
Computer Science Journal of Moldova, vol.19, no.3(57), 2011

Concept-Oriented Model: Extending Objects

with Identity, Hierarchies and Semantics

Alexandr Savinov

Abstract

The concept-oriented data model (COM) is an emerging ap-
proach to data modeling which is based on three novel principles:
duality, inclusion and order. These three structural principles
provide a basis for modeling domain-specific identities, object hi-
erarchies and data semantics. In this paper these core principles
of COM are presented from the point of view of object data mod-
els (ODM). We describe the main data modeling construct, called
concept, as well as two relations in which it participates: inclu-
sion and partial order. Concepts generalize conventional classes
by extending them with identity class. Inclusion relation gener-
alizes inheritance by making objects elements of a hierarchy. We
discuss what partial order is needed for and how it is used to
solve typical data analysis tasks like logical navigation, multidi-
mensional analysis and reasoning about data.

Keywords: Data modeling, object data models, set nesting,
partial order, data semantics.

1 Introduction

The concept-oriented model (COM) is an emerging general-purpose
approach to data modeling. It is aimed at unifying different views on
data and solving a wide spectrum of problems in data modeling and
analysis [31, 33]. COM overlaps with many existing data modeling
methodologies but perhaps most of its features are shared with object
data models (ODM) [10, 4, 3]. COM is not only based on the general
principles of object-based models but can be viewed as their further

c©2011 by A. Savinov

254

Concept-Oriented Model: Extending Objects . . .

development and generalization. If we take ODM as a starting point
then what problems COM is going to solve? In other words, what are
the main motivating factors behind this approach if it is considered a
generalization of ODM? COM is aimed at solving the following three
major problems:

How objects exist. COM provides a mechanism for domain-specific
references so that both objects and their references may have
arbitrary structure and behavior.

Where objects exist. COM turns each object into a set which is in-
terpreted as a space, context, scope or domain for its member
objects. The whole model is then turned into a set-based ap-
proach where sets are first-class elements of the model.

What objects mean. COM augments objects with semantics and
makes references elementary semantic units. The meaning of an
object is defined via other objects and this semantic information
can be used for reasoning about data.

“Object identity is a pillar of object orientation” [16] and the role of
identities has never been underestimated. There exist numerous studies
[17, 38, 1, 16, 11] highlighting them as an essential part of database
systems and arguing for the need in having strong and consistent notion
of identity in data and programming models. A lot of identification
methods have been proposed like primary keys [6], object identifiers
[1, 17], l-values [18] or surrogates [12, 7]. Nevertheless, there is a very
strong bias towards modeling entities while the support of identities is
relatively weak. Identities have always been considered important but
secondary elements remaining in the shadow of their more important
counterpart. There is a very old and very strong belief that it is entity
that should be in the focus of data modeling while identities simply
serve entities. Almost all existing data (and programming) models
assume that identities should be provided by the platform and there
is no need for modeling domain-specific identities. For this reason, the
roles of entities and identities are principally separated: entities have

255

A. Savinov

domain-specific structure and behavior while identities have platform-
specific structure and behavior.

COM changes this traditional and currently dominating view by
assuming that identities and entities are equally important for data
modeling. In this context, the main goal of COM is to provide data
modeling means where both identities and entities may have arbitrary
domain-specific structure and behavior. To solve this problem, COM
introduces a novel data modeling construct, called concept (hence the
name of the model), which generalizes classes. Its main advantage is
that it allows for modeling arbitrary domain-specific identities (refer-
ences) what is impossible if conventional classes are used. Importantly,
identities and entities are modeled together as two parts of one thing.
Elements in COM can be compared to complex numbers in mathe-
matics which also have two constituents (real and imaginary parts)
manipulated as one whole.

Set-orientation is one of the most important features of any data
model just because data is normally represented and manipulated as
groups rather than as individual instances. Probably, it is the solid sup-
port of set-oriented operations why the relational model [6] has been
dominating among other data models for several decades. And insuffi-
cient support of the set-oriented view is why object-oriented paradigm
is less popular in data modeling than in programming. Of course, we
can model sets, groups or collections manually (at conceptual level)
but in this case the database management system is unaware of these
constructs and cannot help in maintaining consistency of these struc-
tures. In this context, the main goal of COM is to turn instance-based
view into a set-based model where set is a first-class notion supported
by the model at the very basic level. The idea here is that any instance
has to be inherently a set, and vice versa, a set has to be a normal in-
stance. To solve this problem, COM introduces a novel relation, called
inclusion. The most important change is that elements exist within a
hierarchy where any parent is a set of its children and any instance is
a member within its parent superset. Parent elements are shared parts
of children and are treated as a space, context, scope or domain for its
children. In contrast, in most class-based models classes exist within

256

Concept-Oriented Model: Extending Objects . . .

a hierarchy while their instances exist in flat space (so we do not have
a hierarchy of instances). The use of inclusion relation makes COM
similar to the hierarchical model [37] where parents are containers for
their child elements. In addition, inclusion generalizes inheritance and
can be used for reuse, type modeling and other purposes. This ap-
proach is also very close to prototype-based languages [5, 19, 34] where
parents are shared parts of children. However, these languages do not
use classes while COM allows for using both classes (in the form of
concepts) and object hierarchies (in the form of inclusion).

According to Stefano Ceri [20], “the three most important problems
in Databases used to be Performance, Performance and Performance;
in the future, the three most important problems will be Semantics,
Semantics and Semantics”. The main advantage of having semantics
in databases is that it “should enable it to respond to queries and
other transactions in a more intelligent manner” [7] by providing richer
mechanisms and constructs for structuring data and representing com-
plex application-specific concepts and relationships. There has been a
tremendous interest in semantic models [13, 21] but most of the works
propose conceptual models which need to be translated into some log-
ical model. The lack of semantics in logical data models significantly
decreases their overall value and, particularly, decreases the possibility
of information exchange, data integration, consistency and interoper-
ability.

As a response to this demand, COM proposes a novel approach to
representing and manipulating semantics as integral part of the model.
The main idea is that concepts are partially ordered by using the rule
that a field type represents a greater concept. As a result, all instances
exist as elements of a partially ordered set where they have greater el-
ements and lesser elements. In contrast, most other models are graph-
based with objects treated as nodes and references considered the edges.
In COM, references always represent greater elements by playing a role
of an elementary semantic construct rather than a navigational tool in
a graph. Partial order changes the way how data is being accessed:
instead of using graph navigation, COM introduces two operations of
projection and de-projection. Although there exist approaches which

257

A. Savinov

are based on partial order relation [24], only in COM it is used as a
primary relation for representing data semantics and reasoning about
data. The main benefit of using partial order is that it “seems to fulfill
a basic requirement of a general-purpose data model: wide applicabil-
ity” [24], that is, many conventional data modeling mechanisms and
patterns can be explained in terms of this formal setting. In COM,
this approach was shown to be successful in solving such highly general
tasks as logical navigation [27], multi-dimensional analysis [26], group-
ing and aggregation [28], constraint propagation and inference [29].

In the next three sections we discuss three principles of COM. In
Section 2 we describe duality principle and introduce the main data
modeling construct, concept. In Section 3 we discuss inclusion prin-
ciple by defining inclusion relation among concepts and showing its
differences from inheritance. Section 4 discusses order principle by
demonstrating how partial order can be used for data access and solv-
ing typical data modeling tasks. Section 5 makes concluding remarks.
We will follow a convention that identities are shown as gray rounded
rectangles while entities are white rectangles. Also, concepts names
will be written in singular while collection names will be in plural.

2 Concepts Instead of Classes

Existence precedes and rules essence — Jean-Paul Sartre, Being and Nothingness

2.1 Modeling Identities

How things exist and what does it mean for a thing to exist? In many
theoretical and practical contexts existence can be associated with the
notions of representation and access. This means that a thing is as-
sumed to exist if it can be represented and accessed. Conversely, if a
thing does not have a representation or cannot be accessed then it is
assumed to be non-existing. According to this view, any existing thing
is supposed to have a unique identity which manifests the fact of its
existence.

One of the main distinguishing features of COM is that it makes

258

Concept-Oriented Model: Extending Objects . . .

identities first-class elements of the model. To describe how COM
differs from other identification schemes we will use the following three
dimensions:

• Strong vs. weak identities
• Domain-specific vs. platform-specific identities
• Implicit vs. explicit identities

The first criterion divides all identification schemes in two groups
[38, 11]: strong identities and weak identities. Strong identities exist
separately from the identified entity while weak identities are actually
internal properties of the entity used for identification purposes (iden-
tifier properties).

Memory address is an example of a strong identity because memory
cells do not contain their address as a property (otherwise memory
would be a two-column array with addresses in the first columns and
cells in the second column). Object references are also strong identities
because they are not contained in object fields. In particular, if a class
does not have fields then its instances have zero size but still have
references. In contrast, primary keys in the relational model (RM)
are weak identities because they are made up of a number of normal
attributes.

The main problem with weak identities like primary keys is that it
is not possible to access entity properties without some kind of strong
identity which therefore should be provided by a good data model.
In other words, some kind of strong identity must always exist while
having weak identities in the model is optional. In this sense, weak
identities should be viewed as a design pattern rather than a primary
data modeling mechanism.

Strong identities are provided in ODM and COM because objects
in these models are represented by a separable reference (Fig. 1). In
contrast, RM relies on weak identities in the form of primary keys.
Note however that many implementations provide some kind of strong
identity for representing rows like surrogates and their usefulness is
theoretically justified.

The second dimension for evaluating various identification schemes

259

A. Savinov

Figure 1. Modeling identities and entities in different models

is the possibility to model domain-specific (user-defined) identities as
opposed to having only platform-specific (primitive, system) identities.
An example of platform-specific identity is OID, surrogate or object
reference, which are provided by the DBMS. The mechanism of primary
keys is an example of domain-specific identities which is defined by
the data modeler and reflects specific features of the problem domain.
Since identities are integral part of the problem domain, a good data
model should provide an adequate mechanism for their modeling. In
particular, this mechanism is available in RM and COM but not in
ODM (Fig. 1).

The third criterion separates all identification mechanisms depend-
ing on whether they provide implicit or explicit identities. An identity
is called explicit if its functionality has to be used manually to access
the represented entity. For example, primary keys are explicit identities
because it is necessary to manually specify join conditions. The prob-
lem of explicit identities is that one and the same fragments span many
queries. If the structure of the identity changes then all queries involv-
ing this fragment have to be also updated. For example, all queries
where we need to get bank accounts given a set of persons involve the
same fragment with the join condition like the following:

WHERE ACCOUNTS.owner = PERSONS.id AND ...

Note that this fragment is mixed with other conditions. What is worse,

260

Concept-Oriented Model: Extending Objects . . .

if we change the primary key then all queries involving it in their join
conditions have to be also updated (join is a cross-cutting concern).

In contrast, implicit identities hide their structure and function-
ality. For example, each time an object is about to be accessed, the
DBMS needs to resolve its OID, then to lock memory handle and fi-
nally execute the operation using the obtained memory address. If it
is a remote reference then the access procedure is even more complex.
However, all these operations in queries are hidden – it is enough only
to specify a variable and operation to be executed – all the interme-
diate actions will be executed behind the scenes. The mechanism of
implicit identities has numerous advantages and therefore it should be
supported by good data models. However, dot notation is also rather
restrictive in comparison with the flexibility of joins. In COM and
ODM, implicit identities are supported at basic level while RM relies
on explicit identities in the form of join conditions for FK-PK pairs.

2.2 Identity and Entity — Two Sides of One Thing

To provide strong domain-specific implicit identities COM assumes in
its duality principle that any element is a couple consisting of one iden-
tity and one entity. Formally, an element is represented as a couple of
one identity tuple and one entity tuple. To model such identity-entity
couples COM introduces a novel construct, called concept. Concept is
defined as a couple of two classes: one identity class and one entity
class. Both classes may have fields which are referred to as dimensions
(to emphasize their special role for defining partial order described in
Section 4) as well as other members like methods and queries. Im-
portantly, these two constituents cannot be used separately because
identity-entity couples are regarded as one whole. When a concept is
instantiated we get a couple consisting of one identity and one entity
so that the whole approach is reduced to manipulating identity-entity
couples. Identity is an observable part manipulated directly in its orig-
inal form. It is passed by-value (by-copy) and does not have its own
separate representative. Entity can be viewed as a thing-in-itself or
reality which is radically unknowable and not observable in its original

261

A. Savinov

form. The only way to do something with an entity consists in using
its identity as an intermediate. Identities are transient values while
entities are persistent objects.

For example, a bank account in COM can be described by the
following concept:

CONCEPT Account
IDENTITY

CHAR(10) accNo
ENTITY

DOUBLE balance

Identity class of this concept has one dimension which stores account
number and entity class has one dimension which stores the current
balance.

Concepts generalize conventional classes and are used instead of
them in COM. There are two special cases:

• identity class is empty
• entity class empty

If identity class is empty then such concept is equivalent to a conven-
tional class. Its instances will be represented by identities inherited
from the parent concept (see Section 3). For example, we could define
a class of color objects as follows:

CONCEPT ColorObject
IDENTITY // Empty
ENTITY

INT red, green, blue

Instances of this concept are normal objects represented by some kind of
platform-specific reference or OID. If all concepts have empty identity
classes then we get the object-oriented case where one and the same
platform-specific identity is inherited from the root concept and is used
to represent all entities. What is new in COM is that it allows for
modeling user-defined types of references together with the represented
entities. Such references can be thought of as user-defined surrogates
or separable primary keys. If entity class is empty then this concept

262

Concept-Oriented Model: Extending Objects . . .

describes a value type (value domain). Indeed, its identity does not
have entity part and hence it is not intended to represent anything (if
it is not used as identity in a child concept). For example, we could
define colors as values:

CONCEPT ColorValue
IDENTITY

INT red, green, blue
ENTITY // Empty

Any instance of this concept is a value which is copied when it is passed
or stored.

Concepts are instantiated precisely as classes by specifying their
name as a type of the variable and then invoking this concept con-
structor. Moreover, from the source code where concepts are used, we
cannot determine if it is a concept-oriented query or an object-oriented
one – it depends how the concepts are defined. If they have only one
constituent (entity) then it is an object-based approach and if they have
two constituents (identity and entity) then it is a concept-oriented ap-
proach.

In data modeling concepts are normally used to declare types of
elements in collections where data are stored. For example, if data are
stored in tables then concepts are used to parameterize such a table by
specifying the type of its elements. In an SQL-like language a table for
storing bank accounts could be created as follows:

CREATE TABLE Accounts CONCEPT Account

Here Accounts is a table name and Account is a concept name so
that this new table will store only elements of this concept type. Note
that collections in COM are different from relational tables because
they have domain-specific row identifiers. Such a collection can be
viewed as a memory with arbitrary user-defined addresses and arbitrary
user-defined cells.

2.3 Concepts for Domain Modeling

COM provides means for describing both values (identity class) and ob-
jects (entity class). The specific feature is that they are described and

263

A. Savinov

then exist in couples. In contrast to object-relational models (ORM)
[35, 36] where value domains and relations are modeled separately,
COM provides one unified construct for modeling simultaneously value
and relation types. In other words, there is only one type – a type of
an element – but this element has a transient part (value) and a per-
sistent part (object). The main benefit is that we can vary the “degree
of persistence” by choosing which attributes belong to transient part
(identity) and persistent part (entity).

In ORM, the idea is that relation attributes can store complex
values rather than only primitive values. For example, we can define a
user defined type composed of two integers:

TYPE MyType
field1 AS INT
field2 AS DOUBLE

END TYPE

After that it can be used as a type of relation attributes:
RELATION MyRelation

intAttribute AS INT
myAttribute AS MyType

END RELATION

The problem is that traditional approaches to data and type modeling
do not allow us to use relations as types:

TYPE NewType
myField AS MyRelation // Not possible

END TYPE

RELATION NewRelation
myAttribute AS MyRelation // Not possible

END RELATION

In other words, relations are defined on domains only (primitive or
complex) but not on other relations.

COM solves this problem by using concepts which essentially unite
domain modeling and relation modeling. In COM, there is only one
kind of domain or set – it is a set of concept instances which are value-
object couples. Once a concept has been defined, it can be then used as

264

Concept-Oriented Model: Extending Objects . . .

a type in any other concept independent of its use for value modeling,
relation modeling or mixed use. For example, we could define colors as
values:

CONCEPT Color
IDENTITY

INT red, green, blue
ENTITY // Empty

This concept is equivalent to a user-defined type. The difference is that
new fields can be added to either value part (identity class) or object
part (entity class). For example, if each color has a unique name which
has to be shared then we add the corresponding field to the entity class:

CONCEPT Color
IDENTITY

INT red, green, blue
ENTITY

CHAR(64) name

It is already a mix of three primitive values in the identity class and one
object field. Now suppose that colors may have some other property
which is supposed to be stored in a separate relation:

CONCEPT ColorDescr
IDENTITY

INT code
ENTITY

CHAR(2) lang
CHAR(64) name

Now the color concept simply declares a field with this concept as a
type:

CONCEPT Color
IDENTITY

INT red, green, blue
ENTITY

ColorDescr descr

Importantly, only one concept name is used as a type of variables
in the model independent of its division on identity and entity parts.

265

A. Savinov

Figure 2. Value vs. object types in different approaches

All domains (independent of whether they are values, objects or both)
are described using one system of types. If we use only identity classes
then all elements in the model are values and it can be used for value
modeling precisely as it is done in ORM. If all concepts have only entity
part then we can model objects represented by OIDs or relations where
rows are represented by surrogates. But in the general case, and it is
one of the main advantages of COM, we can freely vary the division
between values and objects. The differences between ORM, ODM and
COM are shown in Fig. 2. In ORM, we can model only value domains
which are used as attribute types. In ODM, we can model only object
types. In COM, we can model both value types and object types.

3 Inclusion Instead of Inheritance

A place for everything and everything in its place — Victorian proverb

3.1 Modeling Hierarchies

In the previous section we asked the question how entities exist and
assumed that the fact of their existence is manifested by means of
identities. In this section, the main question is where objects exist.
COM assumes that if something exists then there has to be some space,

266

Concept-Oriented Model: Extending Objects . . .

environment, domain, container or context to which it belongs, that
is, things are not able to exist outside of any space. Assuming so,
the next question is what does it mean to exist within some space?
The answer is that existence within a space means that the element is
identified with respect to this space. Further assuming that the space
is a normal element and any element is included only in one space then
we get inclusion principle: elements exist within a hierarchy where any
element (excepting the root) is included in one parent with respect to
which it is identified.

Hierarchies are used in almost all branches of science and their
descriptive role can hardly be overestimated. They exist almost every-
where in real life and they are especially useful in programming and
data modeling. However, there exist many interpretations of hierar-
chies in terms of different relations:

• Containment hierarchies (inclusion relation)
• Re-use hierarchies (inheritance relation)
• Semantic hierarchies (specialization-generalization relation)

Containment hierarchies are used in the hierarchical data model
[37] where many child elements are included in one parent and exist in
its context. Hierarchies are also one of the corner stones of the object-
oriented paradigm where they exist in the form of inheritance relation.
Here the idea is that one base class can be extended by many more
specific classes and in this way we can describe arbitrary entities from
the problem domain by reusing more general descriptions. In semantic
and conceptual models hierarchies are used to describe abstraction lev-
els of the problem domain by defining more specific elements in terms
of more general elements.

Yet, in spite of the highly general and natural character of the
hierarchical view on data, it has not got a dominant position in data
modeling. One reason for this state of affairs is asymmetry between the
space of classes and the space of their instances [34]: classes exist within
a hierarchy while their instances (objects) exist in flat space. Classical
inheritance considers only class hierarchies and it is not possible to
produce a hierarchy of their instances precisely what is needed in data

267

A. Savinov

Figure 3. Asymmetry between classes and instances

modeling (and implemented in the hierarchical model). In other words,
by using inheritance we cannot store objects in hierarchies like in the
hierarchical model and it is a strong limitation because a database is
modeled as a large flat space of objects.

For example, if two classes Savings and Checking extend one
base class Account then we get a hierarchy where the parent class
is shared among its child classes (Fig. 3a). Surprisingly, instances of
these classes exist in a flat space so that each extension has its own
parent and each instance is identified by one kind of OID (Fig. 3b).
In other words, if two child classes have one shared parent class then
their instances have no shared parent.

The conception of data reuse exists only at the level of classes but
not their instances (code is reused in both cases). For data modeling
purposes, it would be natural to create one main account object and
then several savings and checking accounts within it. However, it is
not possible using the traditional view on hierarchies, inheritance and
semantic relationships. The goal of COM here is to unite the existing
interpretations of hierarchies by introducing one relation for modeling
containment (like in the hierarchical data model), inheritance (like in
object data models), and generalization-specialization relation (like in
semantic data models).

268

Concept-Oriented Model: Extending Objects . . .

3.2 Inclusion for Modeling Hierarchies and Inheritance

COM revisits hierarchies by introducing a new relation, called inclu-
sion. Inclusion relation assumes that child concepts are declared to
be included in the parent concept. The most important property is
that concept instances also exist within a hierarchy so that parents
are shared parts of children. Note that the possibility to have many
children within one parent is implied by the mechanism of identities.
Each child is an instance of its concept and hence has some identity.
This identity is always relative to the parent instance which has its
own identity. For example, assume that concept Savings is included
in concept Account (Fig. 4a):

CONCEPT Savings IN Account
IDENTITY

CHAR(2) subAccNo
ENTITY

DOUBLE balance

This concept declares its identity class having one dimension storing
savings account number and its entity class having one dimension stor-
ing the current balance of the sub-account. It is important that sub-
account number is a relative number which is meaningful only in the
context of its main account. Hence (Fig. 4b) many savings accounts
(instances of concept Savings) can be created in the context of one
main account (an instance of concept Account). In particular, main
account fields are shared among many savings accounts. In contrast,
if Savings were a class inheriting from class Account then any new
instance of Savings would get its own main account with all its fields.

An interesting observation about COM is that with the introduc-
tion of inclusion it essentially revives the hierarchical model of data but
at the same time remains compatible with the object-oriented view. In-
clusion hierarchy can be viewed as a nested container where each object
has its own hierarchical domain-specific address which is analogous to a
normal postal address. For example, a savings account might be iden-
tified by a reference consisting of two segments: 〈′123456789′〉 : 〈′02′〉
where the first number is the main account and the second number

269

A. Savinov

Figure 4. Symmetry between concepts and instances

identifies the relative savings account.
Note that these object identities are virtual addresses because they

are defined in domain-specific terms which are not directly bound to
the platform. Thus the represented entities can reside anywhere in the
world. In particular, bank account objects can be persistently stored
in a database and the account number is used to retrieve them. It is
possible to specify how these virtual addresses are translated to physical
addresses [30]. This can be used for implementing such mechanisms as
replication, partitioning and distribution.

An important use of COM inclusion hierarchies consists in modeling
types of values. If we define a concept without entity class then it
will describe some value type. Using inclusion relation, this value can
be extended by adding new dimensions and producing a more specific
type. In this way we can build a hierarchy of value types. For example,
we could define colors as elements identified by their unique name and
having three entity properties:

CONCEPT Color IN ColorObject
IDENTITY

CHAR(16) name // For example 'red'
ENTITY // Inherited from ColorObject

Of course, we could use conventional classes for this purpose like it
is done in ORM but then we would need to have two kinds of classes
for values and objects. The distinguishing feature of COM is that con-

270

Concept-Oriented Model: Extending Objects . . .

cepts are intended for describing both values and objects as couples.
In relational terms, COM allows for modeling two type hierarchies for
domains and relations using only one construct (concept) and one re-
lation (inclusion). In the general case, a domain in COM is a set of
identity-entity couples. In this sense, it is a step in the direction of uni-
fying object-oriented and relational models by uniting two orthogonal
branches: domain modeling and relational modeling.

If concepts have empty identity classes then inclusion is a means for
modeling relation types. For example, an existing concept Persons
can be extended by introducing a new concept Employees:

CONCEPT Employees IN Persons
IDENTITY // Empty
ENTITY

DOUBLE age

Due to the nature of inclusion relation, many employee records can
belong to one person record which is obviously not what we need in
this situation. In order to model classical extension, identity class of
the Employee concept is left empty. In this case no more than one
employee segment is possible because of the absent identity class. As
a result, each person record will have one or zero extensions which
means that a person belongs to either base Person concept or to the
extended Employee concept.

4 Partial Order Instead of Graph

Ordnung muss sein — German phrase

4.1 Partial Order for Data Modeling

In the previous sections we described how objects exist and where they
exist. In this section we answer the question what an object means,
that is, what is its semantic content. When an element is created it gets
some identity which determines its location in the hierarchical address
space but says little about its relationships with other elements. To
semantically characterize an element, it has to be connected with other

271

A. Savinov

elements in the model. Almost all data models including ODM are
implicitly or explicitly graph-based, i.e., they assume that a set of data
elements is a graph. In this case semantics is encoded in relationships
among elements. The distinguishing feature of COM is that it uses an
approach where connectivity and semantics are represented by means
of partial order relation, i.e., a database is defined as a partially ordered
set of elements. As a result, any element participates in two orthogonal
relations simultaneously: inclusion and partial order.

Strict partial order is a binary relation < (less then) defined on
elements of the set and satisfying the properties of irreflexivity and
transitivity. If a < b (a is less than b) then a is a lesser element and b is
a greater element. In diagrams greater elements are positioned higher
than lesser elements. Given two data elements, the main question in
COM is whether one of them is less than the other. If we do this
comparison for all elements then we get a concept-oriented database.
Thus a concept-oriented database is a partially ordered set an example
of which is shown in Fig. 5 where b, d and f are the greatest elements,
and a and c are the least elements.

Formally, partial order in COM is represented by means of tuples by
assuming that a tuple is less than any of its members: if a = 〈. . . , e, . . .〉
then a < e. For example, element a in Fig. 5 is less than b, d and e just
because it is defined as a = 〈b, d, e〉. Thus if we have a number of tuples
defined via each other then they induce partial order, and vice versa, if
there is partial order then it can be represented by tuples representing
elements and their members representing greater elements.

In object-oriented terms, this principle means that references rep-
resent greater objects. If one object references another object via one
of its fields then the first object is less than the referenced object. For
example, if a book element is an object storing a publisher, title and
sales in its fields then these three constituents are its greater elements.
Semantically, they are considered more general terms which define the
meaning of the more specific book element. If we change a greater
element then the meaning of all lesser elements which use it will also
change.

To describe a partially ordered structure of elements at the level of

272

Concept-Oriented Model: Extending Objects . . .

Figure 5. Concept-oriented database is a partially ordered set

concepts, COM uses the following principle: dimension types represent
greater concepts. A set of concepts (with inclusion relation) partially
ordered using this principle is referred to as a concept-oriented schema
and a set of their instances is referred to as a concept-oriented database.
Note that concepts and their instances participate simultaneously in
two relations: inclusion and partial order.

For example, assume that concept Book has a dimension referenc-
ing its publisher of type Publisher:

CONCEPT Book // Book < Publisher
IDENTITY

CHAR(10) isbn
ENTITY

Publisher pub // Greater concept
DOUBLE sales

According to this definition, Book is a lesser concept and Publisher
is a greater concept: Book < Publisher. In object oriented ap-
proach, field types constrain possible elements that can be referenced
via this field. In COM, we not only constrain possible referenced ele-
ments but also say that the referenced element is greater than this one
and this property is then used for querying and reasoning about data.

273

A. Savinov

Figure 6. Projection and de-projection operations

4.2 Projection and De-Projection Operations

Data access operations in COM rely on the partially ordered structure
of concepts and their instances. If we move up in the direction of some
greater concept then this operation is called projection and denoted by
right arrow '->'. If we move down in the direction of a lesser concept
then this operation is called de-projection and denoted by left arrow
'<-'. Given a set of elements, projection returns all greater elements
and de-projection returns all lesser elements along the specified dimen-
sion. A sequence of projections and de-projections is called a logical
access path. The main difference from graph-based models is that these
operations are intended for changing the level of detail by moving only
up and down in a zig-zag manner along the structure of dimensions.
This makes COM similar to multidimensional models [22].

For example, assume that any book (Books collection) has one
publisher (Publishers collection). Publishers of all books with low
sales can be found by projecting the selected Books to the greater
Publishers collection (Fig. 6):

(Books | sales < 1000) -> pub -> (Publishers)

All books of the selected publishers can be found using de-projection:

(Publishers | name == 'C') <- pub <- (Books)

274

Concept-Oriented Model: Extending Objects . . .

Figure 7. Logical navigation and inference in COM

Note that projection is a set of elements from the target domain
without repetitions. For example, we could get all locations of the
publishers as follows:

(Publishers) -> location

Here we do not write the primitive target domain because it can be
restored from the schema and therefore is optional. The result of this
query for the example in Fig. 6 consists of three values ‘DE’, ‘MD’ and
‘RU’ even though the value ‘DE’ occurs two times.

This approach is very convenient for retrieving related elements in
complex schemas. Let us consider a schema in Fig. 7 with many-to-
many relationship between books and writers where each book belongs
to one publisher. All writers of the selected publisher can be retrieved
for three steps using the following query:

(Publishers | name = 'XYZ')
<- pub <- (Books) (1)
<- book <- (BooksWriters) (2)
-> writer -> (Writers) (3)

Here the selected publisher is (1) de-projected down to the collection
of books, then (2) further down to the BooksWriters collection, and
(3) finally the constrained facts are projected up to the Writers col-
lection.

It is very easy to write correlated queries using this approach. For

275

A. Savinov

example, assume that we need to find all books with sales higher than
the average sales in their respective publishers. The average sales figure
for a publisher is computed as follows:

AVG(pub <- (Books).sales))

Now we simply select books which have sales higher than this number:
(Books | sales > AVG(pub <- (Books).sales))

For comparison, in SQL this query has a rather complicated and not
very intuitive form:

SELECT isbn FROM Books b WHERE
sales > (SELECT AVG(sales) FROM Books WHERE

pub = b.pub)

One advantage of our approach is that it does not use joins and
therefore queries in COM are much simpler than in SQL. In COM, it
is possible to use the conventional dotted notation however it does not
remove the necessity to use joins. Therefore, dotted notation is used
only when it is necessary to access individual elements. For set-oriented
operations COM relies on projection and de-projection. An advantage
is that these operations hide the underlying structure of identities and
it is not necessary to change all queries if some identity has changed.

4.3 Reasoning about Data

An important consequence of having partial order with projection and
de-projection operations is the ability to reason about data by automat-
ically deriving conclusions from initial constraints. It is not necessary
to specify an exact access path because the system is able to propagate
initial constraints automatically. In traditional semantic and deduc-
tive models this can be done using inference rules which are treated
differently and managed separately from data. In COM, data itself is
treated inherently as dependencies and data schema is used for con-
straint propagation. Inference procedure is essentially integral part of
the model because it does not rely on inference rules but rather uses
data for reasoning about data. In other words, once a model has been
defined, it can be immediately used for inference.

276

Concept-Oriented Model: Extending Objects . . .

In our example it is possible to derive writers belonging to the
selected publisher without specifying how it has to be done. Such a
query provides only (i) what we have in the form of source constraints
and (ii) what we want to get by specifying a target collection. The
source constraints are then propagated to the target automatically by
the system. For example, such a query could be written as follows:

GIVEN (Publisher | name = 'XYZ')
GET (Writers)

The most important feature of this query is that it does not specify how
the result has to be obtained and therefore this query can be answered
by only using some semantic data model and its ability to infer the
result. Most semantic models are based on formal logic where the
result is derived using inference rules. COM proposes an alternative
approach to inference which relies on partially ordered structure of the
database [29]. This procedure consists of the following two steps:

Down. Source constraints X are propagated down to the bottom col-
lection Z using de-projection: X ←? Z

Up. The constrained bottom collection Z is propagated up to the tar-
get collection Y using projection: Z ?→ Y

Here operators ‘←?’ and ‘?→’ (with star symbol) denote de-projection
and projection along all dimension paths. Using this two-step inference
procedure we can get all authors of one publisher using the following
semantic query:

(Publishers | name = 'XYZ')
<-* (BooksWriters) *-> (Writers)

Note that this query does not involve any dimension name. It says
only that the inference has to be carried out using BooksWriters as
a bottom collection. Thus the chosen Publishers are de-projected
down to BooksWriters and then up to Writers which are returned
as a result collection. Yet, this query can be further simplified if we
unite two steps into one inference operator denoted '<-*->'. This
operator works with only source constraints and a target:

(Publishers | name = 'XYZ') <-*-> (Writers)

277

A. Savinov

To illustrate how rather complex queries can be written in a very
concise form let us assume that we want to consider only small publish-
ers (with less than 10 books) and return only writers who have written
more than 2 books:

(Publishers p | p <- pub <- (Books) < 10)
<-*-> (Writers w | w <-*-> (Books) > 2)

Here we use a shortcut that comparison of a collection with a num-
ber implies COUNT aggregation function, that is, the condition
p<-pub<-(Books) < 10 is true if the publisher has less than 10
books, and the condition w <-*-> (Books) > 2 is true if the writer
has more than 2 books.

4.4 Multiple Propagation Paths

Generally, there are two approaches to constraint propagation:

Direct. Source constraints are imposed directly on the elements of the
source set and then they are propagated through the model.

Inverse. Source constraints are expressed in terms of the target el-
ements and then imposed on them so that target elements are
selected by specifying properties they have to satisfy.

Projection and de-projection operations are an example of the di-
rect approach while SQL is an example of the second approach. One
limitation of the constraint propagation procedure via projection and
de-projection operations is that we cannot use many source constraints.
For example, assume that the task is to find all books belonging to the
selected publishers and writers (Fig. 7). In this case we have two con-
straints: a set of publishers and a set of writers. One solution is to
use the second (traditional) approach by simply expressing these two
source constraints as properties of the books:

(Books p | p.pub.name = 'Springer' AND
p <-*-> (Writers | name = 'Smith') > 0)

This query involves two explicit conditions imposed directly on the
retrieved elements. The first condition selects books depending on

278

Concept-Oriented Model: Extending Objects . . .

their publisher and the second condition selects books depending on
their author. Then these two conditions are combined using logical
'AND' operation.

To solve this problem using the direct approach source constraints
can be independently propagated and then the result is built as their
intersection (also denoted by 'AND'):

(Publishers | name='Springer') <- (Books) AND
(Writers | name = 'Smith') <-*-> (Books)

This query consists of two propagation paths leading to the same target
collection. The first operation propagates publishers to books and the
second operation propagates writers to books. Then these two sets are
combined using set intersection operation.

Strictly speaking the above query also contains a portion with in-
verse constraints where the names of publishers and writers are spec-
ified. These fragments can be removed by rewriting this query as fol-
lows:

'Springer'<- name <- (Publishers)
<- pub <- (Books) AND

'Smith'<- name <- (Writers)
<- writer <- (BooksWriters) -> book -> (Books)

The most important property of this query is that it does not involve
inverse constraints at all. Both of its access paths start from some value
and lead to the same target collection. The values are taken from prim-
itive domains (text strings in this example). In contrast, inverse queries
specify constraints as properties of collection elements. Of course, such
a query is too verbose and in practice these two approaches are com-
bined. For us it is important to understand that COM supports both
approaches.

4.5 Analytical Queries

In previous sections we described how data can be retrieved from the
database. In analytical applications, it is necessary to have a possibility
to compute new values using existing data. For this purpose, COQL

279

A. Savinov

introduces CUBE operator (also denoted as FOREACH in other papers)
which combines several source collections and returns their product:

CUBE(Collection1, Collection2, ...)
BODY {

...
}
RETURN ...

This query allows us to iterate over all combinations of elements in the
source collections and to perform intermediate calculations in its BODY
block. The structure of the result is specified in the RETURN statement.

For example (Fig. 8), assume that each book belongs to some
genre and writers live in certain countries. The goal is to show how
book sales are distributed among genres and countries. The difficulty
is that a book may have many authors living in different countries and
we want to distribute the book sales evenly among the authors. To
solve this problem, a derived method is added to the BooksWriters
concept which computes sales for one book and one author:

CONCEPT BooksWriters
IDENTITY ...
ENTITY

DOUBLE sales() {
RETURN book.sales / book <- (BooksWriters)

}
Here sales can be considered a normal (read-only) dimension which
is computed for each instance of this concept by dividing the book sales
by the number of book authors.

To compute sales for each genre and country, we build a cube any
cell of which is one genre and one country:

CUBE(Genres g, Countries c)

Each element of the result set returned by this query, called a cell in
OLAP, is a pair of one genre and one country. Now we can compute
sales for each cell in the query body as follows:

CUBE(Genres g, Countries c)
BODY {

280

Concept-Oriented Model: Extending Objects . . .

Figure 8. Multidimensional analysis in COM

BW = g <-* (BooksWriters) AND
c <-* (BooksWriters)

}
RETURN g.name, c.name, SUM(bw.sales)

Here BW is a cell and BooksWriters is a fact collection. A cell is
computed as an intersection of all facts belonging to the current genre
and all facts belonging to the current country. Then we simply return
total sales for all facts in the cell where fact sales are computed in
the derived method. Note that this approach does not use group-by
operation which is replaced by de-projection.

5 Conclusion

The concept-oriented model is based on three general principles but
intrinsically supports many patterns of thought used in other data
models including set-based, hierarchical, multidimensional and seman-
tic views on data. However, the largest overlap is with the object-
based view and therefore COM can be characterized as taking its roots
in object-orientation. In comparison with object-orientated approach,
COM makes the following major contributions:

Concepts instead of classes. If class has only one constituent then
concept combines two constituents in one construct: identity and en-
tity. Data modeling is then reduced to describing identity-entity cou-
ples. This duality produces a nice yin-yang style of balance and sym-

281

A. Savinov

metry between two orthogonal branches: identity modeling and entity
modeling. In particular, this generalization allows us to model domain-
specific identities instead of having only platform-specific ones. Con-
cepts provide a basis for a new approach to type modeling. One its
application is a unified mechanism for modeling relation types and do-
main types (which is one of the oldest problems in data modeling) by
defining a domain as a set of identity-entity couples.

Inclusion instead of inheritance. Classical inheritance assumes that
objects exist in one flat space where they are identified using one type
of references. Inclusion generalizes this view by permitting objects to
exist in a hierarchy where they are identified by hierarchical addresses.
In this case both concepts and their instances exist within a hierarchy.
This eliminates the asymmetry between classes defined as a hierarchy
and their instances existing in flat space. Data modeling is then re-
duced to describing such hierarchical address space where objects are
supposed to exist by focusing on identity modeling as opposed to tra-
ditional entity-centric approaches. This generalization turns objects
into sets (of their children) and makes the whole approach inherently
set-based rather than instance-based. Another important property of
inclusion is that it retains all properties of classical inheritance and can
be employed for reuse. Inheritance (IS-A) is revisited and considered
a particular case of inclusion (IS-IN), that is, to put an object in a
container means to inherit its properties.

Partial order instead of graph. Elements in COM are partially or-
dered where references represent greater elements and dimension types
of concepts represent greater concepts. Data modeling is then reduced
to ordering elements while other properties and mechanisms are derived
from this relation. In particular, to be characterized by some property
is equivalent to have another object as a greater element. Partial order
also emphasizes the set-oriented nature of COM because elements are
treated as sets of their lesser elements. Another important consequence
of having partial order is that it allows us to implement an alternative
approach to inference which is based on the data itself rather than on
inference rules.

Due to this generality, COM decreases the existing mismatches be-

282

Concept-Oriented Model: Extending Objects . . .

tween various kinds of models and methodologies:

Identity vs. entity and value vs. object. COM treats values and
objects as two sides of one element by uniting identity modeling
and entity modeling. In addition, COM provides an alternative
approach for unifying domain and relational modeling.

Data modeling vs. programming. COM is integrated with a novel
approach to programming, called concept-oriented programming
(COP) [25, 30, 32] so that programming and data modeling are
two branches of one methodology by decreasing the old and
deeply rooted incongruity between these two branches of com-
puter science [9, 8, 2]. In this context, COM can be defined as
COP plus data semantics (implemented via partial order).

Transactional vs. analytical. COM unites transactional and ana-
lytical approaches to data modeling by narrowing the gap be-
tween operational systems and data warehouse (OLTP-OLAP
impedance mismatch) by providing direct support for analytical
operations which is currently a highly actual problem [23].

Logical vs. conceptual. COM is an inherently semantic data model
which provides built-in mechanisms for reasoning about data by
retaining conventional mechanisms for data access. In addition,
COM essentially achieves the goals pursued by the nested relation
model [14] and the universal relation models [15] but does it on
the order-theoretic basis.

Instance-based vs. set-based. COM allows for both instance-level
and set-level data access and manipulations.

Using the notions of concepts, inclusion and partial order, COM
can describe a wide range of existing data modeling techniques and
patterns. In particular, this approach does not use low level join and
group-by operations. Taking into account its simplicity and generality,
COM seems rather perspective direction for further research and devel-
opment activities in the area of data modeling and object databases.

283

A. Savinov

References

[1] S.Abiteboul, P.C.Kanellakis: Object identity as a query language
primitive. Journal of the ACM (JACM), 45(5): 798–842, 1998.

[2] M.Atkinson, P.Buneman: Types and Persistence in Database Pro-
gramming Languages. ACM Computing Surveys (CSUR), 19(2):
105–70, 1987.

[3] M.Atkinson, F.Bancilhon, D.DeWitt, K.Dittrich, D.Maier,
S.Zdonik: The Object-Oriented Database System Manifesto. In
Proc. 1st Int. Conf. on Deductive and Object-Oriented Databases,
1990.

[4] F.Bancilhon: Object databases. ACM Computing Surveys
(CSUR), 28(1): 137–140, 1996.

[5] C.Chambers, D.Ungar, B.Chang, U.Hölzle: Parents are Shared
Parts of Objects: Inheritance and Encapsulation in Self. Lisp and
Symbolic Computation, 4(3): 207–222, 1991.

[6] E.Codd: A Relational Model for Large Shared Data Banks. Com-
munications of the ACM, 13(6): 377–387, 1970.

[7] E.F.Codd: Extending the database relational model to capture
more meaning. ACM Transactions on Database Systems (TODS),
4(4): 397–434, 1979.

[8] W.R.Cook, A.H.Ibrahim: Integrating Programming Languages
and Databases: What is the Problem? ODBMS.ORG, Expert
Article, 2006.

[9] G.P.Copeland, D.Maier: Making Smalltalk a Database System.
ACM SIGMOD Record, 14(2): 316–325, 1984.

[10] K.R.Dittrich: Object-oriented database systems: the notions and
the issues. Proc. Intl. Workshop on Object-Oriented Database Sys-
tems, 1986, 2–4.

284

Concept-Oriented Model: Extending Objects . . .

[11] F.Eliassen, R.Karlsen: Interoperability and object identity. ACM
SIGMOD Record, 20(4): 25–29, 1991.

[12] P.Hall, J.Owlett, S.Todd: Relations and Entities. Modeling in
DataBase Management Systems, G.M.Nijssen (Ed.), North Hol-
land, 1976, 201–220.

[13] R.Hull, R.King: Semantic database modeling: survey, applica-
tions, and research issues. ACM Computing Surveys (CSUR),
19(3): 201–260, 1987.

[14] G.Jaeschke, H.J.Schek: Remarks On The Algebra Of Non First
Normal Form Relations. Proc. PODS’82, 1982, 124–138.

[15] W.Kent, Consequences of assuming a universal relation. ACM
Transactions on Database Systems (TODS), 6(4): 539–556, 1981.

[16] W.Kent: A Rigorous Model of Object References, Identity and
Existence. Journal of Object-Oriented Programming, 4(3): 28–38,
1991.

[17] S.N.Khoshafian, G.P.Copeland: Object identity. Proc. OOP-
SLA’86, ACM SIGPLAN Notices, 21(11): 406–416, 1986.

[18] G.M.Kuper, M.Y.Vardi: The Logical Data Model. ACM Transac-
tions on Database Systems, 18(3): 379–413, 1993.

[19] H.Lieberman: Using prototypical objects to implement shared be-
havior in object-oriented systems. Proc. OOPSLA’86, ACM SIG-
PLAN Notices, 21(11): 214–223, 1986.

[20] J.Mylopoulos, Data Semantics Revisited: Databases and the Se-
mantic Web, DASFAA’04, 2004.

[21] J.Peckham, F.Maryanski, Semantic data models. ACM Computing
Surveys (CSUR), 20(3): 153–189, 1988.

[22] T.B.Pedersen: Multidimensional Modeling. Encyclopedia of
Database Systems. L.Liu, M.T.Özsu (Eds.) Springer, NY., 2009,
1777–1784.

285

A. Savinov

[23] H.Plattner: A common database approach for oltp and olap using
an in-memory column database. Proc. SIGMOD’09, 2009, 1–2.

[24] D.Raymond: Partial order databases. Ph.D. Thesis, University of
Waterloo, Canada, 1996.

[25] A.Savinov: Concept as a Generalization of Class and Principles of
the Concept-Oriented Programming. Computer Science Journal of
Moldova, 13(3): 292–335, 2005.

[26] A.Savinov: Hierarchical Multidimensional Modeling in the
Concept-Oriented Data Model. Proc. 3rd Intl. Conference on Con-
cept Lattices and Their Applications (CLA’05), 2005, 123–134.

[27] A.Savinov: Logical Navigation in the Concept-Oriented Data
Model. Journal of Conceptual Modeling, Issue 36, 2005.

[28] A.Savinov: Grouping and Aggregation in the Concept-Oriented
Data Model. Proc. 21st Annual ACM Symposium on Applied Com-
puting (SAC’06), 2006, 482–486.

[29] A.Savinov: Query by Constraint Propagation in the Concept-
Oriented Data Model. Computer Science Journal of Moldova,
14(2): 219–238, 2006.

[30] A.Savinov: Concepts and Concept-Oriented Programming. Jour-
nal of Object Technology, 7(3): 91–106, 2008.

[31] A.Savinov: Concept-Oriented Model. Handbook of Research on
Innovations in Database Technologies and Applications: Current
and Future Trends, V.E.Ferraggine, J.H.Doorn, L.C.Rivero (Eds.),
IGI Global, 2009, 171–180.

[32] A.Savinov: Concept-Oriented Programming. Encyclopedia of In-
formation Science and Technology, 2nd Edition, M.Khosrow-Pour
(Ed.), IGI Global, 2009, 672–680.

[33] A.Savinov: Concept-Oriented Query Language for Data Model-
ing and Analysis. Advanced Database Query Systems: Techniques,

286

Concept-Oriented Model: Extending Objects . . .

Applications and Technologies, L.Yan, Z.Ma (Eds.), IGI Global,
2011, 85–101.

[34] L.A.Stein: Delegation Is Inheritance. Proc. OOPSLA’87, ACM
SIGPLAN Notices, 22(12): 138–146, 1987.

[35] M.Stonebraker, L.Rowe, B.Lindsay, J.Gray, M.Carey, M.Brodie,
P.Bernstein, D.Beech: Third generation database system mani-
festo. ACM SIGMOD Rec., 19(3), 1990.

[36] M.Stonebraker: Object-Relational DBMSs: The Next Great Wave.
Morgan Kaufmann, San Mateo, CA, 1995.

[37] D.C.Tsichritzis, F.H.Lochovsky: Hierarchical Data-Base Manage-
ment: A Survey. ACM Computing Surveys (CSUR), 8(1): 105–
123, 1976.

[38] R.Wieringa, W.de Jonge: Object Identifiers, Keys, and Surrogates
– Object Identifiers Revisited. Theory and Practice of Object Sys-
tems, 1(2): 101–114, 1995.

Alexandr Savinov, Received November 30, 2011

SAP Research Dresden,
SAP AG
Chemnitzer Str. 48,
01187 Dresden, Germany
E–mail: alexandr.savinov@sap.com
Home page: http : //conceptoriented.org/savinov

287

