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Abstract

Since searching is one of the most important problem-solving
methods, especially in Artificial Intelligence where it is often dif-
ficult to devise straightforward solutions, it has been given con-
tinuous attention by researchers. In this paper a new algorithm
for agent path-finding is presented. Our approach is based on
environment marking during exploration. We tested the perfor-
mances of Q-learning and Learning Real-Time A* algorithm for
three proposed mazes and then a comparison was made between
our algorithm, two variants of Q-learning and LRTA* algorithm.

Keywords: artificial intelligence, path-finding, maze, rein-
forcement learning, Q-learning, LRTA*, agents

1 Introduction

A very important problem of distributed computing is to increase the
asynchronicity of communication in order to decrease communication
costs. Following that direction of thinking, in the last decade the
agent paradigm was developed, although the asynchronous approach
increased the rate of use for any single or multiple known resource. The
basic idea of multiagent systems was to achieve better performance of
data search in distributed databases due to its inherent asynchronous
work model. At this hour those systems have many different applica-
tions e.g. data mining and complex simulations. However, agent-based
systems have the same problem inherited from their distributed sys-
tems support. This is the problem of finding the path in the network.
We propose a new approach in this direction beginning with the idea
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that we can make the agent act somehow like simple biological beings
that can mark the discovered (followed) path in order to later remind
it.

A path-finding problem has two main components [8]:

e a set of nodes N, where each node n € N represents a state;

e a set of directed links L, where each link [ € L is an operator
available to the problem solver.

In general, if the problem solver is an agent in a multiagent envi-
ronment, an operator is an action that can be performed by the agent
in the current state. Usually, there is a unique start node s € N, rep-
resenting the initial state of the agent, and a set of goal nodes G C N,
representing the desired states, i.e. the solutions of the path-finding
problem.

Each link has a corresponding weight w;, which represents the cost
of applying the operator (or performing the action). Sometimes, the
link weight is called the distance between the two nodes. The nodes
that have directed links from a node are its neighbors.

The maze is an example of a path-finding problem in a grid state
space. The states can be either free states (where the agent can move)
or obstacle states (inaccessible to the agent). The allowed operators
are moves along x and y axes (north, east, south, west); diagonal moves
are forbidden. Classically, the start node is the upper-left corner and
the goal node is the bottom-right corner of the maze. In this paper,
we used a more general approach, allowing the goal node to be placed
anywhere in the maze.

2 Path-Finding Using Q-Learning

Reinforcement learning [6, 3] is a learning technique based on the maxi-
mization of a (usually numerical) reward signal, given as a consequence
for taking a certain action in a certain state. The learning agent is not
told directly what to do, but it must discover the actions that will give
it the highest reward. In some cases, actions may affect not only the
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immediate reward, but also the next situation and, through that, all
subsequent rewards. These two characteristics, trial and error search
and delayed reward, are the two most important distinguishing features
of reinforcement learning.

The Q-learning algorithm [7] is a popular reinforcement technique,
often used in multiagent learning systems. The main idea of the al-
gorithm is to learn an action-value function, @ : S x A — R, that
estimates the long-term discounted rewards for each pair state-action.
If an action ¢ € A in state s € S produces a reward r € R and a
transition to state s’ € S, the corresponding @ value is modified as
follows:

Q(Sa a) = Q(s,a) ta- (T +- g’lg?q( Q(Slaal) - Q(Sa a))a (1)

where « is the learning rate and v the discount factor. If v = 0, the
agent is interested only by maximizing its immediate reward. Such a
strategy ignores future rewards, so that the total gain (value) may be
smaller. The closer 7 is to 1, the more important future rewards are
for the learning agent.

The optimal policy the agent must use is:

" = arg max Q(s,a). (2)

In our maze problem, the set of actions is:

A = {north, east, south, west}, (3)

and the set of states:
S = {sij,1 <i < mazeheight,1 < j < mazewidth}, (4)

sij € { free,obstacle, start, stop}. (5)

The rewards we used were:

e 100 for reaching the stop state;
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e -100 for trying to move to an obstacle state;

e 0 for moving to another free state.

We first did not place any constraints on the agent movement.
Thus, the agent could move to an obstacle state, it would be considered
a terminal state and the algorithm would be restarted in a new learning
episode. However, in order to speed up the learning, we decided that if
the agent chose to move to an obstacle state, it would be given a -100
penalty but then it would keep its former position. This approach is
more realistic considering a real situation with a robot moving through
a physical maze. When it touches a wall, it doesn’t necessarily break,
so that the learning should proceed again from the start position.

One of the challenges that arise in reinforcement learning is the
tradeoff between exploration and exploitation [6]. To obtain a bigger
reward, a reinforcement learning agent must prefer actions that it has
tried in the past and found to be effective in producing reward. But
to discover such actions it has to try actions that it has not selected
before. The agent has to exploit what it already knows in order to
obtain reward, but it also has to explore in order to make better action
selections in the future.

The initial exploration rate must be high, and then it is gradually
decreased each time the agent finds the solution. These values may
differ according to the problem [1]. We chose an initial exploration
rate €9 € {0.8,0.9,1} and performed several performance tests. When
the agent finds a solution, this rate is decreased by 0.05. However, it
cannot become less than 0.1. At the beginning, the agent doesn’t know
its path (the @ values are initialized at small random values in order
not to bias any direction) and it must rely on exploration. As it finds
solutions, the exploration rate is decreased down to 0.1. If, after several
episodes, the ) function has not converged, the agent must still have
a chance to find a solution through exploration.

Two cases were considered: in the first one, the agent simply applies
Q-learning, in the second, it marks the states that it has visited and
receives a -10 penalty if it goes back again to an already visited state.
This is done to discourage the agent to enter any loops.
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The performance of the agent is given by the number of learning
episodes in which it can learn the path. It must be mentioned that
learning the path is not the same thing as finding the path. The agent
will find the path many times, but it is important to adjust its Q-
values in order to be able to eventually find the solution in one single
try, relying only on these Q-values.

We tested the algorithm on three mazes: a small one (11x11) with
only one possible solution, a bigger one (25x25) also with only one
possible solution, and another big one (19x30), which allowed multiple
solutions (see figures 7, 8, and 9). We measured the number of learning
episodes and the total steps needed for the agent to reach the solution.
A statistical processing of the data was then made, and mean value
and standard deviation were computed:

1 n
mX=—-Za:Z~ (6)
L

ox :Jl-i(%—m){)z (7)

L}

Table 1 presents these results for different values of the initial ex-
ploration rate €g, obtained after 20 learning trials:

It must be noted that in both cases, the initial exploration rate has
a great influence on the number of learning episodes. When the agent
doesn’t remember the visited states, learning is the fastest when ¢g is
1 (figure 1).

However, the number of steps in every learning episode is bigger
when ¢ is bigger. If the behavior of the agent is driven only by explo-
ration, it performs in a random manner, and so the number of states it
goes through is bigger. When ¢ is smaller, we have a greater number
of learning episodes, but in each episode the agent finds the solution
faster, because it relies more on “real” knowledge (figure 2).

After every successful learning episode, the exploration rate is de-
creased and the agent begins to use its previously acquired information,
therefore the number of steps to reach the solution in each learning
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Table 1. The performance of Q-learning with different initial explo-
ration rates in the presence and absence of state marks.

Maze State €0 Mepisodes | Oepisodes | Mtotalsteps Ototalsteps
type marks
1 9.1 3.375 19,727 5,880
small No 0.9 | 13.15 4.028 13,516 3,067
(11x11) 0.8 | 17.75 7.569 14,814 6,134
single 1 8.9 4.625 21,671 9,627
solution Yes 09 | 825 2.385 8,830 2,203
0.8 | 9.85 2.475 5,907 1,573
1 18.55 4.717 1,368,121 285,868
big No 0.9 | 191.8 26.658 749,443 60,625
(25%x25) 0.8 | 295.65 37.936 779,560 137,781
single 1 >1000 ~73,900,000
solution Yes 09 | 12.6 4.363 106,253 30,783
0.8 | 13.45 3.263 57,640 14,753
bi 1 43.7 10.194 138,489 26,510
(19X§0) No 0.9 | 99.55 22.675 106,341 16,196
multivle 0.8 | 151.3 34.134 98,464 15,771
R - 1 [ 1013 51.424 | 329,483 169,084
v 0.9 | 68.8 23.134 74,729 19,438
0.8 | 59 18.501 41,541 8,003
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Figure 1. The number of steps per learning episode for a simple single
solution maze without state marks and initial exploration rate 1.
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Figure 2. The number of steps per learning episode for a simple single
solution maze without state marks and initial exploration rate 0.9.

episode gradually diminishes (figure 3). There are still peaks, because
the exploration rate is never null, and a random decision in a key state
(e.g. a bifurcation where one way leads to the solution and the other to
a dead end) can greatly influence the outcome of the learning process.

A different phenomenon appears when the agent marks the states
and it receives a penalty for coming back to an already visited state. In
such a case, the best performance is obtained with ¢ = 0.9, rather than
eo = 1 (figure 4). The randomization of the learning process impedes
over the performance of the agent, because the chances are greater to
return to a marked state. The agent modifies its Q-values and tries
to avoid that state, although it may be a useful one. When the initial
exploration rate is less than 1, the algorithm has better performance
than in the simple case. Also, when ¢y = 0.9, the number of steps per
episode is usually smaller than in the no-marks case.
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Figure 3. The number of steps per learning episode for a complex single
solution maze without state marks and initial exploration rate 0.9.
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Figure 4. The number of steps per learning episode for a big multiple
solution maze with state marks and initial exploration rate 0.8.
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3 The Influence of Learning Rate and Discount
Factor

After demonstrating that the agent learns quicker if it uses state marks
with an initial exploration rate of 0.9, we tried to analyze the influence
of learning rate « and discount factor 7y (see equation 1) on the path-
finding efficiency. Table 2 presents the results for different values of «
and vy, obtained after 20 learning trials.

Although for simple problems a medium learning rate can yield
good results, in general a lower learning rate produces better outcomes.
As equation (1) shows, if « is big, the current value of Q(s, a) becomes
less important, and its next value is mainly determined by the reward
and the next state: r+v-maxycq Q(s',a’). When the maze is simple,
a big discount factor produces better results, but in complex mazes,
for small learning rates, a medium value is preferred.

Figure 5 shows the performance change for a small (11x11) single
solution maze, when the learning rate is constant (0.1) and the discount
factor varies. One can notice that the number of learning episodes is
smaller when the discount factor is small, i.e. the agent concentrates
on immediate reward. However, the number of total steps to find the
solution has an opposite behavior, as shown in paragraph 2.

Figure 6 shows the performance change for the same maze, this time
keeping the discount factor constant (0.5) and varying the learning rate.
In this case, both the number of episodes and the number of total steps
to the solution are minimum when the learning rate is medium.

4 Path-Finding Using Learning Real-Time A*
(LRTA*)

A classical approach for determining the minimal cost path is A* [3], an
off-line search algorithm which computes an entire solution path before
executing the first step in the path. However, in a multiagent system,
it is not often possible to perform local computations for all nodes, due
to time limitations. The LRTA* algorithm [5] addresses this problem
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Table 2. The performance of Q-learning with state marks for different
learning rates and discount factors.

Maze « Y Mepisodes Oepisodes Mtotalsteps Ototalsteps
type
0.1 |76 2.458 14,780 6,048
0.1 | 0.5 | 815 2.574 8,374 2,797
small 0.9 | 12.8 4.082 9,368 2,284
(11x11) 0.1 | 5.5 2.674 6,272 2,734
single 0.5 |05 | 5.7 2.61 4,124 1,230
solution 0.9 | 6.95 1.658 4,292 724
0.1 | 13.55 13.204 11,861 12,152
0.9 | 05 | 21.8 17.882 15,513 12,753
0.9 | 6.05 1.687 4,042 1,139
0.1 | 20.95 7.074 369,139 147,502
0.1 | 0.5 | 14.95 4.189 131,756 50,757
big 0.9 | 47.15 16.135 183,783 32,608
(25x25) 0.1 | >1000 ~5,500,000
single 0.5 | 0.5 | >1000 ~8,300,000
solution 0.9 | >1000 ~4,500,000
0.1 | >1000 ~18,300,000
0.9 | 0.5 | >1000 ~12,800,000
0.9 | >1000 ~8,100,000
0.1 | 71.7 19.662 78,764 19,135
0105|704 32.469 73,511 26,015
big 0.9 | 78.15 10764 | 78,814 13,126
(19x30) 0.1 | >1000 ~1,400,000
multiple 0.5 | 0.5 | >1000 ~1,200,000
solutions 0.9 | 46.8 9.026 46,736 6,517
0o |0 >1000 ~1,600,000
’ 0.5 | >1000 ~1,400,000
0.9 | 391.7 385.956 319,561 306,239
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Figure 5. a) The number of episodes when o = 0.1 and + varies; b)
The number of total steps when o = 0.1 and ~y varies.
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Figure 6. a) The number of episodes when v = 0.5 and « varies; b)
The number of total steps when v = 0.5 and « varies.
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by imposing that an agent should perform computations only for its
neighboring nodes. Using multiple iterations, it has been proven that
the solution eventually converges to the optimal one. The agent must
estimate the distance to the goal h(i) for each node i it visits. The
LRTA* algorithm is presented bellow [§]:

Look-ahead: calculate f(j) = k(i,j) + h(j) for each neighbor
j of the current node i, where h(j) is the current estimate
of the shortest distance from j to the goal node, and k(i,j)
is the link cost from ¢ to j;

Update the estimate of node i: A(i) = min; f(j);

Action selection: move to the neighbor j that has the
minimum f(j) value. Ties are broken randomly.

Because the agent determines the next action in a constant time,
LRTA* is considered a real-time, on-line algorithm. It updates the es-
timations with the best so far for not overestimating the actual cost.
Therefore, the initial value of h(i) must be optimistic i.e. never over-
estimate the true value. It was demonstrated [2] that real-time search
methods are powerful sub-optimal search methods that can outperform
off-line search methods in terms of total running time.

We used LRTA* to find the solutions for our proposed mazes. We
measured the number of episodes needed to reach the goal node, the
number of learning steps per episode and the number of total steps in
which an agent can find the solution. The results are displayed in table
3.

It is evident that LRTA* has better performance than Q-learning for
these path-finding problems. LRTA* is an algorithm specially designed
for this type of problems, whereas reinforcement learning methods are
general learning solutions.

5 Learning Using State Mark Gradients

If the agent marks the states it has visited, by analogy with the real
world, the marks should depreciate and this could be used by the agent
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Table 3. The performance of LRTA* for the three proposed mazes.

Maze Mepisodes Oepisodes msteps/ep Usteps/ep Mtotalsteps| Ototalsteps
type
small 15.3 0.461 47.111 23.428 720.8 7.369
(11x11)
single
solution
big 111.2 0.402 213.439 87.273 23734.4 45.026
(25x25)
single
solution
big 96.6 23.02 77.172 81.232 7454.8 951.227
(19x30)
multiple
solutions

in finding its path to the solution. The agent still goes through an
exploration and an exploitation phase. The main idea is that in the
first phase, it constantly tries to go to a minimum mark state, which
correspond to an unvisited state. In the latter, it tries to follow the
ascending state marks gradient, which leads it from the initial state to
the goal state.

We propose the following algorithm:
episode = 1;
initialize state marks with O;
initialize state s with the initial state;

while (s is not terminal)

// choose action

get state marks for the neighbors: north,east, south,west,
ignore the walls;

wantedDirection = min(north, east, south, west);

choose the action corresponding to the wantedDirection;

if (more actions possible)

favor the previous direction with a probability given

by consistencyRate;
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other ties are broken randomly;
end if

//perform action
get next state s';

// update state marks
for all states ¢
marks(t) = marks(t)/decayRate;
end for

marks(s) = 1;
s=4g';
if (s = initial state and for all neighbors
sn, marks(sn) > 0)
episode = episode + 1;
restart
end if
end while
As stated before, the agent must choose an action that will place
it in an unvisited state, or at least a state visited long before. After
finding the solution, the agent has the trace of its path, and therefore
it must only follow it from the initial state, using the gradient ascent
of the state marks. Due to the depreciation, newly visited states have
greater marks. The last visited state is the solution.

= =t

Figure 7. The map of the solved simple single solution maze.

The last test of the algorithm prevents the cases in which the agent
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Figure 8. The map of the solved complex single solution maze.

falls into a loop. This situation is not possible for single solution mazes
(figures 7 and 8), but it is inevitable for multiple solution mazes (figure
9). If, after a loop, the agent comes back to the initial state, the state
marks are reset and a new learning episode begins.

The exploitation phase is done using the same algorithm, but in
this case the action at a certain moment is chosen by considering the
max function instead of min:

wantedDirection = max(north, east, south, west);

Two constants are used: the decay rate and the consistency rate.
The decay rate shows how quickly state marks degrade. The value
we used is 1.01. Its purpose become clearer if the agent ignores the
marks states below a certain limit. The second constant represents the
probability that the agent will keep its current direction, if it is possible.
Table 4 shows the results of learning with different consistency rates,
after 100 learning trials.

It is obvious that in the case of a single solution maze, where the
path is very strict, the consistency rate is not important. The agent will
be constrained by the maze design and the only decisions it can make

420



A New Approach in Agent Path-Finding ...

e e}

- REEE

Figure 9. The map of the solved big multiple solution maze: two pos-

sible solutions.
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Table 4. The performance of state mark gradients algorithm with de-
grading state marks for different consistency rates.

Maze CODSiStenCy Mepisodes | Oepisodes Mtotalsteps| Ototalsteps
type rate
small 0.9 1 0 68.8 13.717
(11x11) 0.8 1 0 58.8 22.454
single 0.5 1 0 50.6 21.514
solution 0.1 1 0 50.32 23.981
big 0.9 1 0 260.4 80.039
(25%x25) 0.8 1 0 261.6 87.447
single 0.5 1 0 237.2 76.578
solution 0.1 1 0 242.48 86.238
big 0.9 2.9 2.385 614.56 505.517
(19x30) 0.8 3.25 2.875 612.76 462.663
multiple 0.5 4.25 3.708 637.92 450.715
solutions 0.1 6.36 5.572 811.28 544.777

refer to cross points. For big multiple solution mazes, if the consistency
rate is high, the number of total steps to reach the solution is lower,
because the agent will travel less in a random manner, thus increasing
its chances to find its goal more quickly.

Our algorithm proves to be more efficient than Q-learning and
LRTA*, as it discovers the solution in much fewer learning episodes
(only one episode if there are no loops possible in the maze). Also,
the number of steps in which the agent reaches the goal node is up to
ten times smaller than the number of steps necessary for the LRTA*
algorithimn.

6 Conclusions

As shown, the proposed method has better performance than the other
presented algorithms. This is validated both by the theoretical ap-
proach as the practical results that are depicted in tables 1 to 3. The
main advantage of this method is that in a multiagent system the other
agents can use the results about discovered paths by simply inspecting
the current location marking. The method can be easily modified in
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order to be used over generalized graphs.
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