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Choice Numbers of Multi-Bridge Graphs

Julian Allagan Benkam Bobga

Abstract

Suppose ch(G) and x(G) denote, respectively, the choice
number and the chromatic number of a graph G = (V, E). If
ch(G) = x(G), then G is said to be chromatic-choosable. Here,
we find the choice numbers of all multi-bridge or [-bridge graphs
and classify those that are chromatic-choosable for all [ > 2.
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1 Preliminaries

In this paper, G = (V, E) denotes a simple connected graph, where
V =V(G) and E = E(G) denote, respectively, the set of vertices and
the set of edges of G. An edge e € E with endpoints u,v € V is denoted
by uv. Also, we denote by N(u) = Ng(u) = {x € V | ux € E} the
(open) neighbor set in G of u € V. A = A(G), K,, and C,, denote,
respectively, the maximum degree of G, a complete graph and a cycle
on n vertices. The join of two graphs G1 and G, denoted by G1V Ga,
is the graph G whose vertex set is V(G) = V(G1) U V(G2), a disjoint
union, and whose edge set is E(G) = E(G1) U E(G2) U {ujus | u3 €
V(G1), uz2 € V(G2)}. For other basic notions of graphs, see [15].

A list assignment to the graph G = (V, E) is a function L which
assigns a finite set (list) L(v) to each vertex v € V. A proper L-coloring
of G is a function ¢ : V' — Uyey L(v) satisfying, for every u, v € V, (i)
¢(v) € L(v) and (ii) uwv € E — ¢(v) # ¢(u).

The choice number of G, denoted by ch(G), is the smallest integer k
such that there is always a proper L-coloring of G if L satisfies |L(v)| >
k for every v € V. We define G to be k-choosable if it admits a proper
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L-coloring whenever |L(v)| > k for all v € V; so ch(G) is the smallest
integer k such that G is k-choosable. The following theorem is useful
in the estimation of choice number.

Theorem A. (Erdés, Rubin and Taylor [3]) If G is a connected
graph that is neither a complete graph nor an odd cycle, then ch(G) <
A(G).

Corollary A. For any graph G, ch(G) < A(G) + 1.

The proof of Corollary A follows from a ”greedy coloring” argument.

Clearly, x(G) < ch(G) since the chromatic number x(G) is similarly
defined with the restriction that the list assignment is to be constant
and there are many graphs whose choice number exceeds (sometimes
greatly) their chromatic number. The two planar graphs in Figure 1
are some examples, where it is not too hard to see that, given the list
assignment for each graph G, ch(G) =3 > 2 = x(G).

{b,c} {a,b} {a,c} {b,c} {a,c}

a,b
{a,c} el {b, ¢}

{a,c} {a,b} {b,c} {a,b} {a,b}
(A) (B)

Figure 1: Two graphs with two list assignments.

Any graph G for which the extremal case x(G) = ch(G) holds
is said to be chromatic-choosable. Cycles, cliques and trees are some
examples of chromatic-choosable graphs.

Historically, the topic of list colorings is believed to be first intro-
duced by Vizing [9] and independently by Erdés, Rubin and Taylor [3].
Ever since, many researchers (see for e.g., [1], [4]-[7]) have sought to
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classify chromatic-choosable graphs. It is worth noting that the pro-
blem of finding chromatic-choosable graphs contains the famous list co-
loring conjecture [9]: the line graph of any graph is chromatic-choosable.
In fact, this conjecture has been partially proved by Galvin [4] in

Theorem B.(Galvin [4]) The line graph of any bipartite multigraph
s chromatic-choosable.

Recently, Reed et al. [6] settled the well-known Ohba’s conjecture
[7]. We state their result (or Ohba’s conjecture) without proof, in the
next theorem.

Theorem C.(Noel, Reed and Wu [6]) If |V(G)| < 2x(G) + 1, then
G is chromatic-choosable.

Because the proposed bound is obviously weak in characterizing
chromatic-choosable graphs with low chromatic numbers, we classify a
class of acyclic graphs with low chromatic number (y < 3) and arbi-
trarily large A.

2 Choice number of some [-bridge graphs

The length of a path is the number of its edges and two paths are said
to be internally disjoint if they have no common internal vertex.

An [-bridge (or multi-bridge) graph ©(aq, ..., q;) is the graph obtai-
ned by connecting two distinct vertices v and v with [ internally disjoint
paths P, of lengths a; > 1. It is customary to assume [ > 3 since when
I =2, O(ay,az) is a cycle on a; + ag vertices; the trivial case when
Il =1, ©(a;) ¥ wv, an edge. L-bridge graphs are planar and when
[ = 3, figure 1(A) depicts an example of O(1,3,3). For the rest of this
article, it causes no confusion to denote P,, := uv if some a; = 1, and
Py, = umi ziy ... 24, _, v, a sequence of edges for all a; > 2.

Recall, the core of a connected graph is the graph obtained by
deleting all vertices of degree 1, and then all vertices of degree 1 in
what remains, and so forth, until there are no vertices of degree 1

remaining; except that, in case of Ko, delete only one vertex. Frdds,
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Rubin and Taylor have described the structure of 2-choosable graphs
(which are necessarily bipartite) in the next theorem.

Theorem D.(Erdés, Rubin and Taylor [3]). A connected graph G
18 2-choosable if and only if the core of G is K1, an even cycle, or of
the form ©(2,2,2t), where t is a positive integer.

Not surprisingly, there has been no characterization of k-choosable
graphs, k > 3. Alon and Tarsi [2] showed that every bipartite planar
graph is 3-choosable and there has been several attempts at characteri-
zing triangle free planar graphs in order to strengthen Alon and Tarsi’s
result. See for instance, [8], [I0]-[14]. Clearly, since each graph G in
Figure 1 is bipartite and planar, it follows from Alon and Tarsi’s result
that ch(G) = 3, given the list assignment. It is important to point out
that [-bridge graphs are not necessarily bipartite as they may contain
odd cycles. Here, we show that they are 3-choosable and later, we
classify them based on their choice number.

Proposition 1. If G = O(ay,...,q;), then G is 3-choosable.

Suppose L is a list assignment to G satisfying |L(w)| > 3 for each
w € V(G). Because every path is 2-choosable, color properly the
vertices (including u,v) of some path P,,. Suppose, in coloring P,,,
¢(u) = ¢1 and ¢(v) = co, where ¢; and ¢y are not necessarily distinct
colors. For each vertex y € V(G\PF,,), define L'(y) = L(y) — {c1,c2}.
If |[L'(y)| > 2 for each y € V(G\PF,,), color properly the vertices on
each independent path P,, —uv, j # i. Or else, there exists a vertex
z € V(G\P,,) such that, for some k # i, |L'(z)| > 1. This implies that
N(u) =z = N(v), i.e., Py, := uzv. In this case, color z with the color
left in its palette, giving a proper L-coloring of G.

O

Theorem 1. Suppose G = O(ay,...,a;) is any l-bridge graph with
1 >3. ch(G) =3 if and only if G is not ©(2,2,2t), for all t > 1.

Proof. Clearly if G = ©(2,2,2t), then it follows from Theorem D that
ch(G) = 2. Now, if G is an [-bridge that contains an odd cycle, then
the result follows from Proposition [Il Thus, to complete the proof,
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we can assume that G is neither ©(2,2,2t) nor contains an odd cycle
and show that ch(G) > 2. In each upcoming claim we present a list
assignment which is left up to the reader to verify in order to establish
the result.

Claim A. If G; = O(ay,...,q;) and each q; is odd, then G is not
2-choosable, for all [ > 3.

Let H = ©(a1,a2,a3) such that each a; is odd, for i = 1,2,3.
Clearly H contains no odd cycle. Define a list assignment L; satisfying,
for each w € V(H)

(i) Li(u) = L1(v) = Li(z1,) = {a,b} for 1 <j<a; —1
(ii) Ll(xgl) =...= Ll(x2a272) = Ll(x3a371) = {a, C}
(111) Ll(JEgl) =...= L1($3a372) = L1(£E2a271) = {b, C}.

It is easy to see that every proper Li-coloring of F,, will require
distinct colors a,b for the vertices u,v, forcing Li(w;;) = (0, for some
i#1and 1<j<a;—1. Hence, ch(H) > 2. Because H C Gy, for all
[ > 3, (31 is not 2-choosable.

O

Claim B. If Gy = ©(2r,2s,2t), then G2 is not 2-choosable for all
r>1,and s,t > 2.

Denote x1,x2 and ¥,y the vertices on the paths P and Py,
respectively, such that x1 = N(u), xo = N(x1), y1 = N(u), and yy =
N(y1). Then for each w € V(G3), define the list assigment Lo such
that

(i) La(u) = La(v) = La(2) = {a, b} for z ¢ {x1,22,y1,y2}
(i) La(w1) = La(y2) = {b,c}, La(y1) = La(x2) = {a,c}.

It is easy to see that G does not admit a proper Ls-coloring. [
Observe that the previous claim completely resolves the case of -
bridge graphs (with even paths) that are not of the form 0(2, 2, 2¢) for
l=3.
Claim C. If G3 = O(ay,...,q;) and each a; is even, then G5 is not
2-choosable, for all [ > 4.
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For [ > 4, we present a list assignment L3 to G'3 when a; = a;, for
each i # j. A similar list assignment can easily be derived when some
a; # a, by letting Lg(xkak/z) be a specific 2-subset of {a, b, ¢, d}.

Let H = O(ay, az,as3,ayq) such that a; = ag = az = a4. Now define
L3 to be a list assignment satisfying, for each w € V(H):

(i) L
(i) L

3(u) = {a,b} and L3(v) = {¢,d}

(
3(5171&1/2) = {av C}v L3($2a2/2) = {a7d}7 L3(l‘3a3/2) = {bv C}v
L3(‘T4a4/2) = {b7 d}

(i

(iii) Ls(wi;) = {a,b} for 1 < j < a;/2 and L3(z;;) = {c,d}
fora;/2 <j<a;—1

It is easy to verify that H C (G3 admits no proper Ls-coloring.

O

Thus, if G contains only even cycles and G is not ©(2,2,2t), G must
satisfy one of the previous claims. The result follows for all [-bridge
graphs, with [ > 3. ]

Corollary 1. Suppose G = O(aq,...,q;), | > 3. G is chromatic-
choosable if and only if G contains an odd cycle or G is of the form
©(2,2,2t), where t is a positive integer.

Proof. Suppose G = ©(ay,...,q;) is chromatic-choosable. It follows
from Proposition [ that, either (i) x(G) = 2 = ch(G) or (ii) x(G) =
3 = ch(G). Case (i) follows from Theorem D. In which case G =
©(2,2,2t) while in case (i) it is clear that G must contain an odd
cycle. Conversely, if G contains an odd cycle, then x(G) = 3. It
follows from Theorem [ that G is chromatic-choosable. Moreover, if
G = ©(2,2,2t), then G contains no odd cycle and x(G) = 2. It follows
from Theorem D that G is chromatic-choosable. O

We end this article with the next lemma which gives an estimate on
the choice number of any connected graph. A graph G of order greater
than r is said to be r-connected if G remains connected whenever fewer
than any r number of vertices of G are removed.
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Lemma 1. Suppose G is an r-connected graph with components
Gi,...,Gp. Ifk = max {ch(G;)}, then G is (k + r)-choosable for
i<m

all k,r > 1 andm22._

Proof. Suppose L is a list assignment to v € V(G) satisfying |L(v)| >
k+r with k,7 > 1. Denote S C V(G) a set of r vertices whose deletion
produces the non-empty components Gy, ...,Gy,, m > 2. Color each
element of S using distinct r colors, and remove those colors from
the palette of each vertex u € V(G)\S. Let L’ be the resulting list
assigment for each vertex u. It follows that |L'(u)| > k for each u €
V(G;), 1 < i < m. By the hypothesis, each G; is k-choosable so we
color each vertex u € V(G;). Because G is r-connected, together with
the r-colorings of S, we have a proper L-coloring of G. O

Notice that this bound is sharp for some 1-connected cyclic graphs.
See for instance, Figure 1(B). From this proposition follows

Corollary 2. Suppose S is a clique on r vertices and for some graphs
H;, k= max {ch(H;)}. If G =SV {H;}[",, then ch(G) =k +r.

Proof. Because every proper coloring of S C G uses exactly r colors,
the result follows from similar steps as in Lemma [Tl O

Acknowledgements.

The authors are indebted to their former advisor, Pete Johnson Jr.,
who had introduced them to the topic of list coloring and they would
like to dedicate this article in his honor. Also, we’d like to thank
Professor Slutzky for past useful discussions on a related question that
we addressed in this article. More importantly, we’d like to thank
the journal editor for her careful reading and suggestions which helped
improve an earlier version of this paper.

References

[1] J. Allagan, B. Bobga, and P. Johnson, “On the choosability of some
graphs,” Congr. Numer., vol. 225, pp. 95-100, 2015.

253



J. Allagan, B. Bobga

2]

N. Alon and M. Tarsi, “Colorings and orientations of graphs,” Com-
binatorica, vol. 12, no. 2, pp. 125-134, 1992.

P. Erdés, A.L.Rubin, and H. Taylor, “Choosability in graphs,”
Congr. Numer., vol. 26, pp. 125-157, 1980.

F. Galvin, “The list chromatic index of a bipartite multigraph,” J.
Combin. Theory Ser. B, vol. 63, pp. 1563-158, 1995.

S. Gravier and F. Maffray, “Graphs whose choice number is equal
to their chromatic number,” J. Graph Theory, vol. 27, pp. 87-97,
1998.

J. Noel, B. A. Reed, and H. Wu, “A proof of a conjecture of Ohba,”
J. Graph Theory, vol. 79, no. 2, pp. 86-102, 2015.

K. Ohba, “On chromatic-choosable graphs,” J. Graph Theory, vol.
40, pp- 130-135, 2002.

C. Thomassen, “3-list-coloring planar graphs of girth 5,” J. Combin.
Theory Ser. B, vol. 64, pp. 101-107, 1995.

V. G. Vizing, “Colouring the vertices of a graph in prescribed co-
lours,” in Methods of discrete analysis in the theory of codes and
schemes: a collection of scientific papers (vol. 29), Sobolev Institute
of Mathematics, RAS: Novosibirsk, 1976, pp. 3-10. (in Russian).

[10] M. Voigt, “List colourings of planar graphs,” Discrete Math., vol.

120, pp. 215-219, 1993.

[11] H. Zhang, “On 3-choosability of plane graphs without 5-, 8- and

9-cycles,” J. Lanzhou Univ., Nat. Sci., vol. 41, pp. 93-97, 2005.

[12] H. Zhang and B. Xu, “On 3-choosability of plane graphs without

6-, 7- and 9-cycles,” Appl. Math. Ser. B (Engl. Ed.), vol. 19, pp.
109-115, 2004.

[13] H. Zhang, B. Xu, and Z. Sun, “Every plane graph with girth at

least 4 without 8- and 9-circuits is 3-choosable,” Ars Combin., vol.
80, pp- 247-257, 2006.

254



Choice Numbers of Multi-Bridge Graphs

[14] X. Zhu, L. Miao, and C. Wang, “On 3-choosability of plane graphs
without 3-, 8- and 9-cycles,” Australas. J. Comb., vol. 38, pp. 249—
254, 2007.

[15] D. West, Introduction to Graph Theory, Prentice Hall, 2001, p.
588. ISBN 0-13-014400-2.

Julian Allagan, Benkam Bobga Received November 30, 2017

Julian Allagan

Elizabeth City State University
Elizabeth City, North Carolina, U.S.A
E-mail: aallagan@gmail.com

Benkam Bobga

University of North Georgia
Gainesville, Georgia, U.S.A
E-mail: benkam.bobga@ung.edu

255



	Preliminaries
	Choice number of some l-bridge graphs

