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The minimum cost multicommodity flow

problem in dynamic networks

and an algorithm for its solving

Maria A. Fonoberova, Dmitrii D. Lozovanu

Abstract

The dynamic version of the minimum cost multicommodity
flow problem that generalizes the static minimum cost multicom-
modity flow problem is formulated and studied. This dynamic
problem is considered on directed networks with a set of com-
modities, time-varying capacities, fixed transit times on arcs,
and a given time horizon. We assume that cost functions, de-
fined on edges, are nonlinear and depend on time and flow and
the demand function also depends on time. The corresponding
algorithm, based on reducing the dynamic problem to a static
problem on a time-expanded network, to solve the minimum cost
dynamic multicommodity flow problem is proposed and some de-
tails concerning its complexity are discussed.
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1 Introduction

Multicommodity flows are among the most important and challeng-
ing problems in network optimization, due to the large size of these
models in real world applications. Many product distribution, schedul-
ing planning, telecommunication, transportation, communication, and
management problems can be formulated and solved as multicommo-
dity flow problems (see, for example, [1]). The multicommodity flow
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problem consists of shipping several different commodities from their
respective sources to their sinks through a given network so that the
total flow going through each edge does not exceed its capacity. No
commodity ever transforms into another commodity, so that each one
has its own flow conservation constraints, but they compete for the re-
sources of the common network. Considered multicommodity network
flow problem requires to find the minimum cost flow of a set of com-
modities through a network, where the arcs have an individual capacity
for each commodity, and a mutual capacity for all the commodities.

While there is substantial literature on the static multicommodity
flow problem, hardly any results on multicommodity dynamic flows are
known, although the dynamic multicommodity flows are much more
closer to reality than the static ones. In considered dynamic models
the flow requires a certain amount of time to travel through each arc,
it can be delayed at nodes, flow values on arcs and the network para-
meters can change with time. Dynamic flows are widely used to model
different network-structured, decision-making problems over time (see,
for example, [2, 3]), but because of their complexity, dynamic flow
models have not been investigated as well as classical flow models.

In this paper we study the dynamic version of the minimum cost
multicommodity flow problem on networks with time-varying capacities
of edges. We assume that cost functions, defined on edges, are nonlinear
and depend on time and flow and the demand function also depends
on time. The minimum cost multicommodity dynamic flow problem
asks for a feasible flow over time with given time horizon, satisfying all
supplies and demands with minimum cost. We propose an algorithm for
solving this problem, which is based on reducing the dynamic problem
to the classical static problem on a time-expanded network.

2 Problem formulation

We consider a directed network N = (V, E,K, w, u, τ, d, ϕ) with set
of vertices V , set of edges E and set of commodities K that must be
routed through the same network. Each edge e ∈ E has a nonnegative
time-varying capacity wk

e (t) which bounds the amount of flow of each
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commodity k ∈ K allowed on each arc e ∈ E in every moment of time
t ∈ T. We also consider that every arc e ∈ E has a nonnegative time-
varying capacity for all commodities, which is known as the mutual
capacity ue(t). Moreover, each edge e ∈ E has an associated positive
transit time τe which determines the amount of time it takes for flow to
travel from the tail to the head of that edge. The underlying network
also consists of demand function d: V ×K ×T→ R and cost function
ϕ: E ×R+ ×K × T→ R+, where T = {0, 1, 2, . . . , T}.

The demand function dk
v(t) satisfies the following conditions:

a) there exists v ∈ V for every k ∈ K with dk
v(0) < 0;

b) if dk
v(t) < 0 for a node v ∈ V for commodity k ∈ K then

dk
v(t) = 0, t = 1, 2, . . . , T ;

In order for the flow to exist we require that
∑

t∈T

∑

v∈V

dk
v(t) = 0,∀k ∈

∈ K. Nodes v ∈ V with
∑

t∈T
dk

v(t) < 0, k ∈ K are called sources for

commodity k, nodes v ∈ V with
∑

t∈T
dk

v(t) > 0, k ∈ K are called sinks

for commodity k and nodes v ∈ V with
∑

t∈T
dk

v(t) = 0, k ∈ K are called

intermediate for commodity k. We denote by V k− , V k
+ and V k

0 the set
of sources, sinks and intermediate nodes for commodity k, respectively.
The sources are nodes through which flow enters the network and the
sinks are nodes through which flow leaves the network. The sources
and sinks are sometimes called terminal nodes, while the intermediate
nodes are called non-terminals.

To model transit costs, which may change over time, we define the
cost function ϕk

e(x
k
e(t), t) with the meaning that flow of commodity k

of value ξ = xk
e(t) entering edge e at time t will incur a transit cost of

ϕk
e(ξ, t). We consider the discrete time model, in which all times are

integral and bounded by horizon T . Time is measured in discrete steps,
so that if one unit of flow leaves node u at time t on arc e = (u, v),
then one unit of flow arrives at node v at time t + τe, where τe is the
transit time of arc e. The time horizon (finite or infinite) is the time
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until which the flow can travel in the network and defines the makespan
T = {0, 1, . . . , T} of time moments we consider.

We start with the definition of static multicommodity flows. A
static multicommodity flow x on N = (V,E, K,w, u, d, ϕ) assigns to
every arc e ∈ E for each commodity k ∈ K a non-negative flow value
xk

e such that the following flow conservation constraints are obeyed:
∑

e∈E+(v)

xk
e −

∑

e∈E−(v)

xk
e = dk

v , ∀ v ∈ V, ∀ k ∈ K,

where E+(v) = {(u, v) | (u, v) ∈ E}, E−(v) = {(v, u) | (v, u) ∈ E}.
The multicommodity flow x satisfies the demands if one-commodity

flow xk, ∀k ∈ K satisfies the demands dk
v for all v ∈ V .

Multicommodity flow x is called feasible if it obeys the mutual
capacity constraints:

∑

k∈K

xk
e ≤ ue, ∀ e ∈ E (1)

and individual capacities of every arc for each commodity:

0 ≤ xk
e ≤ wk

e , ∀ e ∈ E, ∀k ∈ K. (2)

Constraints (1) and (2) are called weak and strong forcing constraints,
respectively.

The total cost of the static multicommodity flow x is defined as
follows:

c(x) =
∑

k∈K

∑

e∈E

ϕk
e(x

k
e).

A feasible dynamic flow on N = (V, E,K, w, u, τ, d, ϕ) is a function
x: E ×K × T→ R+ that satisfies the following conditions:

∑

e∈E+(v)
t−τe≥0

xk
e(t−τe)−

∑

e∈E−(v)

xk
e(t) = dk

v(t), ∀ t ∈ T, ∀ v ∈ V, ∀k ∈ K; (3)

∑

k∈K

xk
e(t) ≤ ue(t), ∀ t ∈ T, ∀e ∈ E; (4)

32



The minimum cost multicommodity flow problem in dynamic networks

0 ≤ xk
e(t) ≤ wk

e (t), ∀ t ∈ T, ∀ e ∈ E, ∀k ∈ K; (5)

xk
e(t) = 0, ∀ e ∈ E, t = T − τe + 1, T , ∀k ∈ K. (6)

Here the function x defines the value xk
e(t) of flow of commodity k

entering edge e at time t. It is easy to observe that the flow does not
enter edge e at time t if it will have to leave the edge after time T ; this
is ensured by condition (6). Capacity constraints (5) mean that in a
feasible dynamic flow, at most wk

e (t) units of flow of commodity k can
enter the arc e at time t. Mutual capacity constraints (4) mean that in
a feasible dynamic flow, at most ue(t) units of flow can enter the arc e
at time t. Conditions (3) represent flow conservation constraints.

The total cost of the dynamic multicommodity flow x is defined as
follows:

c(x) =
T∑

t=0

∑

k∈K

∑

e∈E

ϕk
e(x

k
e(t), t). (7)

The minimum-cost multicommodity dynamic flow problem is to find a
feasible flow that minimizes the objective function (7).

It is easy to observe that if τe = 0, ∀ e ∈ E and T = 0 then the
formulated problem becomes the static minimum cost multicommodity
flow problem.

3 The main results

In this paper we propose an approach for solving the formulated prob-
lem, which is based on its reduction to a static flow problem. We show
that the minimum cost multicommodity flow problem on dynamic net-
work N can be reduced to the minimum cost static flow problem on
auxiliary static network NT ; we name it the time-expanded network.
In such a way, a dynamic flow problem in a given network with tran-
sit times on the arcs can be transformed into an equivalent static flow
problem in the corresponding time-expanded network. A discrete dy-
namic flow in the given network can be interpreted as a static flow in
the corresponding time-expanded network. The advantage of this ap-
proach is that it turns the problem of determining an optimal flow over
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time into a classical static network flow problem in the time-expanded
network.

The time-expanded network is a static representation of the dy-
namic network. Such a time-expanded network contains copies of the
node set of the underlying network for each discrete interval of time,
building a time layer. Copies of an arc of the considered network join
copies of its end-nodes in time layers whose distances equal the transit
time of that arc. We define this network as follows:

1. V T : = {v(t) | v ∈ V, t ∈ T};
2. ET : = {e(t) = (v(t), w(t+τe)) | e = (v, w) ∈ E, 0 ≤ t ≤ T−τe};
3. uT

e(t): = ue(t) for e(t) ∈ ET ;

4. wk
e(t)

T : = wk
e (t) for e(t) ∈ ET , k ∈ K.

5. ϕk
e(t)

T (xk
e(t)

T ): = ϕk
e(xe(t), t) for e(t) ∈ ET , k ∈ K;

6. dk
v(t)

T : = dk
v(t) for v(t) ∈ V T , k ∈ K.

The essence of the time-expanded network is that it contains a copy
of the vertices of the dynamic network for each time t ∈ T, and the
transit times and flows are implicit in the edges linking those copies.

Let e(t) = (v(t), w(t + τe)) ∈ ET and let xk
e(t) be a flow of commo-

dity k ∈ K on the dynamic network N . The corresponding function
on the time-expanded network NT is defined as follows:

xk
e(t)

T
= xk

e(t), ∀k ∈ K.

Using the method from [4, 5] it can be proved that the set of feasible
flows on the dynamic network N corresponds to the set of feasible
flows on the time-expanded network NT and that any dynamic flow
corresponds to a static flow in the time-expanded network of equal
cost, and vice versa. In such a way, for each minimum-cost flow in the
dynamic network there is a corresponding minimum-cost flow in the
static network and vice-versa.
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Therefore, the minimum cost multicommodity flow problem on dy-
namic networks can be solved by static flow computations in the cor-
responding time-expanded network. If the cost function of dynamic
network is linear with regard to flow, then the cost function of the time-
expanded network will be linear. In this case we can apply well-known
methods for minimum cost flow problems, including linear program-
ming algorithms, combinatorial algorithms, as well as other develop-
ments, like [6]. If there is exactly one source and the cost function of the
dynamic network is concave with regard to flow, then the cost function
of the time-expanded network will be concave. If the cost function of
dynamic network is convex with regard to flow, then the cost function
of the time-expanded network will be convex. In this case we can ap-
ply methods from convex programming and the specialization of such
methods for minimum cost flow problems.

4 The algorithm

Let the dynamic network N be given. Our object is to solve the min-
imum cost multicommodity flow problem on N . Proceedings are fol-
lowing:

1. Building the time-expanded network NT for the given dynamic
network N .

2. Solving the classical minimum cost multicommodity flow problem
on the static network NT , using one of the known algorithms (see,
for example, [7, 8, 9, 10, 11]).

3. Reconstructing the solution of the static problem on NT to the
dynamic problem on N . ¤

The complexity of this algorithm depends on the complexity of the
algorithm used for the minimum cost multicommodity flow problem in
static networks.
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