vertices of degree n+1 – as support
vertices.

Let’s calculate the bondage and strong bondage numbers of the
graph. Since each vertex v in V deg(v) = 1, γ(GG)-dominating sets
and γs(GG)-strong dominating sets have to contain vertex set V . There
are two ways for deleting the edges to increase the domination number
of the graph GG:
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(i) If the n edges between V and V are removed from the graph GG,
then the rest of the graph GG is all independent pendant vertices and
support vertices which consist of two complete graphs Kn. There are
all pendant vertices and one support vertex in γ(GG)-dominating set
and γs(GG)-strong dominating set. Therefore, we obtain b(GG) =
bs(GG) = n.

(ii) If one of the support vertices is isolated, then the domination
number increases by one. Thus, n edges attached to any support vertex
are removed.

From (i) and (ii), we have b(GG) = bs(GG) = n.

Now let’s calculate the weak bondage number of the graph.
γw(GG)-weak dominating set must contain all vertices of V . If an
edge euu ∈ E(GG) for ∃u ∈ V is removed from GG, then the ver-
tex u becomes the isolated vertex. Furthermore, since the degree of
the vertex u is less than degrees of all vertices of the V − {u}, then
V − {u} set does not weakly dominate the vertex u. So, the vertex u
must be in γw(GG) -weak dominating set. It can be easily seen that
γw(GG − euu) > γw(GG) and we have bw(G) = 1.

Theorem 8. If G = Pn for n > 5 and k > 1 , then

i) b(GG) =

{

1, n=3k,

2, otherwise

ii) bs(GG) =

{

3, n=3k,

2, otherwise

iii) bw(GG) =

{

2, n=3k+1,

1, otherwise.

Proof. In three different bondage measure proofs, three cases are ex-
amined according to n mod 3.

Proof of b(GG) is obtained by three cases.

Case 1. If n = 3k, then the graph G consists of k-copies of P3.
The dominance number increases when an edge between two 3-degree
vertices of any P3 graph in the GG graph is deleted. Since n = 3k,
γ(GG)-dominating set is unique. Therefore, we have b(GG) = 1.

64



On the bondage, strong and weak bondage number in . . .

Case 2. n = 3k + 1, then there are many γ(GG)-dominating sets.
Furthermore, it is easy to see that b(GG) > 1. Let the vertex u be any
end vertex with degree two. Let S(u) be the set of edges connected
to the vertex of u. When S(u) is removed from the graph GG, the
remaining structure contains graph P3kP3k. So, we have γ(GG) =
⌈(n + 3)/3⌉ = k + 1 from [1]. Thus, γ(GG − S(u)) = γ(P3kP3k) + 1 =
⌈(n + 3)/3⌉ + 1 = k + 2. Then, we obtain b(GG) = 2.

Case 3. n = 3k + 2, then the proof is made similar to Case 2.

Proof is completed by Case 1, Case 2 and Case 3.

For ∀u ∈ V (G) and ∀ū ∈ V (Ḡ), dGḠ(ū) > dGḠ(u). Thus, γs(GG)-
strong dominating set contains any two vertices ofG to strong dominate
all vertices of the graph G. It is easily seen that bs(GG) > 1. The graph
GG has more than one γs(GG)-strong dominating sets. The proof of
bs(GG) is obtained by three cases.

Case 1. Let n = 3k. Since δ(GG) = 2, when any two edges are deleted
from theGG graph, the strong dominance number of the graph does not
change. Therefore, bs(GG) > 1. Let vertices u and v be end vertices of
the graph G and P4 induced subgraph of the graph G without {u, v}-
vertices. When the edges of this P4 graph are removed, it is easy seen
that γs(GG − E(P4)) > γs(GG) . So, we have bs(GG) = 3.

Case 2. Let n = 3k+1. By [1], we have γs(GG) = k+2. Let u and v
be end vertices of the graph GG. Let S(u) be the set of edges connected
to the vertex of u. When S(u) is removed from the graph GG, the re-
maining structure contains graph P3kP3k. As the vertex u is an isolated
vertex, it is in γs(GG)-strong dominating set. Furthermore, the strong
domination number of remaining graph is equal to strong domination
number of graph P3kP3k. Thus, γs(P3kP3k) = ⌈(3k+4)/3⌉ = k+2 and
vertex u is strong dominated by γs(P3kP3k)-strong dominating set. Fi-
nally, γs(GG − S(u)) > γs(GG). Now, we have bs(GG) = 2 , since
γs(GG − S(u)) > γs(GG).

Case 3. Let n = 3k + 2. When the same edges are deleted as in Case
2, the remaining structure contains the graph P3k+1P3k+1. The rest of
the proof is made similar to Case 2. Therefore, we obtain bs(GG) = 2.
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Proof is completed by Case1, Case2 and Case3.

The proof of bw(GG) is obtained by two cases.

Case 1. Let n = 3k+1. It can be easily seen that γw(GG) = γw(GG−
e), where e is an edge of the graph GG. Therefore, bw(GG) > 1. Let u
be an end vertex of the graph G. Similarly, let v ∈ N(u) and m ∈ N(v)
in G. When the edges euv and evm are removed from the graph GG,
the vertices u, v and m must be in γw(GG)-weak dominating set from
definition of weak domination set. Furthermore, the other end vertex
of the graph G must be also in γw(GG)-weak dominating set. Since
v is weakly dominate to V − {u,m}, this vertex must be in γw(GG)-
weak dominating set. There are (n − 6) vertices that are not weakly
dominated such that these vertices are formed as graph Pn−6. So,
γw(GG) = γw(Pn−6) + 5 and γw(GG) = ⌈(n− 6)/3⌉+5 = ⌈(n+9)/3⌉.
Therefore, ⌈(n+ 9)/3⌉ > ⌈(n + 6)/3⌉, since n = 3k + 1. Consequently,
we have bw(GG) = 2.

Case 2. For n = 3k and n = 3k + 2, let u be end vertex of the graph
G and v ∈ N(u), where N(u) be the neighborhood of vertex u in the
graph G. When an edge euv is removed from the graph GG, γw(GG)-
weak dominating set must contain vertices u and v and also the other
end vertex of the graph G. So, the remaining graph is Pn−5. The rest
of the proof is similar to Case 1. So, we obtain γw(GG) = ⌈(n+10)/3⌉.
Then we have bw(GG) = 1, since ⌈(n+10)/3⌉ > ⌈(n+6)/3⌉ = γw(GG).
The proof is completed.

Theorem 9. If G = Cn for n > 5 and k > 1, then

i) b(GG) = bs(GG) =

{

5, n=3k,

3, otherwise.

ii) bw(GG) =

{

2, n=3k,

1, otherwise.

Proof. In three different bondage measure proofs, three cases are ex-
amined according to n mod 3.

Proof of bs(GG) is obtained by three cases.
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When one or two edges are removed from GG, strong domination
number does not increase since γs(GG)-strong dominating set is more
than one set. It is easy to see that bs(GG) > 2, since δ(GG) = 2.

Case 1. Let n = 3k + 1 and u and v be two adjacent vertices
in graph G. When the edge euv is removed from the graph GG,
the remaining graph is (P3k+1P3k+1 + {eu v}). Furthermore, it is
easy to see that γs(P3k+1P3k+1 + {eu v}) = γs(P3k+1P3k+1). Find-
ing the bondage number of (P3k+1P3k+1 + {eu v}) is similar to find-
ing the bondage number of (P3k+1P3k+1) by Theorem 8. So, we have
bs(GG) = 1 + bs(P3k+1P3k+1) = 3.

Case 2. Let n = 3k + 2. The proof is made similar to Case 1.

Case 3. Let n = 3k. The degrees of all vertices of graph G and graph
G are 3 and (n − 2), respectively. The edges of the graph G are not
removed, since n − 2 > 3. It can be easily seen that γs(GG)-strong
dominating set must contain some vertices from the graph G. In order
to increase strong domination number of the graph GG, we have two
sub cases.
Subcase 1. Let’s take any subgraph P6 of the graph G. When all
edges of the graph P6 are removed, the remaining graph includes the
graph Pn−4 and 4-isolated vertices. Let x and y be any two isolated ver-
tices. Then we have γs(GG−E(P6)) = γs(Pn−4)+2γs(K1)+|{x, y}|) =
⌈(n − 4)/3⌉ + 4 = ⌈(n + 8)/3⌉. So, it can be easily seen that
γs(GG − E(P6)) > γs(GG), since γs(GG) = ⌈(n − 4)/3⌉. Then we
obtain bs(GG) = 5.
Subcase 2. γs(GG)-strong dominating set must contain any two ver-
tices from the graph GG. According to this situation, we must remove
some edges. These are three edges from E1(GG) and two edges from
E2(GG). Let S be the set of these edges, so |S| = 5. The remaining
graph is graph Pn−2 and two isolated vertices, when edges of S are re-
moved. Furthermore, γs(GG)-strong dominating set must contain any
two vertices in V . These vertices strong dominate all vertices of V ,
since the degree of all vertices of graph G is (n− 2) [1]. Then, we have
γs(GG − S) = γs(Pn−2) + 2 + γs(G). So, it can be easily seen that
γs(GG− S) > γs(GG) since γs(GG) = ⌈(n+ 4)/3⌉. Finally, we obtain
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bs(GG) = 5.

By Subcase 1 and Subcase 2, we have bs(GG) = 5 for n = 3k.

Thus, the proof of bs(GG) is completed by Case 1, Case 2 and
Case 3.

Since theG and G graphs are regular graphs, γ(GG)-dominating set
and γs(GG)-strong dominating set are the same set from the definition
of domination and strong domination. Therefore, b(GG) = bs(GG).

Proof of bw(GG) is obtained by two cases.

Case 1. If n = 3k + 1 and n = 3k + 2, then degrees of all vertices of
the graphs G and G are 3 and (n−2), respectively. Let u be any vertex
of the graph G. Furthermore, deg(u) = 2 and deg(u) = n − 3. When
the edge euu ∈ E(GG) is removed from the graph GG, δ(G) = deg(u)
and δ(G) = deg(u). Thus, γw(GG)-weak dominating set must contain
{u, u}. |Du| = γw(Pn−3) = ⌈(n − 3)/3⌉, where Du is weak dominating
set of the graph G − N(u). Moreover, the vertex u weak dominates
all vertices of V − N(u). So, the remaining graph is P2 = G − N(u)
that is not weakly dominated. If γw(GG)-weak dominating set includes
any vertex of the graph P2, then γw(GG) = |Du|+ {u, u}+ 1 = ⌈(n −
3)/3⌉ + 2 + 1 = ⌈(n + 6)/3⌉. Thus, it can be easily seen that we have
bw(GG) = 1 since ⌈(n + 6)/3⌉ > ⌈(n + 4)/3⌉ when n = 3k + 1 and
n = 3k + 2.

Case 2. If n = 3k, then the domination number does not increase
when any edge is removed from the graph GG. So, bw(GG) > 1. Let
vertex v be neighbor of vertex u in the graph G for ∃u ∈ V . γw(GG)-
weak dominating set must contain vertices u, v and u when the edges
euu and euv are removed from the graph GG. Then, there are (n − 4)
vertices with degree three in the graph G and one vertex from the
graph G, where these vertices are not weakly dominated. So, there are
⌈(n− 4)/3⌉+4 = ⌈(n+8)/3⌉ vertices in γw(GG)-weak dominating set.
Then we have bw(GG) = 2 since ⌈(n+ 8)/3⌉ > ⌈(n+ 4)/3⌉ for n = 3k.

The proof is completed.

Remark 1. The γs(GG)-strong dominating sets and the γ(GG)-
dominating sets are the same since graphs G and G are regular. So,
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the value of the bondage number and strong bondage number are the

same if G = Cn.

Theorem 10. If G = tK2 and (t > 2), then b(GG) = bs(GG) = 2 and

bw(GG) = 1.

Proof. For b(GG) and bs(GG), it is easy to see that any edge e is
removed from the graph GG, we have γ(GG) = γ(GG − e) and
γs(GG) = γs(GG − e). So, b(GG) > 1 and bs(GG) > 1. Let ver-
tex u be a vertex of any graph K2 and v ∈ N(u) for the graph
G. If the edge euv and euu are removed from the graph GG, then
γ(GG − {euv , euu}) = γ(GG − {euv, euu}) = t + 2. So, we obtain
b(GG) = bs(GG) = 2.

For bw(GG), we have γ(GG) = γs(GG) = γw(GG) = t + 1 by
[1]. Let u and v be two vertices of any graph K2. γw(GG)-weak
dominating set must contain vertices u and v, when the edge euv is
removed from the graph GG. Furthermore, γw(GG)-weak dominating
set must contain a vertex of every remaining graph K2. Moreover, all
vertices of V are weakly dominated, when γw(GG)-weak dominating
set contains vertex u. So, it can be easily seen that γw(GG − euv) >
γw(GG). Then we have bw(GG) = 1.

Corollary 1. If G = tK2 and t = 1, then γ(GG) = γs(GG) =
γw(GG) = 1.

Theorem 11. If G = tKn, then b(GG) = bs(GG) = n and bw(GG) =
1.

Proof. For b(GG) and bs(GG), we have γ(GG) = γs(GG) = γw(GG) =
t+2 by [1]. Let vertices u and v be two vertices of different two graphs
Kn. {u, v}-set dominates (strong dominates) V ∪ {u, v}. There are
two ways to increase domination (strong domination) number, since
γ(Kn) = γs(Kn) = 1.
Case 1. If any vertex of any graph Kn is an isolated vertex, then
γ(GG) = γ(GG) = t+ 3. So, we have b(GG) = bs(GG) = n.

Case 2. For the graph GG the degrees of the all vertices of the graph
Kn are n. Let u ∈ V (Kn). If the degree of all vertices of graph Kn
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are (n − 3), then all vertices of the graph Kn are dominated by two
vertices. The number of the edges of the graph Kn is (n(n − 1)/2).
When the degree of the vertices of the graph Kn decreases, the number
of the edges of the new graph is (n(n − 3)/2). Moreover, we obtain
(n(n − 1)/2) − (n(n − 3)/2) = n and γ(GG) = γ(GG) = t + 3. Then
we have b(GG) = bs(GG) = n.

The proof is completed by Case 1 and Case 2.

For bw(GG), let u and v be two vertices of different two graphs Kn.
{u, v}-set weak dominates V . If an edge is removed from any graph
Kn, then γw(GG) = t+ 3. So, we have bw(GG) = n.

Theorem 12. If G = KnoK1, then b(GG) = bs(GG) = ⌈n/2⌉ and

bw(GG) = 2.

Proof. It is easy to see that the proofs of b(GG) and bs(GG) are similar
to bs(Kn) in [4]. So, b(GG) = bs(GG) = ⌈n/2⌉.

For bw(GG), there are n vertices which are degree 2 and n vertices
which are degree n in the subgraph G and G of GG, respectively. These
vertices are the smallest degree vertices of the graph GG. Moreover,
these vertices are independent from each other. So, γw(GG) = 2n by
[1]. If any edge e is removed from the graph GG, then γw(GG) =
γw(GG− e). So, bw(GG) > 1. Let u be any vertex whose degree 2 and
v ∈ N(u) and v 6= u. It can be easily seen that vertices u and v weakly
dominate vertex u. If the edges euv ∈ E(GG) and evv ∈ E(GG) are
removed from the graph GG, then γw(GG−{euv,vv } = 2n+1. So, we
obtain bw(GG) = 2.

Theorem 13. If G = W1,n and (n > 5), then

b(GG) = bs(GG) = 1 and bw(GG) =

{

3 , n=3k;

2 , otherwise.

Proof. For b(GG) and bs(GG), let u be center vertex in the graph G and
let v, z ∈ V (G)−{u}. {u, v, z}-set dominates (strong dominates) V ∪V .
It is easy to see that γ(GG) = γs(GG) = 3. γ(GG)-dominating set
(γs(GG)-strong dominating set) must contain the vertex u, when the
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edge euu is deleted from the graph GG. Clearly, γ(GG− euu) > γ(GG)
(γs(GG− euu) > γs(GG)). So, we have b(GG) = bs(GG) = 1.

For bw(GG), the graph G consists of K1 +Cn. γw(GG)-weak dom-
inating set includes the vertex u and vertices of γw(CnCn)-weak domi-
nating set. It can be easily seen that the proof of bw(GG) is similar to
the proof of bw(CnCn).

Theorem 14. If G = Km,n and (m ≤ n), then

i) b(GG) =

{

2, m=2 and m < n,
m, otherwise

ii) bs(GG) =

{

1, m < n,
m, m=n

iii) bw(GG) =

{

2, m=n=3,

1, otherwise.

Proof. Let G1 and G2 be a partite sets of the graph G, whose cardinal-
ity are m and n, respectively. Clearly, m vertices are of order (n + 1)
and these vertices are independent from each other. Similar to n ver-
tices of order (m + 1), these vertices are also independent from each
other. In G, complete graphs Km and Kn are formed by vertices of G1

and G2 [1].
For bs(GG), we recall γs(GG) = m+1 by [1]. We must examine in

two cases for the proof of bs(GG). Let v ∈ V (G1) and u ∈ V (G2).

Case 1. If m < n, γs(GG)-strong dominating set must include
the vertex u since it is not strong dominated, where the edge euu is
removed from the graph GG. So, we have γs(GG− euu) > γs(GG) and
bs(GG) = 1.

Case 2. If m = n ≥ 3, the graphs Km and Kn are m-regular. There
are two Sub Cases for this situation.

Subcase 2.1. The proof is similar to the proof of Case 1 of Theorem
11.
Subcase 2.2. The proof is similar to the proof of Case 2 of Theorem
11.

By Case 1 and Case 2, we have bs(GG) = m.
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For b(GG), we must examine in two cases for the proof of b(GG).

Case 1. If m = 2 and m < n, the domination number of the graph GG
is 3. γ(GG)-dominating set includes two vertices of the G1 and any
vertex of the graph Kn. The domination number does not change, an
edge is removed from the graph GG. So, b(GG) > 1. The domination
number increases by 1, when all edges are removed between G1 and
V (Kn). Then we have b(GG) = 2.

Case 2. If m > 2 and (m < n or m = n), γ(GG)-dominating set
and γs(GG)-strong dominating set are the same, where (m = n ≥ 3).
Clearly, the proof is similar to proof of the bs(GG), where for (m =
n ≥ 3). So, we obtain b(GG) = m.

By Case 1 and Case 2, we have b(GG) = m.

For bw(GG), we must examine in two cases for the proof of bw(GG).

Case 1. If m ≤ n, we recall γw(GG) = n + 1 by [1]. γw(GG)-weak
dominating set must contain the vertex u when the edge euu is removed
from the graph GG, where u ∈ V (G2). So, γw(GG − euu) > γ(GG),
then we have bw(GG) = 1.

Case 2. If m = n, then let m = n 6= 3. The degrees of all vertices of
G1 and G2 are (m+ 1). Similarly, degrees of all vertices of the graphs
Km and Kn are m. Degrees of vertices, which are incident with the
edge e, decrease by one when an edge e is removed from the graph
Km. γw(GG)-weak dominating set must contain these vertices. So,
γw(GG − e) > γ(GG), then we have bw(GG) = 1. Let m = n = 3.
The weak domination number does not increase, when any edge e is
removed from the graph Km. Therefore, if any edge between graphs
Km and G1 is removed, then the weak domination number increases
by one. So, we have bw(GG) = 2.

4 Conclusion

The characteristics of strong and weak dominating sets are not exhib-
ited by the ordinary dominating sets and hence the problems of strong
and weak bondage numbers for the graph are considerably harder than
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bondage number of that. In this paper, the results of the bondage num-
ber, strong bondage number and weak bondage number of the comple-
mentary prisms of several well-known graphs have been obtained. As
a further study, many general results of bondage parameters of com-
plementary prism of any given graph G may be obtained.
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