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About Directed d-Convex Simple Graphs

Nadejda Sur Sergiu Cataranciuc

Abstract

In this article we introduce a pseudo-metric on directed
graphs, which forms there a family of convex sets. The graphs
without d-convex sets, except empty set, sets of one vertex and
set of all vertexes, are called d-convex simple. We give an iter-
ative method of description of the set of all directed d-convex
simple graphs. Then we research the structure of directed d-
convex simple graphs and do this by using some new operations
and new graphs. After that we show that the set of directed
d-convex simple graphs contains all known undirected d-convex
simple graphs.

1 An Iterative Method of Description for
Directed d-Convex Simple Graphs.

We are going to study below directed graphs, without loops or multiple
arcs. A directed graph G = (X, ﬁ) is called to be strongly connected
graph, if for each two vertexes z, y € X there is at least one path
(directed chain), from vertex z to vertex y and at least one path from
vertex y to vertex z. Let D = (z = 21, 22, ..., 2, = y) be a path from
z to y. In this case we will say, also, that path D joins the vertexes x
and vy in the indicated ordering, which are called the extremities of D.
The number p is called the length of the path

D=(x==z, 2, ..., 2p=1Y)

and we will write {(D) = p.
Let D(z, y) be the family of all paths form G that joins the vertexes
x and y. The length of the shortest path from D(z, y) will be called
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the distance between vertexes = and y and will be denote by d(z, y).

So, we have
d(z, y) = psin {i(D)}.
In the case when between two vertexes x, y € X a path that joins
them does not exist, it is considered that d(z, y) = co.
It is easy to see that the notion of distance, introduced by this way,
does not respect the commutative propriety, i. e.

d(z, y) # d(y, =).
This distance is a function d : X x X — N, that respects the properties:

1. d(z, y) > 0, for each two vertexes z, y € X, and d(z, y) = 0 if
and only if z = y;

2. d(z, y) <d(z, z) + d(z, y), for each three vertexes x, y, z € X.

We have, that the defined above distance function d : X x X — N
is a pseudo-metric in directed graph G.

The set (z, §) = {z € X |d(z, 2)+d(z, y) = d(z, y)} is called
directed d-segment from z to y. Obviously, the notion of directed seg-
ment (m) has sense only if there is at least one path that joins z
with y. From these considerations, we are going to study below only
strongly connected directed graphs.

Definition 1.1 The set A C X is called to be d-convex set in the
graph G = (X, U) if for each z, y € A, considered in the indicated
order, there is the relation (T, {)) C A.

We observe that each set A, |A| =0 or |A| =1, is d-convex.

It is easy to see that in the arbitrarily directed graph the sets (m)
and (m) are not indispensably equal. Let A be an arbitrary set of
vertexes from graph G = (X, U ). According to definition 1.1, if A is a
d-convex set, then both directed d-segments (z, §) and (i, £) belong
to A. This implies that the union (z, ¢) U (y, #), which contains all
vertexes of at least one circuit that passes through vertexes x and vy,
also belongs to A. More, the set (z, §) U (y, £) contains the vertexes
of all circuits of minimal length that pass trough x and y.
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Lemma 1.1 If A and B are two d-convex sets of a directed graph
G = (X, U), then the intersection AN B is, also, a d-convez set in G.

Proof: Let G = (X, ﬁ) be a directed graph, and A and B be two
d-convex sets of it. If |[AN B| < 1, then according to definition 1.1 the
assertion of lemma is true. Let us suppose that |[A N B| > 2, and let
z, y be any two vertexes from AN B. Because A and B are d-convex

simple sets, we have:
(z, ) C A,

(z,9) C B,

that implies relation (z, §) C ANB. So we have that ANB is d-convex
simple set in G. O

By analogy with classical model of d-convex hull notion [8], in case
of directed graphs we have:

Definition 1.2 Intersection of all d-convexr sets of a directed graph
G = (X, U), that contains a subset of vertezes B C X, is called d-
convex hull of the set B and denoted by d-conv(B).

Obviously, if B C X is already a d-convex set in é, then d —
conv(B) = B.
For an arbitrary subset of vertexes S of the graph G, we will define

the next operation
P = |J @)
Vz,y €S

Then d-convex hull of the set B can be iteratively described like follows:

By = B,
Bi= |J (@9 =rB),
Va,y € Bg
By= |J (@ 79)=P(B1)=P(P(By)) = P*(By) and P(By) # By,

Vz,y € By
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Bei= |J (@) = P(By—2) = PI"Y(Bo) and P(By—2) # By,
Vz,y € By—2
B, = U (z,9) = By_1 = d — conv(B).
Vz,y € Bg—1

By this way, the construction of d-convex hull d—conwv(B) is reduced
to construction of a sequence of subsets:

B230C31CB2C...CBq_1:Bq,

where B;, 1 <1 < ¢, is determined by using the P operation, described
above. In case of infinite graphs, the iteratively constructed sequence
could be also infinite. Then, d-convex hull of the set B is computed
using relation:

o
d — conv(B) = U B;.
=0

By definition 1.2, it is easy to see that next relations are true:
1. d— conv(d) = 0;

2. d—conv({z}) = {z};

3. d—conv(X) = X;

4. A Cd— conv(A);

5. d — conv(d — conv(A)) = d — conv(A).

By the relations 1 — 5, we can say that the notion of d-convexity
for the directed graphs do not get out of the general axiomatic theory
of the convexity [8].

In undirected graphs any subset of vertexes A # X, which induce
a complete subgraph and the set of all vertexes X, is always d-convex.
We can say the same thing about directed graphs. The sets that are
always d- convex in any directed graph are the empty set, the sets
with one vertex, the sets that induce a complete subgraph and the
set of all vertexes X. This is because the introduced by this way
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notion of convexity in directed graphs is the extension of the notion
of convexity in the undirected graphs, and this thing will be shown
below. Further the mentioned sets will be called trivial d-convex sets
in directed graphs.

Definition 1.3 Directed and strongly connected graph G = (X, ﬁ) 15
called d-convex simple if it does not contain d-conver sets A C X,
such that 1 < |A] < |X]|.

From the definition it results that in a directed d-convex simple
graph, between any two vertexes there can be only one of two possible
arcs. Indeed, if for some two vertexes z, y in a d-convex simple graph
both arcs (z, y) and (y, z) exist, then the set A = {z, y} will be d-
convex, that contradicts to the definitions assertion of d-convex simple
graph. This remark means that all directed d-convex simple graphs are
antisymmetric.

Theorem 1.1 Next assertions are equivalent:
1. G= (X, ﬁ) is directed d-convez simple graph;
2. d—conv({z, y}) = X for any two distinct vertezes z, y € X;

3. d—conv({z, y}) = X for any two adjacent vertezes z, y € X.

Proof: 1 — 2. Let G = (X, ﬁ) be a directed d-convex simple graph.
By definition 1.3 it does not contain d-convex sets with more than
one vertex or less than the number of vertexes of X. It follows that
it does not contain d-convex sets of cardinal two. This fact implies
d — conv({z, y}) = X, for any two distinct vertexes z, y € X.

2 — 3. Relation d — conv({z, y}) = X is true for any two distinct
vertexes x, y € X, so it is true for adjacent vertexes, too. It results
that the assertion 3 is true.

3 — 1. Let us suppose that for any two adjacent vertexes z, y € X,
the relation d — conv({z, y}) = X is true, but the directed graph G
is not d-convex simple. This means that in G exists a d-convex set
AC X and 1 < |4| < |X|. From |A| > 1 it results that in A there exist
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two vertexes p, ¢, such that (m) C A. This implies the existence
of two adjacent vertexes x, y in A. Because A is the d-convex simple
set, there is the relation d — conv(z, y) C A. On the other hand, from
condition 3 we have d — conv(z, y) = X. It follows that A = X, that
contradicts the supposition 1 < |A4] < |X]|. O

Now we consider the next class of directed graphs ®, that is defined
recursively as follows:

I. In the class ® there are all graphs Go = (X@o’ ﬁéo)’ where:

XG"O = {xl, T2y vnny .’En}, n > 3,
UGO = {(xn; fl)} U {(fL‘z, IIJZ'+1)| g = ]_7 2, e, L — 1}7

i. e. Gy is an elementary circuit with n vertexes;

II. From the graph G;_i, (i > 1) we construct the graph G; =
(Xg., Ug.), where:
X@'l = X@'i71 U {y17 Y2, - ym}7 m 21,

Ug =Ug, U {(a, b)|a, b € Xg., not both are in X5, and
such that conditions a), b) are satisfied };
a) For each vertex y;, there exist two distinct vertexes p, ¢ €
Xg., such that y; € d— conv({p, q});

b) For any two adjacent vertexes a, b € X , there exist two
distinct vertexes p, ¢ € X@i_l, such that the following
relations are satisfied:

1. p, g € d— conv({a, b});
2. dg._ (p, ) =dg (p, 9);
3. dg._ (¢, p) =dg.(q, p);

III. In ® there are no other graphs, except the graphs iteratively
described in I. and IL.

The class of directed graphs ® is a union of graphs families, recur-
sively obtained, according to the procedures described above:

D=DyUDU...UD,...,
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where © represents all graphs Gy = (X Gy’ ﬁéo)’ described at step I
of construction of class ®, and ®;, ¢+ > 1, represent the family of all
graphs that are obtained from ®; ;, applying the operation II.

Theorem 1.2 All graphs of the class © are d-convex simple graphs.

Proof: We will prove that ®¢, ©1, ..., ®;, ... are families of
directed d-convex simple graphs, using mathematical induction method
by the index 1 =0, 1, 2, ... of the family of graphs.

It is easy to see, that if ¢ = 0, then éo = (Xéo’ ﬁéo) from 9y is d-
convex simple, because it is an elementary circuit with n > 3 vertexes.

Let us prove that ®;, ¢+ > 1, is a family of directed d-convex simple
graphs, in conditions that all graphs from ®g, D1, ..., ®;_1 have
already this property. We choose a graph G; € ©; with n > 3 vertexes.
Let G; = (X@i’ ﬁél) be obtained from G;_; € D;_1 as the result of
application of the operation 11 of construction of the class ©. According
to theorem 1.1 for this, it is necessary to prove that for any two adjacent
vertexes a, b € X5 there is the relation d — convg ({a, b}) = X5

Let us suppose that between a and b there exists the arc (a, b) € ﬁ@i.
According to the condition II b) of the class ®© description, there exist
two distinct vertexes p, ¢ € X5, such that p, g € d—com)éi({a, b}).
This implies the relation

d — convg ({p, q}) C d — convg ({a, b}).

The fact that, by induction, G, 1 is d-convex simple, and in process
of construction of the graph éi, new arcs were not added to vertexes
from éi,l, and the distance between p and ¢ has kept unchanged in
G, (see condition IT b)), results in:

X, Cd—convg ({p, q}) C d—convg ({a, b}).

i— i

From condition II a) we obtain:
Xa Uiy, y2s ooy ym} = X5, Cd — convg ({a, b}).
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Reverse inclusion is obvious and so we have X5 = d —convg ({a, b}).
2 k2

This means that directed graph G is d-convex simple. So ®; is a family
of directed d-convex simple graphs. O

Theorem 1.3 A directed strongly connected graph G = (X, [7), | X| >
3 is d-convex simple if and only if G € D.

Proof:

Necessity: Let G = (X, U ) be a directed d-convex simple graph.
Thus |X| > 3 results that in G there exist two distinct vertexes u
and v. Because G is a strongly connected graph then there exists at
least one circuit that passes trough these vertexes. So, we obtained
that in G there exists at least one elementary circuit. We consider
thus elementary circuit of minimal length. We also observe that if
C = [20, 21, - -+, Zp, Zp41 = 20) is a circuit of minimal length in graph G,
then the subgraph generated by the set of vertexes {zg, z1, ..., 2} is iso-
morphic with C. It follows that in G do not exist arcs that join any two
vertexes z;, zj, where |i — j| > 1. We will denote by Gy = (Xg, UGO)
the subgraph generated by the set of vertexes {zp, z1, ..., 2p}, and
by G denote the graph G itself. It is easy to verify that G, is ob-
tained from Go by adding the sets X \X G, of vertexes and ﬁ\ﬁéo of
arcs, according to condition II of description of class ®. It follows that
GeD.

Sufficiency: It results from theorem 1.2. O

2 Operations Over Directed d-Convex
Simple Graphs.

Let G, = (X1, ﬁl) and Gy = (Xo, ﬁQ) be two directed graphs where
we choose by one pair of nonadjacent vertexes: z1, 9 in G1 and Ly1, y2
in Gy. By analogy with [2, 4, 5] we will denote by M= (G, G,) the
graph obtained from G, and Gy as the result of j joining the vertexes
x1 with y; and zo with y9. For the graph G = M) = zj’j(él, é2) the
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following relations are true:

| Xl = [ X1] + | Xo| — 2,

U5 = 0, U,

In order to simplify notations we will write G = M (C_?'l, @2) if the
pairs of vertexes that take part in generation of new graph are known.

Let G = (X, (j) be a directed graph and z be any vertex from X.
We denote by

I'(z)={yeX|(z,y) €U} and

I (z) = {y € X | (y, z) € U}

the set of successors of the vertex x and the set of predecessors of it
respectively. The vertex which does not have predecessors is called
source vertex, and the vertex which does not have successors - desti-
nation vertex.

We denote by P(p, ¢; r), r > 0, the directed graph where a source
vertex p, and a destination vertex ¢ are fixed and which satisfies the
conditions:

1. in P there exist paths that join vertex p with vertex g;

2. any vertex and any arc from P belong to at least one path that
joins p with ¢;

3. all paths that join vertexes p and g are of the same length r > 0;

4. other vertexes or arcs in P do not exist.

Theorem 2.1 For any two graphs Pi(p1, q1; r1) and Pa(p2, qo; 72),
the graph
G = Mé’f::ﬁj (P1, P2)

18 d-convex simple.
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Proof: In the graph G all elementary circuits are of the same length,
equal to 71 4+ ro, and they pass through vertexes p1 = ¢2, ¢1 = p2 and
any vertex of graph G belongs to at least one circuit of this type. It
follows that G is strongly connected graph and for any two vertexes
z, y from G we have:

PL=qo, q1 =2 € (T, §) U (Y, £),

but d — conv({p1 = g2, ¢1 = p2}) = X5. From this it results that G is
d-convex simple graph.

Theorem is proved. [

Let P1(p1, q1; m1), Pa(p2; q2; 72)5 - -+, Ps(ps, gs; 1s) be s-directed
graphs. We denote by:

MBZP2 ©2=P3, - 4s=1=Ps (D) Py Py)

4s=p1
the graph obtained from P, Pa, ..., Ps as the result of joining the
vertexes g1 with po, ¢ with ps, ..., gs—1 with p; and ¢; with p;. For
the graph G = MZZh» @730 9=1=Ps(p) P, Py) the following

relations are true:
| Xal = [Xp [+ | Xp, | + .o+ Xp, | — s,
Ug=Up, UUp, U...UUp,.
Corollary 2.1 For any s > 2 directed graphs

Pi(p1, qi; 1), Pa(p2, q25 72)5 -+, Ps(Dsy Gsi Ts),

the graph G = MIZP> ©@7Po o @=1=Ps(p Py P,) s d-convex
stmple.

Proof: From graphs Pa(p2, g2; 12), P3(ps, 433 13)s - s Ps(Pss qs3 7's)
we build a new graph P(pe2, ¢s; 12 + r3 + ... + 15) by joining
the vertexes ¢o with ps, ..., ¢s—1 with ps. Then graph G =
MBZPy TP 1=l (P Py L Pg) coincides with graph MJi=E? (P,
75) From theorem 2.1 the last graph is d-convex simple. This means
the graph G is d-convex simple, too. [J
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Theorem 2.2 If H= (X, ﬁﬁ) is a directed d-convex simple graph,
where there exists a pair of vertexes x1, x2, such that dﬁ(azl, x9) =
r > 1, then for any graph P(p, q; r) the graph G = Mf;;g(ﬁ, P) is
d-convex simple.

Proof: By theorem 1.2, in order to prove the assertion of this the-
orem it is sufﬁcient to show, that the graph G can be obtained from
the graph H with 1 respect of condition 1I of description of the class ©.
Let us consider G;_1 = H and G; = G. From construction of graph
G= 5;21 g(H, P) and condition r > 1, it results that the vertexes of
graph H were not joined with new arcs. More than that:

a) for any y; € Xp there exist vertexes z1 =p, 20 = ¢ € X3, such
that: y; € d — conv({p, q}) = d — conv({x1, z2});

b) for any two adjacent vertexes a, b € Xz, there exist two distinct
vertexes x1, T2 € X3, such that the following relations are true:

- L1 =P, T2 =4q;

x1, T2 € d — conv({a, b});

dﬁ(ﬂvl, T9) = d@(ﬂvl, T2) = dé(P, q) =r;
- dg(q, p) = dg(g, p) = dg(z2, z1).

It follows that G = My.=P(H, P) € ®. According to theorem 1.2,
this means the G is d-convex simple graph.
The theorem is proved. [

Theorem 2.3 If él and ég are two d-convex simple graphs, where
there exist the nonadjacent verteres x1, xo € Gy and y1, yo € Ga,
which satisfy conditions dg (z1, z2) = dg, (y1, y2) and dg (22, 1) =
dg,(y2, y1), then the gmph G = MEZ ;ﬁ(él, Gs) is also d-convez
simple.

Proof: We are going to prove this theorem using the same approach
as in the last theorem. We consider that G;_1 = G; and G; = G, and
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will show that G can be obtained from G; with respect of condition
IT of description of the class ®. From the condition that the selected
pairs of vertexes are nonadjacent and counstruction of the graph G =
MEZV (G, Go), it results that the vertexes of graph G were not
joined with new arcs. More than that, the following relations are true:

a) for any y; € XG2, there exist vertexes 1 = vy, x9 = ys € XGI,
such that: y; € d — conv({y1, y2}) = d — conv({z1, z2});

b) for any two adjacent vertexes a, b € X, there exist two distinct
vertexes x1, To € XC71’ such that:
0. z1 =y1, T2 = Y2;
1. 1, 2 € d — conv({a, b});
2. dg (21, 22) = dg, (1, y2)
3. dg (2, 1) = dg, (Y2, y1)

a1, yo);

=d
=dg(y2, y1)-
It follows that G = MZIZUH (G, Ga) € D.

According to theorem 1.2, this means the graph G is d-convex simple
graph. O

From the theorem 2.3 it results that the operation M, introduced
above and being applied to the pairs of vertexes, that are at the same
distances in the different d-convex simple graphs, is an algebraic oper-
ation on the set of the directed d-convex simple graphs .

Definition 2.1 Two vertezes u and v of a graph G = (X, (j) are
called to be copies vertexes in G if there are equalities:

I'(u) =" (v) and T~ (u) = T~ (v).
In case of
I'(u) =T (v) and I'"(u) = T (v),
the vertexes u and v are called anti-copies.
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Let us observe, that if @ = (X, U) is a directed and strongly
connected graph, where there exists a pair of vertexes anti-copies u and
v, then diz(u, v) = dz(v, u) = 2. Indeed, from the fact that the graph
G is strongly connected it results that any vertex has as predecessors
as successors. So, no one of the sets I'"(u), Tt (v), I' (u), T (v)

is empty. Since v and v are vertexes anti-copies and the relations
[ (u) =T (v) and I'"(u) = I't(v) are true, then it results:

a) u and v are not adjacent, i. e. neither u nor v is from the
mentioned sets (otherwise the graph G will contain loops);

b) in G exist paths of length two that join w with v and v with w.

From a) we obtain that ds(u, v) and ds(v, u) are not equal to 1,
and from b) we have that ds(u, v) = dz(v, u) = 2. So, circuit of
minimal length that contains the vertexes u and v is of length 4.

From the above and theorem 2.3 we have:

Corollary 2.2 If G1 and Go are two d-conves simple graphs, where
there exist the vertexes anti-copies x1, x9 € G and y1, yo € Go, then
the graph G = Mz,=/x(G1, G2) is also d-convex simple.

Let us observe that if G = (X, U) is a directed and strongly con-
nected graph, where there exists a pair of vertexes copies u and v,
then dz(u, v) = dg(v, u). Indeed, if we suppose that, the following
inequality is true:

da(u, v) < dg(v, u),

and [u, 1, x2, ..., Ty, v] is one path of minimal length that joins
the vertex u with vertex v, then, since u and v are vertexes copies we
have 't (u) = " (v), that implies (v, z1) € U, and I~ (u) = '~ (v),
that implies (z,, u) € U. It follows that in G there exists the path
[v, 1, x9, ..., xy, u], the fact that contradicts the assumption that
the distance from v to u is longer than the distance from u to v. So,
assumption is false and dz(u, v) = dz(v, u).

From the above and theorem 2.3 we have:
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Corollary 2.3 If G1 and Gs are two d-conves simple graphs, where
there exist the vertezes copies 1, xo € G1 and y1, yo € Go, which
satisfy the condition dg (1, x9) = da, (y1, y2), then the graph G =

Mz =i (G, Ga) is also d-convex simple.

Now, let G = (X,U) be a d-convex simple graph and v any vertex
of G. We form the graph G*, which is obtained from the graph G by
adding one vertex copy for v, which is denoted by ©.

Theorem 2.4 IfG = (X, (j), X >3, is a d-convex simple graph, then
Gt is also d-convex simple graph.

Proof: Let G = (X,U) be a d-convex simple graph. By the theo-
rem 1.3 this graph is from ®. We choose an arbitrary vertex v € X
and, according to the above, form the graph G**. Let z, y be two
vertexes from Xéﬁ' and let d — convgz,, ({2, y}) be d-convex hull of
these vertexes. It is easy to see that if v € d — convgz,,({z, y})
then we immediately have © € d — convg,. ({z, y}), the reverse as-
sertion is also true. More than that, if z, y are two different ver-
texes from X5, and they are different from the vertexes v, 0, then

v € d — convgy ({7, y}), because graph G is d-convex simple. It fol-

—
lows that © € d — convg,, ({7, y}). But the set <m)0~++ U (D, v) a4+

contains all vertexes of at least one circuit of minimal length that pass
trough vertex v, because the graph G is d-convex simple and this deter-
mine it to be strongly connected. This circuit contains vertexes from
G, which had kept the same distances among them in the graph G+
like in G. The d-convex hull of these last vertexes contains all vertexes
from G. From this it results:

d—convgi({v, }) = Xt

By this way we obtained that d-convex hull of any two distinct vertexes

from G171, which are different from v and ¥, contains all vertexes from
N ’ H
Gt+.

Let y be any vertex from é++, different from vertexes v and v.
D-convex hull of the set {y, v} in G contains all vertexes of at least one
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circuit of minimal length that pass through v and y, which contains
vertexes from G, which had kept the same distances in the graph G*+.
So, d — convgi ({v, y}) = Xg44. And because the vertexes v and o

—
are vertexi copies then there are the equalities (m) = (0, y) and
(i, 0) = (y, 0), from where it results

d— CO””G++({’Ua y}) =d— COHUG'++({’I~J, y}) = Xt
This means that the graph G is d-convex simple. O

From the theorem 2.4 it results that in directed d-convex simple
graphs, like in undirected d-convex simple graphs, we can multiply any
vertex as many times as we need, and the obtained graphs will be also
d-convex simple.

Let G = (X, U ) be a directed d-convex simple graph, where there
exist three vertexes copies vy, v and v3. We denote by G the graph
that is obtained by the graph G as the result of elimination of one of
them, for example, the vertex vs.

Theorem 2.5 If G is d-convex simple graph and vy, ve and vs are
three vertexes copies of it, then the graph G~—, where one of them is
missing, 1s also d-convex simple graph.

Proof: Let G = (X, U ) be a directed d-convex simple graph, where
there exist three vertexes copies vy, vo and v3, and let G~ be the
graph that is obtained by the graph G as the result of elimination of
one of them, for example, of vertex vs. Obviously, from the fact that
the vertexes v, v and wvs are vertexes copies in C_j, it results that any
d-segment that contains one of these three vertexes, will immediately
contain the others as well. This property is true for the vertexes wv;
and vy in graph (T}L*, too. From the same considerations, for any two
vertexes =, y € X 5__ the following equality holds:

dé(xu y) = dé**(a’} y) (*)

More than that, since G is d-convex simple, then in G there are equal-
ities (v1, v3) = (v, v3) and (vy, vi) = (v3, vi), from where it results:

d — convz({v1, v2}) = d — convz({v1, v3}) = X5
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But the last implies:
d — convg__ ({v1, v2}) = X5-_. (%)

Now, we choose two distinct vertexes a, b € X 5__. Because initial

graph G is d-convex simple, it follows, that d-convex hull of the set
{a, b} in this graph can be built by the sequence of sets:

B(] = {a, b}, Bl :P(Bo), BQ :P(Bl), ey

B; = P(B; 1), ..., d—conv({a, b}) = X

We consider that, for example, B; is the first set of this sequence, which
contains the vertex vs. Obviously, the vertexes v; and vy belong to this
set, too.

Because of the relation (*), for the set {a, b} in the graph G we
can build the sequence:

By ={a, b}, By =P(B, ), B, =P(B; ), ..., B, =

1
= P(B; 7)), ...,

such that B; = B; ™, forall0 < j <¢—1. In these conditions we obtain
that B;\B, ~ = {v3}, but the vertexes v; and vy belong to the set B,
that means, according to the (**), that d — convs__({a, b}) = X5__.
U

From the theorem 2.5 it results that in the directed d-convex simple
graphs, like in the undirected d-convex simple graphs, we can eliminate
the vertexes copies of the vertex v, keeping only one copy for v, and
the obtained graph will be d-convex simple, too.

Let G = (X, [7) be a directed graph. We form the graph Gt =
(X, U') that is obtained from G by redirecting of all arcs of it. It is
easy to see, that the adjacent matrix of the graph G' is the transpose
of the adjacent matrix of the graph G.

Theorem 2.6 If@ 18 d-convex simple graph, then the graph G is also
d-convex simple graph.
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Proof: Let G = (X, ﬁ) be a d-convex simple graph, and Gt =
(X, U') the graph formed like it is described above. From the con-
struction it results that for any two distinct vertexes x and y from X
the following equalities are true:

T = 5B and 5D = (T

It follows that we have d — convz({z, y}) = d — convgz, ({y, =}). But

the initial graph G is d-convex simple and the order of elements is not
important in sets. It results that G is d-convex simple, too. U

Let G = (X, U), |X| > 4 be a directed graph. We choose in G
four vertexes x1, x2, y1 and ys, that are nonadjacent two by two in G.
We denote by WilZY1(G) the graph obtained from G as the result of
joining the vertexes z; with y; and z9 with ys.

Theorem 2.7 Ifé = (X, ﬁ), | X | > 4 is d-convex simple graph, where
there exist four vertexes w1, xo, y1 and yo, which satisfy conditions:

1. the vertezes x1, x2, y1 and y2 are nonadjacent two by two;
2. d(z1, 12) = d(y1, y2), d(z2, z1) = d(y2, y1);

3. min{d(a:l, yl)a d(yl; xl)a d(.’EQ, y2)7 d(y27 $2)} > d(xla .’132) +
d(w2, 1);

4' min{d(a:l, y?)a d(y?; xl)a d(.’EQ, yl)a d(yla $2)} > d(xla .’132) +
d(z2, 1),

then the graph H = Wf;::g}’;(é) is also d-convex simple.

Proof: Let G = (X, ﬁ) be a directed d-convex simple graph that
satisfies the conditions of the theorem. Let H = W=/ (G) be the
graph constructed as it is shown above. We remind that in this work
we study the directed graphs, without loops or multiple arcs. Because
the initial graph G is d-convex simple, and the set of selected vertexes
{z1, 2, y1, y2} satisfies conditions 1 of the theorem, it results that in
graph H there are no loops or multiple arcs, too. More, from the last

339



N. Sur, S. Cataranciuc

we have that for any two vertexes s, ¢ € X5 there exist in H at most
one of the two possible arcs s, t and t, s.

Let us suppose that H is not d-convex simple. This means that in
this graph there exists a subset of d-convex vertexes B, 1 < [B| < | X 3.

Thus, initial graph G is d-convex simple, we have that d-convex hull of

the set B in the graph G is d — convz(B) = Xz. This d-convex hull

can be formed in G as follows:

BO = B, B1 = P(‘;'(BU)a B2 = Pé’(Bl), ey Bz = d—CO’n’UG'(B) = XG'

Let us form the d-convex hull of the set B in the graph H. By using
the same operation we have:

Ao =B, A1 = Pj(Ao), A2 =Pgz(A1), ..., Ai = Pg(Ai—1) ...
From conditions 2, 3 and 4 of the theorem, we can have that:

Bij\{z1, T2, y1, y2} = Aj\{z1 = y1, 12 = 32}, Vj € N.

The last implies that for 7 = ¢ we have

X@\{«Tl, T2, Y1, Y2} = Aj\{fl =Y, Ta = Y2}

But the vertexes x1, z9, y1, y2 are in B; = X5, it results that z; =

Y1, T2 = Y2 € Ai. But [Xs\{z1, 22, y1, yo}]U{z1 = y1, 22 = yo} = X5
So, we have
X5 €A €d— convy(B),

that contradicts the assertion that d — conv;(B) # X ;. The assump-
tion is false, the graph H is d-convex simple. O

Corollary 2.4 If G = (X, ﬁ), | X| > 4 is d-convex simple graph,
where there exist two pairs of vertexes anti-copies x1, T9 and y1, Yo,
which satisfy conditions:

a. min{d(wl, y1)7 d(y17 xl)u d(fL’Q, 92)7 d(y27 x2)} Z 47

b. min{d(z1, y2), d(y2, 1), d(z2, y1), d(y1, 332)} >4,
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then the graph H = szfgzl(é) is also d-convez simple graph.

Corollary 2.5 If G = (X, (j), |X| > 4 is d-convex simple graph,
where there exist two pairs of vertexes copies x1, T2 and y1, y2, which
satisfy conditions:

a. d(z1, T2) = d(y1, y2);
b. min{d(z1, y1), d(y1, 71), d(z2, ya2), d(y2, z2)} > 2 - d(z1, 2);
C. min{d(a:l, y2)7 d(?JQ, xl)a d(.’EQ, yl)a d(yl; .’EQ)} > 2 ‘d(.’ljl, $2),

then the graph H = Wf;::g}’;(é) is also d-convex simple graph.

Further, we will use the notions of chain and cycle for directed
graphs, defined in [9]. The number of arcs that belong to a chain (cycle)
is called length of it. For example, the chain [ = (z;,, z;,, ..., ;) has
length equal to t — 1. For simplicity, further, the cycle of length three,
will be called triangle. The directed graph G = (X, U) is called weakly
connected, if any two vertexes of it are joined by a chain.

We define for the directed graphs a special operation, denoted by
Lo, which, to tell the truth, is defined analogically to the case of undi-
rected graphs [7, 8]. Let us denote by X = {a:l, T2, - a:n} the set
of vertexes of the directed graph G = (X, U). Let Gy, G2 be two
copies of the graph G with the sets of vertexes Xag, = {at, 2l ... 2L}
and X5 = {22, 22, ..., 22} respectively. The vertexes m; and x?,
Jj =1, 2, ..., n, are called correspondent vertexes to the vertex z;,
1 < j <, in conditions when (z;, z;) € U if and only if (z?, xi) € (j'ép,

where p = 1, 2. By Lo(G) we define the graph that is obtalned from

G and G, by adding the following arcs: for any vertex z ,1<5<n,

2
J

in 62, only that they are of the opposite directions. It is obvious that
if |X| = n and |U| = r, then the graph Ly(G) will have 2n vertexes
and 4r arcs. More than that, in the Lg(é), the vertexes x; and x? are
vertexes anti-copies, for any 7 =1, 2, ..., n.

from G 1, we add arcs to all vertexes which are adjacent to the vertex x5
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Theorem 2.8 If G is a directed, weakly connected, antisymmetric

—

graph, without triangles, then the graph Lo(G) is d-convex simple graph.

Proof: We will prove first that if the graph Gis a graph that

—

satisfies the conditions of the theorem, then the graph Lo(G) is strongly

—

connected. Let v and v are two vertexes from L9(G). There are possible
two cases: both of these vertexes belong to one of the two copies of
graph G, G1 and Go; or, for example, u is from G and v is from Go.

a. Let us suppose that both vertexes u and v are, for example, from
G1. The fact that the graph G is weakly connected results that
in G, there exists the chain [ = (u = xill, xé, el xlf = v), that
joins the vertexes u and v. The arcs, that joined the vertexes a:zlk

and a:zlkﬂ, 1 <k <t—1, are of the arbitrary direction (from the

Zlk+1’ or reverse). From this chain we will build
a path from u to v in the graph LQ(é). Let the arc (a:zlsH, les)

be the first from this chain that is directed from v to u. Then

in our path from Ly(G) this arc will be replaced with next three
arcs: (x, $z25+1)’ ($225+2’ z?), (=7, x}SJrl)a where z7 m225+1 are
the vertexes anti-copies corresponding to m}s, m}s+ , respectively.
We will do the same thing with all arcs from [, similar to arc

(z}sH, m}s), and finally we obtain the wanted path from « to v in

Ly(G).

vertex a:zlk to the z

b. Let us suppose now that u is from C_jl and v is from 62. By
analogy with the case a we can, first, build a path from u to
U E X@N that is anti-copy of the vertex v from graph G1. Let
(z, ) be the last arc from this path. We extend the path from
u to ¥ with arcs (v, ), (Z, v), where Z € X, is the anti-copy of

—

vertex z, and obtain by this way a path in Lo(G) from u to v.

From investigated cases a and b it results that for any pair of or-

—

dered vertexes (u, v) from Lo(G) there is a path from u to v. It follows

—

that Lo(G) is a strongly connected graph.

Let us prove, now, that graph Ls(G) is d-convex simple. Let u
and v be two adjacent vertexes in Ly(G) and @ and © be anti-copies
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of these vertexes respectively (the existence of the anti-copies @ and
& result from the construction of the graph L(G)). From the fact
that the graph G is antisymmetric, without triangles, and from the
construction of the graph L;(G) we obtain that the graph Lo(G) is
antisymmetric and without triangles, too. So it follows that the cycles
and circuits of minimal length in this graph have at least four arcs.
Such a circuit of minimal length is determined by vertexes u, v, % and
0. We obtain that d-convex hull of any two adjacent vertexes wu, v
contains at least one pair of vertexes anti-copies. Let z and Z be a pair
of vertexes anti-copies from d-convex hull of any two adjacent vertexes

—

a, be X6 We form in Lo(G) the sequence of sets:

By ={z, 2z} C d — conv({a, b}), By = P(By), ..., d — conv(By).

—

From the construction of the graph Ly(G), and the condition of
theorem that the graph G is weakly connected, the construction of
the set B;y1 from the set B; is always followed by addition of at least
one pair of the new vertexes copies. This means, that in the last we
will cover all the vertexes, and the set d — conv(By) will coincide with

X6 So we have that Ly(G) is a d-convex simple graph. O

3 Relation between Directed d-Convex
Simple Graphs and Undirected d-Convex
Simple Graphs.

Let G = (X, U) be an undirected graph. This means that it is an
directed graph, completely symmetric, where each edges v = (z,y) € U
are considered as two arcs (z, y) and (y, z). Let us eliminate from
each edge of the graph G one and only one of these two arcs. The
obtained graph is antisymmetric, and it will be called direction graph
of the initial graph G, and denote by G. Of course, in dependence of
what arcs are eliminated, for the graph G, we can obtain several its
direction graphs. In this section we are going to show, that for any
undirected, d-convex simple graph, the structure of which is known,
there is at least one directed d-convex simple graph, that corresponds
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to that undirected, and the correspondence we will search in the set of
direction graphs of the initial undirected graph.

Let us consider the class A of the undirected d-convex simple graphs
from [7].

Theorem 3.1 If G is an undirected d-convex simple graph from the
class A then there exists at least one direction of the G, that is a directed
d-convex simple graph.

Proof: We are going to prove this theorem, by giving a way of
construction of one directed d-convex simple graph, we need.

Let G € A be an undirected d-convex simple graph. Then from
[7] we have that G = L(I',T'g), where T is a connected graph without
triangles and 'y is its atom. In order to construct I’y first we have to
determine the sets:

S={reX|VWeX=Ax)ZA@)};

R={zeX\S|WeX=Ax)¢ Ay},

Then, for any z € R we form the set R(z) = {z} U{y € R| A(z) =
A(y)}. By this way the set R is divided in classes of equivalence. Iy is
an induced subgraph of graph G, the set of vertexes of which is formed
from the set S and by one vertex from each class of equivalence. It
is easy to see from construction that the graph I'g is also a connected
graph, without triangles (see [7]).

Let us consider any direction of the graph I'y and denote it by L.
The graph fg is a directed, weakly connected, antisymmetric graph,
without triangles. According to the theorem 2.8 the graph Ly (L) is a
directed d-convex simple graph. Any vertex of the graph Lg(fo) can
be multiplied, as many times as we need, according to the theorem 2.4.
Let us build now a new graph, denoted by é, which is formed from
the graph Lg(fg) where those vertexes were multiplied, that satisfy the
following condition: for any vertex from R, there will be a correspon-
dence vertex in the graph G. The new graph G is a directed d-convex
simple graph, and it is a direction of the initial graph G. [l
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From the last proof, we have that if G is undirected, d- convex simple
graph and G is its direction d-convex simple graph, then in G any vertex
has a anti-copy. So, the pairs of vertexes copies from G, have become
pairs of vertexes anti-copies in G. The last means that these graphs
can participate in operations M and W with any graph which has a
pair of vertexes anti-copies.

The directed and d-convex simple graph from the fig.1 is a direction
from the graph J; from [2, 3], denoted Ji. It has the property that if
we add a vertex anti-copy to any its vertex, the new graph will be also
d-convex simple.

21
Y1

Z1

23 22
26

Fig. 1. The graph Ji.

By this way, we obtain that all undirected d-convex simple graphs
G from [2, 3], has at least one direction graph G, that is a directed,
d-convex simple graph. This means that the set of directed d-convex
simnple graphs contains, in this sense, the set of undirected d-convex
simple graphs.
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