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Abstract

In this paper, we consider two main approaches to compute
Gröbner bases for parametric polynomial ideals, namely the Dis-

PGB algorithm developed by Montes [18] and the PGBMain

proposed by Kapur, Sun and Wang [11]. The former algorithm
creates new branches in the space of parameters during the con-
struction of Gröbner basis of a given ideal in the polynomial
ring of variables and the latter computes (at each iteration) a
Gröbner basis of the ideal in the polynomial ring of the variables
and parameters and creates new branches according to leading
coefficients in terms of parameters. Therefore, the latter algo-
rithm can benefit from the efficient implementation of Gröbner
basis algorithm in each computer algebra system. In order to
compare these two algorithms (in the same platform) we use the
recent algorithm namely GVW due to Gao et al. [8] to compute
Gröbner bases which makes the use of the F5 criteria proposed
by Faugère to remove superfluous reductions [6]. We show that
there exists a class of examples so that an incremental structure
on the DisPGB algorithm by using the GVW algorithm is faster
than the PGBMain by applying the same algorithm to compute
Gröbner bases. The mentioned algorithms have been implemen-
ted in Maple and experimented with a number of examples
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1 Introduction

One of the most important tools in computer algebra is Gröbner bases.
This concept along with the first algorithm to compute it, were introdu-
ced in 1965 by Buchberger in his PhD thesis (see [3]). His two criteria
and the implementation methods [4] transformed Gröbner bases to a
powerful tool to tackle many important problems in polynomial ideals
theory. However, Buchberger’s algorithm was not efficient in practice
for large polynomial systems. In 1983, Lazard described a new algo-
rithm to compute Gröbner bases, using linear algebra techniques [14].
In 1988, Gebauer and Möller have installed Buchberger’s two crite-
ria on Buchberger’s algorithm in an efficient manner (see [9]). In 1999,
Faugère described his F4 algorithm to compute Gröbner bases (see [5]).
This algorithm (which is an efficient algorithm based on [9], [14]) ex-
ploits fast linear algebra on sparse matrices, and has been implemented
in Maple and Magma. In 2002, Faugère has described the F5 algorithm;
a new incremental algorithm which makes the use of the F5 criteria
to compute Gröbner bases [6] (see also [17]). Ars and Hashemi [1]
proposed a non-incremental version of this algorithm by defining new
orderings on the signatures to make it independent from the order of
the input polynomials. Gao et al. [7] presented G2V; a variant of the
F5 algorithm which is simpler and more efficient than F5. Finally, Gao
et al. [8] proposed a new framework more general than the G2V algo-
rithm, namely GVW to compute simultaneously Gröbner bases for an
ideal and its syzygy module.

The concept of comprehensive Gröbner bases can be considered as
an extension of Gröbner bases of polynomials over fields to polyno-
mials with parametric coefficients. This extension plays an important
role in the applications such as constructive algebraic geometry, ro-
botics, electrical network, automatic theorem proving and so on (see
e.g. [15], [16], [18], [19]). Comprehensive Gröbner bases and comprehen-
sive Gröbner systems (for simplification, we employ the term CGS to
refer to comprehensive Gröbner system) were introduced in 1992 by
Weispfenning [24]. He proved that any parametric polynomial ideal
has a finite CGS and described an algorithm to compute it. In 2002,
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Montes [18] proposed a more efficient algorithm namely DisPGB for
computing CGSs. Suzuki and Sato [21] provided an important im-
provement for computing CGSs using only computations of reduced
Gröbner bases in polynomial rings over ground fields (we subsequently
refer to this algorithm as the Suzuki-Sato algorithm). In 2010, Ka-
pur et al. [11] by combining Weispfenning’s algorithm [24] with the
Suzuki-Sato algorithm, gave a new algorithm (that we refer to as PG-

BMain algorithm) for computing CGSs (see also [12], [13]). Finally,
Montes and Wibmer in [20] presented the GröbnerCover algorithm
(see [23]) which computes a finite partition of the space of parameters
into locally closed subsets together with polynomial data, from which
the reduced Gröbner basis for a given parameter point can immediately
be determined.

It is worth noting that PGBMain at each iteration computes the
Gröbner basis over a polynomial ring in the variables and parameters.
Therefore, it makes the use of a Gröbner basis function in each compu-
ter algebra system. On the other hand, DisPGB reduces the compu-
tation in a polynomial ring of only variables by creating new branches
when a new polynomial with an undecidable coefficient is constructed.
So a natural question arises: Which of these two algorithms is more
efficient in practice? In this paper, we consider this question by propo-
sing an incremental structure on DisPGB by applying GVW equipped
with the F5 criteria. We have implemented in Maple this algorithm and
also PGBMain by using GVW as the engine of Gröbner bases compu-
tation. We compare the performance of these algorithms on a number
of polynomial ideals by showing that there exists a class of ideals for
which our new variant of DisPGB is more efficient than PGBMain.
We shall mention that due to the structure of PGBMain, its outputs
in general have less number of branches than DisPGB.

Now, we give the structure of the paper. Section 2 contains the ba-
sic definitions and notations related to CGSs, and a short description
of DisPGB. In Section 3, we present briefly GVW. Section 4 is de-
voted to the description of our new algorithm namely GVWDisPGB

for computing CGSs. In Section 5, we show the performance of this
algorithm w.r.t. our implementation of PGBMain in Maple and the
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function cgsdr of Singular via some examples.

2 Comprehensive Gröbner systems and Dis-

PGB algorithm

In this section, we recall the basic definitions and notations concerning
CGSs, and describe briefly the DisPGB algorithm.
Let R = K[x] be a polynomial ring, where x = x1, . . . , xn is the se-
quence of variables and K an arbitrary field. Let I = 〈f1, . . . , fk〉 be
the ideal of R generated by the polynomials f1, . . . , fk. Also, let f ∈ R
and let ≺ be a monomial ordering on R. The leading monomial of f
is the greatest monomial (w.r.t. ≺) appearing in f , and we denote
it by LM(f). The leading coefficient of f , denoted by LC(f), is the
coefficient of LM(f). The leading term of f is LT(f) = LC(f)LM(f).
The leading term ideal of I is defined to be

LT(I) = 〈LT(f) | f ∈ I〉.

A finite set G = {g1, . . . , gk} ⊂ I is called a Gröbner basis of I w.r.t.
≺ if LT(I) = 〈LT(g1), . . . ,LT(gk)〉. For more details, we refer to [2],
pages 213–214.

Now consider F = {f1, . . . , fk} ⊂ S = K[a,x], where a =
a1, . . . , am is the sequence of parameters. Let ≺x (resp. ≺a) be a
monomial ordering involving the xi’s (resp. ai’s). We also need a com-
patible elimination product ordering ≺x,a. It is defined as follows: For
all α, γ ∈ Zn

≥0 and β, δ ∈ Zm
≥0

xγaδ ≺x,a xαaβ iff

{

xγ ≺x xα or
xγ = xα and aδ ≺a aβ.

Now, we recall the definition of a CGS for a parametric ideal.

Definition 1. Let G = {(Gi, Ni,Wi)}ℓi=1 be a finite set of triples,
where Ni,Wi ⊂ K[a] and Gi ⊂ S are finite for i = 1, . . . , ℓ. The
set G is called a CGS for 〈F 〉 w.r.t. ≺x,a if for any specialization
σ : K[a] → K̄ with K̄ the algebraic closure of K there exists i such
that the following conditions hold
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• σ(Gi) ⊂ K̄[x] is a Gröbner basis for σ(〈F 〉) ⊂ K̄[x] w.r.t. ≺x

• σ(p) = 0 for each p ∈ Ni and σ(q) 6= 0 for each q ∈Wi.

For each i, the set Ni (resp. Wi) is called a (resp. non-) null
conditions set. Each pair (Ni,Wi) is called a specification (for a homo-
morphism σ if both the conditions in the above definition are satisfied).

Now, we describe shortly Montes DisPGB algorithm to compute
CGSs for parametric ideals (see [15], [18]). The main idea of DisPGB

is based on discussing the nullity or not w.r.t. a given specification
(N,W ) of the leading coefficients of the polynomials appearing at each
step (this process is performed by NewCond subalgorithm). Let us
consider a set F ⊂ S of parametric polynomials. For a given poly-
nomial f ∈ F , and a given specification (N,W ), NewCond is called.
Three cases are possible: If LC(f) specializes to zero w.r.t. (N,W ),
we replace f by f − LT(f), and then start again. If LC(f) speciali-
zes to a non-zero element, we continue with the next polynomial in
F . Otherwise (if LC(f) is not decidable), the subalgorithm Branch

is called to create two supplementary cases by assuming LC(f) = 0
and LC(f) 6= 0. Therefore, two new disjoint branches with the specifi-
cations (N ∪ {LC(f)},W ) and (N,W ∪ {LC(f)}) will be made. This
procedure will continue until every polynomial in F has a non-null lea-
ding coefficient w.r.t. the current specification. Then, we proceed with
CondPGB: This algorithm receives as input a set of parametric poly-
nomials and a specification (N,W ) and using Buchberger’s algorithm,
it creates new polynomials. When a new polynomial is generated, Ne-

wCond verifies whether its leading coefficient gives a new condition
or not. If a new condition is found it stops, and Branch is called to
make two new disjoint branches. Otherwise, this continues and com-
putes a Gröbner basis for 〈F 〉, according to the current specification.
The collection of these bases, gives a CGS for 〈F 〉.

3 F5 criteria and GVW algorithm

This section aims to present the F5 theory. After recalling some nota-
tions and definitions (used also in the next section), we state the main
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theorem of [6] which forms the basis of the F5 algorithm. Finally, we
present briefly the GVW algorithm following [8].

Let R = K[x] be a polynomial ring, where x = x1, . . . , xn is the
sequence of variables, K is an arbitrary field and I = 〈f1, . . . , fk〉 is
the ideal of R generated by the polynomials f1, . . . , fk. Let Rk be a
k-dimensional R-module and f1, . . . , fk its canonical basis. A module
monomial is an element of Rk of the form mfi, where m ∈ R is a
monomial. Given two module monomials mfi and m

′fj, one can extend
a monomial ordering ≺ on R to a module monomial ordering on Rk

in different ways. In [8] the authors proposed four different module
monomial orderings. Below, we recall one of them under which GVW
closely corresponds to the G2V algorithm presented in [7].

mfi < m′fj if

{

j < i or
i = j and m ≺ m′.

For an element g =
∑k

i=1 gifi ∈ Rk, we define the index of g,
index(g) to be the lowest integer i such that gi 6= 0. Let index(g) = i0,
then we call LM(gi0)fi0 the module leading monomial of g and denote
it by MLM(g). Also, we use LM(g) to denote LM(

∑k
i=1 gifi).

The elements of the form r = (mfi, f) ∈ A = Rk × R, where
m is a monomial, i an integer and f a polynomial are called label-
led polynomials. S(r) = mfi is called the signature part of r and
poly(r) = f the polynomial part of r. Denote ψ the map ψ : Rk → R
so that ψ(g1, . . . , gk) = g1f1 + · · · + gkfk. A labelled polynomial
r = (S(r),poly(r)) is called admissible if there exists g ∈ Rk such that
ψ(g) = poly(r) and MLM(g) = S(r). We define the following operati-
ons on labelled polynomials: Let r = (mfi, f) be a labelled polynomial,
u a monomial and c a constant. Then we define ur = (umfi, uf) and
cr = (mfi, cf). These definitions obviously preserve the admissibility.
The special reduction of F5 also preserves it and ensures that during
a Gröbner basis computation by F5, the labelled polynomials always
take the minimal possible signature and remain admissible. We also
need the following definitions to state the main theorem.

Definition 2 (F5 criterion). An admissible labelled polynomial r =
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(mfi, f) is called normalized if we have m /∈ LT(〈fi+1, . . . , fk〉). A pair
(r, s) of admissible labelled polynomials is normalized if ur and vs are

normalized, where r = (mfi, f), s = (m′fj, g), u = lcm(LM(f),LM(g))
LM(f) and

v = lcm(LM(f),LM(g))
LM(g) .

Faugère has described F5 as an incremental algorithm to use the F5

criterion, i.e. to compute the Gröbner basis of I, it computes respecti-
vely the Gröbner bases of the ideals

〈fk〉, 〈fk−1, fk〉, . . . , 〈f1, . . . , fk〉.

In the following, we define the concept of t-representation for la-
belled polynomials, imposing additional conditions on the signatures
(see [2, page 219]).

Definition 3. Let P ⊂ A be a finite set of labelled polynomials, and
r, t ∈ A two labelled polynomials with poly(r) = f , where f 6= 0 . We
say that f =

∑

pi∈P
hipoly(pi) is a t-representation of r w.r.t. P if for

all pi ∈ P with poly(pi) 6= 0 we have

LM(hi)LM(poly(pi)) � LM(poly(t)) and LM(hi)S(pi) < S(r).

This property is denoted by r = OP (t). We write s = oP (t) if
there exists labelled polynomial t′ ∈ A satisfying S(t′) < S(t) and
LM(poly(t′)) ≺ LM(poly(t)) such that s = OP (t

′).

Let f, g ∈ R be two polynomials. The S-polynomial of f and g is
defined as:

Spoly(f, g) =
lcm(LM(f),LM(g))

LT(f)
f − lcm(LM(f),LM(g))

LT(g)
g.

Let r = (S(r), f) and s = (S(s), g) be two admissible labelled poly-

nomials such that vS(s) < uS(r) with u = lcm(LM(f),LM(g))
LM(f) and v =

lcm(LM(f),LM(g))
LM(g) . Then, we define Spoly(r, s) = (uS(r),Spoly(f, g)).

Theorem 1. ( [6]) Let I = 〈f1, . . . , fk〉 ⊂ R. Let G ⊂ A be a finite set
of admissible labelled polynomials such that

284



Computing Comprehensive Gröbner Systems . . .

• for every i, we have fi = poly(ri) for some ri ∈ G,

• for each (ri, rj) ∈ G × G which is normalized, Spoly(ri, rj) is
either zero or equal to oG(usrs), where

us =
lcm(LM(poly(ri)),LM(poly(rj)))

LM(poly(rs))
for s ∈ {i, j}.

Then the set {poly(r) | r ∈ G} is a Gröbner basis for I.

Faugère in the F5 algorithm has used another criterion, namely
IsRewritten criterion, to detect more useless critical pairs, however he
has not declared it explicitly in [6]. We recall this criterion and refer
to [10] for more details.

Definition 4 (IsRewritten criterion). With the above notations, let u ∈
R be a monomial and r = (mfi, f) an admissible labelled polynomial.
Then, the pair [u, r] is called rewritable if there exists an admissible
labelled polynomial r′ = (m′fi, f

′) computed after r, i.e. S(r) < S(r′),
such that m′ divides um. A pair (r, s) of admissible labelled polynomials
is rewritable if [u, r] or [v, s] is rewritable, where r = (mfi, f), s =

(m′fj, g), u = lcm(LM(f),LM(g))
LM(f) and v = lcm(LM(f),LM(g))

LM(g) .

As the following proposition yields, if a critical pair is rewritable, its
S-polynomial has a standard representation w.r.t. the last computed
Gröbner basis, and therefore the F5 algorithm deletes all such pairs.

Proposition 1. ( [10]) Let I = 〈f1, . . . , fk〉 ⊂ R be an ideal. Let
ri and rj be two labelled polynomials treated during an execution of
the F5 algorithm for computing the Gröbner basis of I. If (ri, rj) is
rewritable, then Spoly(ri, rj) is either zero or equal to oG(usrs), where

us =
lcm(LM(poly(ri)),LM(poly(rj)))

LM(poly(rs))
for s ∈ {i, j} (and so the pair (ri, rj)

can be omitted).

Throughout this paper, by the F5 criteria we mean F5 criterion and
IsRewritten criterion. The main problem with the F5 algorithm is that
it is difficult to both understand and implement. Gao et al. in [8]
presented the GVW algorithm which seems to be simpler and more
efficient than the F5 algorithm. That is why, we use this algorithm to
apply the F5 criteria on DisPGB.
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To explain more precisely the structure of GVW, let us suppose that
we are going to compute a Gröbner basis for the ideal 〈f1, . . . , fk〉 with
respect to a monomial ordering ≺. The main difference of GVW and
F5 relies on the non-incremental structure of GVW which makes the
use of different kinds of module monomial orderings. Let us consider
e.g. module monomial ordering < defined as above (remark that GVW
endowed with this ordering is equivalent to G2V [7]). Without lose of
generality, suppose that for all labelled polynomials (u, v), LC(v) = 1.
Given two labelled polynomials p1 = (u1, v1) and p2 = (u2, v2), the

J-pair of p1 and p2 is the new pair tipi, where ti =
lcm(LM(v1),LM(v2))

LM(vi)

and tivi = max<{t1u1, t2u2}, provided that t1u1 6= t2u2.

At the first step, GVW begins with the initial set of J-pairs
{(f1, f1), . . . , (fk, fk)}. It takes in each step the smallest J-pair (w.r.t.
signature) and repeatedly performs only regular top reductions until it
is no longer regular top reducible. A labelled polynomial (u1, v1) is
top reducible by (u2, v2) if there exists a monomial t ∈ R such that
LM(v1) = tLM(v2) and tu2 < u1. The corresponding top reduction is

(u1, v1)− t(u2, v2) = (u1, v1 − tv2).

If tu2 = u1, the top reduction is called super, otherwise it is called
regular. Let (u, v) be the result of the reduction of a labelled polyno-
mial. If v 6= 0, we add (u, v) to the current Gröbner basis, and form the
new J-pairs. Otherwise, GVW uses u to delete useless J-pairs: For any
labelled polynomial (u′, v′), if tu = u′ for some monomial t, then we
can discard (u′, v′), provided that tLM(v) ≺ LM(v′). Indeed, this is a
special case of super top reduction, where (u′, v′) is super top reducible
by (u, 0). Furthermore, a J-pair (u, v) is called covered by G if there is
a pair (u′, v′) ∈ G so that u′ divides u and tLM(v′) ≺ LM(v) (strictly
smaller), where t = u′/u is a monomial.

Remark 1. The relation of the criteria used in GVW with F5 criterion
(Theorem 1) and IsRewritten criterion (Proposition 1) is illustrated in
[8, Corollaries 2.5 and 2.6], respectively. Furthermore the correctness
and termination of GVW are proved in [8, Theorem 3.1].
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4 Description of the new algorithm

In this section, we show how to combine the GVW algorithm with
the DisPGB algorithm to compute CGSs for parametric ideals. For
this, we use the improved version of DisPGB described in [15], and an
incremental structure on DisPGB to be able to apply the F5 criteria.
More precisely, let I = 〈f1, . . . , fk〉 ⊂ K[a,x] be a parametric ideal,
where x = x1, . . . , xn is the sequence of variables and a = a1, . . . , am
is the sequence of parameters. Let ≺x (resp. ≺a) be a monomial
ordering involving the xi’s (resp. ai’s). Then, to compute a CGS
for I, we compute CGSs of the ideals 〈fk〉, 〈fk−1, fk〉, . . . , 〈f1, . . . , fk〉
respectively and for each i, we use the CGS of 〈fi+1, . . . , fk〉 to compute
a CGS for 〈fi, . . . , fk〉.
Example 1. In this simple example, we show how an incremen-
tal structure may be used to compute a CGS for an ideal. Let
I = 〈ax + 1, by + 1〉 ⊂ K[a,x], where a = a, b and x = x, y.
We compute first a CGS for the ideal 〈by + 1〉 which is equal to
{({1}, {b}, {}), ({by + 1}, {}, {b})}. Now, we will discuss the addition
of ax+ 1 to each member of this system according to nullity or not of
a. It follows the following CGS for I:
{

({1}, {b}, {a}), ({1}, {a, b}, {}), ({1}, {a}, {b}), ({by+ 1, ax+ 1}, {}, {b, a})
}

.

We describe now the main algorithm GVWDisPGB which com-
putes incrementally a CGS for a given ideal.

Algorithm 1 GVWDisPGB

Require: F : finite subset of S
Ensure: A CGS for 〈F 〉

global: List, Grob, JP
List:=Null
{f1, . . . , fk}:=InterReduce(F,≺x,a)
Branch((1, fk), { }, { }, { }, { }, { })
for i from k − 1 to 1 do

IncDisPGB(fi,{List})
end for

Return (List)
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Note that the function InterReduce(F,≺x,a) inter-reduces a list of
polynomials F w.r.t. ≺x,a; i.e. every polynomial in F must be divided
by the remaining elements of F such that at the output no monomial of
any polynomial of F is divisible by the leading monomials of the other
polynomials in F . In the above algorithm, List (resp. JP) is a global
variable in which (and at each iteration) we save the computed CGS
(resp. set of J-pairs). That is why, at the beginning of each iteration
we must keep them null (see the next subalgorithm). Indeed, Branch

calculates a CGS for 〈fk〉 and save it in List. Then, for any i between
k − 1 and 1, IncDisPGB computes a CGS for the ideal 〈fi, . . . , fk〉
(using the CGS of 〈fi+1, . . . , fk〉 which has already been computed)
and saves it in List. Thus, at the end, List is a CGS for the ideal
〈f1, . . . , fk〉. Now, we describe IncDisPGB.

Algorithm 2 IncDisPGB

Require:

{

fi : a polynomial with 1 ≤ i ≤ k − 1
{G1, . . . , Gt} : a CGS for 〈fi+1, . . . , fk〉

Ensure: A CGS for 〈fi, . . . , fk〉
L:=Null
for j from 1 to t do

JP:={ }, List:=Null
(Grob, N,W ) := Gj

f := fi
N

(the remainder of the division of fi by N)
if f = 0 then

List:=List,Gj

else

Branch((1, f),Grob, N,W, { }, {(0, g) | g ∈ Grob})
end if

L:=L,List
end for

List:=L
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Algorithm 3 Branch

Require:























(u, f) : labelled polynomial
B : specializing basis

N,W : where (N,W ) is an specification
JP : set of J-pairs
R : set of computed labelled polynomials (v, g) s.t.g ∈ B

Ensure: It stores the refined (B′, N ′,W ′, JP ′, R′), and either creates two
new vertices when necessary or marks the vertex as terminal
(N,W ):=CanSpec(N,W)
(cd, f,N,W ) :=NewCond(f,N,W )
if cd = { } then

(test, (u′, f ′), B′, N ′,W ′, JP ′, R′) :=CondPGB((u, f), B,N,W, JP,R)
if test then

if JP = { } then

List:=List,(B′, N,W )
end if

else

Branch((u′, f ′), B′, N ′,W ′, JP ′, R′)
end if

else

Branch((u, f), B,N ∪ cd,W, JP,R)
Branch((u, f), B,N,W ∪ cd, JP,R)

end if

To clarify Branch, suppose that it receives a polynomial f and
a specification (N,W ). If LC(f) is not decidable w.r.t. (N,W ), this
subalgorithm creates two supplementary cases by adding LC(f) = 0
and LC(f) 6= 0 to the set of null and non-null conditions set re-
spectively. Therefore, two new disjoint branches with the specifications
(N ∪ {LC(f)},W ) and (N,W ∪ {LC(f)}) will be made. We explain
here the significance of the variables B and cd in Branch. The va-
riable B contains all polynomials related to the corresponding branch
which will be completed, and at the end of the branch it will be the
Gröbner basis for the corresponding specification. We explain now the
variable cd. When we call NewCond(f,N,W ), if LC(f) is decida-
ble w.r.t the specification (N,W ), it returns (∅, f − LT(f), N,W ) in
the case that LC(f) specializes to zero w.r.t. (N,W ), and it returns
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(∅, f,N,W ) in the case that LC(f) does not specialize to zero w.r.t.
(N,W ). Otherwise, it returns (cd, f ′, N,W ), where cd contains one of
the non-decidable factors (w.r.t (N,W )) of LC(f). We describe below
the NewCond subalgorithm in which FacVar factors a polynomial
in parameters. Remark that FacVar(LC(f ′)) \W ′ returns only one
factor of LC(f ′).

Algorithm 4 NewCond

Require:

{

f : a parametric polynomial
N,W : where (N,W ) is an specification

Ensure:







cd : set of a new condition
f ′ : a parametric polynomial

N ′,W ′ : where (N ′,W ′) is an specification
f ′ := f
test:=true
N ′ := N
while test do

if LC(f ′) ∈
√

〈N ′〉 then
N ′ := a Gröbner basis for 〈N ′,LC(f ′)〉 w.r.t. ≺a

f ′ := f ′ − LM(f)
else

test:=false
end if

f ′ := f ′
N ′

W ′ := {wN ′ | w ∈W}
cd :=FacVar(LC(f ′)) \W ′

end while

Return (cd, f ′, N ′,W ′)

We shall note that
√
I denotes the radical of I, i.e., the set of all

elements for which some positive power lies in I. By Hilbert Nullstel-
lensatz, if a polynomial over an algebraically closed field vanishes on
the vanishing set of an ideal, then a power of the polynomial belongs to
the ideal, see [2, Theorem 7.40]. For a radical membership test (which
has been used in the algorithm), we refer to [2, page 268]. The next
algorithm is a variant of the GVW algorithm (to apply the F5 criteria)
for parametric ideals.
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Algorithm 5 CondPGB

Require:























(u, f) : labelled polynomial
B : specializing basis

N,W : where (N,W ) is an specification
JP : set of J-pairs
R : set of labelled polynomials

Ensure: (flag,(v, g), B′, N ′,W ′, JP ′, R′) with flag=true when f does not ge-
nerate no new condition and no new JPair and B′ = B∪{f} is a Gröbner ba-
sis for the corresponding branch; otherwise, flag=false and B,N,W, JP,R
are updated

B := B
N
; (if a polynomial in B is reduced to zero, then remove all J-pairs

in JP containing this polynomial)
R := {(v, gN ) | (v, g) ∈ R}
LM := {LM(g) | g ∈ Grob}
f := f

N

f := f
Grob

if f = 0 and JP = {} then

Return (true,(0, 0), B,N,W, { }, { })
end if

if f 6= 0 then

(cd, f,N,W ) :=NewCond(f,N,W )
if f = 0 then

Return (true,(0, 0), B,N,W, { }, { })
end if

if cd 6= { } then

JP := JP ∪ { JPair((u, f), r) | r ∈ R}
add (u, f) into R and add f into B
sort JP by increasing signature

else

Return (false,(u, f), B,N,W, JP,R)
end if

end if
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Algorithm 5 Continuation of CondPGB

while JP 6= { } do

select and remove the first J-pair P from JP
(v, g) := Reduction(P,R) performing only regular top reductions
if g = 0 then

LM := LM ∪ {v}
remove any pair in JP if v divides its signature

else

g := gN

(cd, g,N,W ) :=NewCond(g,N,W )
if cd = { } then

if g 6= 0 then

JP := JP ∪ {JPair((v, g), r) | r ∈ R}
add (v, g) into R and add g into B
sort JP by increasing signature

end if

else

if g 6= 0 then

Return (false,(v, g), B,N,W, JP,R)
end if

end if

end if

end while

Return (true,(0, 0), B,N,W, { }, { })

Theorem 2. Suppose that we are willing to compute a CGS for the
ideal 〈F 〉 with F = {fi+1, . . . , fk} for some i. Let N and W be the
null and non-null conditions sets respectively and let σ a homomor-
phism such that (N,W ) is its specification. Let also B be the set of
polynomials satisfying the following conditions:

• σ(B) is a basis of 〈σ(F )〉,

• σ(LC(g)) 6= 0 for g ∈ B.

Suppose that theCondPGB algorithm outputs (test,B′, N ′,W ′, JP ′, R′).
If test = true, then σ(B′) is a Gröbner basis of 〈σ(F )〉, where (N ′,W ′)
is a specification of σ. If test = false, then B′ is an extended set of B
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which contains at least one polynomial for which the actual specification
(N,W ) cannot decide if its leading coefficient specializes to zero or not.
The sets N,W, JP,R are also updated to N ′,W ′, JP ′, R′ respectively.

Proof. The structure of the new CondPGB is similar to that of the
old CondPGB in [18]. Therefore, the proof of this theorem may be
deduced from [18, Proposition 15] and [8, Theorem 3.1].

Remark 2. We shall note that the finite termination of this algorithm
is guaranteed by that of the GVW algorithm [8, Theorem 3.1].

Remark 3. In the above algorithm, if JP= ∅, it returns the sets
B,N,W , where B is a Gröbner basis for the ideal 〈fi+1, . . . , fk〉 for
some i w.r.t. the specification (N,W ). To speed-up the computations,
we can first minimize B; i.e. discard any polynomial in B whose leading
monomial (w.r.t ≺x) is divisible by the leading monomial of another
polynomial in B. Then, we may replace B by InterReduce(B,≺x,a)
to have the reduced Gröbner basis. Indeed, this may reduce the number
of J-pairs for the next step.

Below, we describe the CanSpec algorithm from [18] to produce
k-quasi-canonical representation (N ′,W ′) for a specification (N,W ).

Definition 5. A specification (N,W ) is called k-quasi-canonical if the
following conditions hold:

• N is the reduced Gröbner basis of the ideal containing all polyno-
mials that specialize to zero in K[a], w.r.t. ≺a.

• The polynomials in W specializing to non-zero are reduced mo-
dulo N and are irreducible over K ′[a], where K ′ is an algebraic
extension of K.

• ∏

q∈W q /∈
√

〈N〉 and the polynomials in N are square-free.

• None of the polynomials in N have an irreducible factor contained
in W .
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For more details we refer to [18].

Algorithm 6 CanSpec

Require:
{

N,W : where (N,W ) is an specification

Ensure:







test :

{

true: if N and W are compatible
false : otherwise

(N ′,W ′) : a k-quasi-canonical representation of (N,W ).

W ′ :=FacVar({qN : q ∈W});
test:=true
N ′ := N and h :=

∏

q∈W q

if h ∈
√

〈N ′〉 then
test:=false
N ′ := {1}
Return (test , (N ′,W ′))

end if

flag:=true
while flag do

flag:=false
N ′′:= Drop any factor of a polynomial in N ′ ∩W ′, as well as multiple
factors
if N ′′ 6= N ′ then

flag:=true
N ′:= a Gröbner basis of 〈N ′′〉 w.r.t. ≺a

W ′ :=FacVar({qN
′′

: q ∈W ′})
end if

end while

Return (test , (N ′,W ′))

5 Experiments and results

We have implemented all the algorithms described in this paper in
Maple 151. In this section, we compare the performance of GVW-

DisPGB algorithm with DisPGB and PGBMain algorithms. It
should be noted that in PGBMain algorithm we use GVW algo-

1The Maple codes of the algorithms are available at
http://amirhashemi.iut.ac.ir/softwares

294



Computing Comprehensive Gröbner Systems . . .

rithm for the Gröbner basis computation. We use also the cgsdr

function from grobcov.lib library which is a Singular [22] imple-
mentation of PGBMain. The following parametric ideals in the ring
S = K[a, b, c, d,m, n, r, t][x, y, z, u] were chosen, and our aim was to
compute a CGS of each ideal w.r.t. the product of the orderings u ≺lex

z ≺lex y ≺lex x and t ≺lex r ≺lex n ≺lex m ≺lex d ≺lex c ≺lex b ≺lex a.

• EX.1 = [x3 + (d− a)xy+m− a,−cba+ az2 + cx− d, (c− a)y2 +
xn+ a, u3 + (a2 − 1)x+ n−m]

• EX.2 = [abu4+ b2a2+xyz−1, ay2+n(mt−2)xz+a, baz3+ t(2−
b7)xyz + x2z − 1]

• EX.3 = [(c−1)y3+(ac−b)x+dn, rx5+(ba−c)z−n, z3−(c−t)y]

• EX.4 = [(a + 1)x2 + a2b(d − 1)y2 + a, y2 + bx + c(c2 − 4), (a −
d)z3 + ay2 + b(c4 − 1)− 1]

• EX.5 = [ax+ by + cz6, axy + byz6 + czx, xyz6 − 1]

• EX.6 = [ax2 + cu + (a − 3)x, bayx + ay3 − cz + 1, (t − 3)u3 +
tu, bz3 + (1− b)z2 +mnx]

• EX.7 = [cz5 + dax2 + dby, yz5b+ axy + czx, dxyz5 − ba]

• EX.8 = [amy2+x3− zb− bt−1, amy3+ tx+n− t, z3+ tx−abcd]

• EX.9 = [(ba− c)z+ rx4−n, y2 + (ac− b)x+ d, z2 − (cb− a)y+ t]

• EX.10 = [(mn− a)x+ y2 + a, cx+ z2, x2 + (ad− c)yx+ ba, u2 +
(a4 − 4)x]
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Table 1. The performance comparison of different algorithms.

Example Method Time (Sec) Used Memory (GB) Branch

GVWDisPGB 11.77 0.7 140
DisPGB 26.59 1.65 149

EX.1 PGBMain – – –
cgsdr – – –
FirstGB – – –
GVWDisPGB 6.59 0.44 15
DisPGB 33.45 2.21 14

EX.2 PGBMain – – –
cgsdr – – –
FirstGB – – –
GVWDisPGB 40.35 2.5 71
DisPGB 72.81 4.85 59

EX.3 PGBMain – – –
cgsdr – – –
FirstGB 119.15 11.38 –
GVWDisPGB 2.19 0.11 43
DisPGB – – –

EX.4 PGBMain – – –
cgsdr – – –
FirstGB 256.2 33.19 –
GVWDisPGB 10.65 0.67 10
DisPGB – – –

EX.5 PGBMain – – –
cgsdr – – –
FirstGB 3.24 0.31 –
GVWDisPGB 4.1 0.23 51
DisPGB 82.11 4.66 36

EX.6 PGBMain – – –
cgsdr 0.5 – 24
FirstGB 30.08 3.49 –
GVWDisPGB 9.57 0.62 17
DisPGB – – –

EX.7 PGBMain – – –
cgsdr – – –
FirstGB 3.96 0.39 –
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Continuation of Table 1.

Example Method Time (Sec) Used Memory (GB) Branch

GVWDisPGB 102.3 5.85 43
DisPGB – – –

EX.8 PGBMain – – –
cgsdr – – –
FirstGB 5.40 0.55 –
GVWDisPGB 10.38 6.7 119
DisPGB – – –

EX.9 PGBMain – – –
cgsdr – – –
FirstGB – – –
GVWDisPGB 22.38 1.4 245
DisPGB 10.11 0.67 55

EX.10 PGBMain – – –
cgsdr – – –
FirstGB 136.8 12.45 –

We shall emphasize that from DisPGB we mean the classical DisPGB

algorithm due to Montes [18]. The results are shown in the above ta-
bles, where the timings were conducted on a personal computer with 7
core, 8 GB RAM and 64 bits under the windows 7 operating system.
All the computations are done over Q. In these tables, the third and
fourth columns show respectively the CPU time (in second) and the
amount of required memory (in gigabytes) of the corresponding met-
hod computation. The last column indicates the number of branches
of the output CGS. Furthermore, “First GB” method stands for the
computation of the reduced Gröbner basis of the corresponding ideal
in K[a,x] w.r.t. ≺x,a using the Maple function Basis. It is worth
nothing that, this computation is needed in PGBMain to compute
a CGS w.r.t. ≺x,a. Also, “—” means that the related function can
not compute anything and we stopped the computation after 400 se-
conds. A comparison of the timing columns in the above tables and
our test for some other examples show that this first implementation
of GVWDisPGB is efficient for many examples.

According to our experiments on more than 50 examples, we may
consider two main classes of examples for which the performance of
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GVWDisPGB and PGBMain are quite different. In general, for each
ideal I with I ∩K[a] 6= 〈0〉 PGBMain has a better performance than
GVWDisPGB. For instance, let us consider the ideal I = 〈ax− ac+
a2, aby3 + by + ab+ b2c, axy − by + ax− c, aby3 + axy, by + bc+ c2〉 ⊂
K[a, b, c][x, y]. By running both algorithms over I w.r.t. c ≺lex b ≺lex a
and y ≺lex x, we observe that PGBMain takes about 20 seconds of
CPU time while GVWDisPGB needs more than 95 seconds. It seems
that when PGBMain finds a non-empty generating set for I ∩ K[a],
then this generating set has a positive impact on the rest of calculation.
However, in contrast, if I∩K[a] = 〈0〉, thenGVWDisPGB has a better
performance than PGBMain. For instance, one can refer to EX.1 in
Table 5.

The other issue concerning PGBMain is that by the structure of
this algorithm, one needs to compute successive Gröbner bases by ad-
ding, at each step, new polynomials. This may enlarge the size of
the computed Gröbner basis at each step. Let us consider the ideal
〈aby3 + b2c + ab+ by, axy + ax − by − c, aby3 + axy〉 in K[a, b, c][x, y]
with c ≺lex b ≺lex a and y ≺lex x. In Figure 5, the x-axis shows the
number of computed branches and the y-axis indicates the number of
polynomials as the input of Gröbner basis algorithm in each branch.

Figure 1. Comparing the output of GVWDisPGB and PGBMain

As it is shown, GVWDisPGB computes more branches than PG-

BMain (17 versus 6) but the maximum number of polynomials as the
input of Gröbner basis algorithm in GVWDisPGB is 3 compared with
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14 in PGBMain.
Let us consider the ideal I = 〈f1, f2〉 ⊂ K[a, b][x, y] generated by

the polynomials

f1 = (a12 + a5 + 6)x17 + bx5 + x6 + x4 + a7x+ a5, and

f2 = (a13 + a6 + 3)y7 + ay3 + y + 1.

One can observe that f1 and f2 have coprime leading monomials w.r.t
y ≺lex x however this does not hold by considering f1 and f2 in
K[a, b, x, y] with the product of b ≺lex a and y ≺lex x. Therefore,
if the leading coefficients of f1 and f2 in K[a, b][x, y] are non-zero, then
{f1, f2} forms a Gröbner basis by Buchberger’s first criterion and in
turn GVWDisPGB needs only 0.3 second to compute a CGS for I,
however just the first Gröbner basis in K[a, b, x, y] (which is the first
step in PGBMain) takes more than five minutes.

Finally, it is worth noting that PGBMain has the advantage of
using the Gröbner basis function of a computer algebra system. Ho-
wever, if the number of parameters is high then the first Gröbner ba-
sis computation may be hard and GVWDisPGB may have a better
performance than PGBMain. Furthermore, due to the structure of
PGBMain, the number of branches in the output CGS by using this
algorithm is generally less compared with the one of GVWDisPGB.

Acknowledgements.

The authors would like to thank the anonymous reviewer for his/her
valuable comments and suggestions to improve the quality of the paper.

References

[1] G. Ars and A. Hashemi, “Extended F5 Criteria,” J. Symb. Com-
put., vol. 45, no. 12, pp. 1330–1340, 2010.

[2] T. Becker and V. Weispfenning, Gröbner bases, a computational
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