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Exact solutions to differential equations

with different arguments

Mario Lefebvre

Abstract. Various linear and non-linear first-order differential equations with dif-
ferent arguments are considered. Exact solutions to these equations are provided.
Systems of two coupled linear first-order differential equations are also solved explic-
itly and exactly.

Mathematics subject classification: 34K05, 34K06.
Keywords and phrases: Delay differential equations, non-linear differential equa-
tions, systems of linear differential equations.

1 Introduction

In [1] (see also [2]), the authors considered the following linear delay differential
equation (DDE):

y′(t) =
1

2
et/2y(t/2) +

1

2
y(t) (1)

for 0 ≤ t ≤ 1, subject to the initial condition y(0) = 1. Its exact solution is y(t) = et.

Similarly, the exact solution of the non-linear DDE

y′(t) = 1 − 2y2(t/2) for 0 ≤ t ≤ 1, (2)

subject to the initial condition y(0) = 0, is y(t) = sin(t).

Equations (1) and (2) are indeed considered as delay differential equations, which
are very important in various fields, in particular in epidemiology and in mathemati-
cal biology; see, for instance, Smith [4] and Rihan [3]. Equation (1) can be rewritten
as follows:

y′(t) =
1

2
et/2 y

(

t − t

2

)

+
1

2
y(t). (3)

Thus, the delay τ is equal to t/2 and is therefore dependent on t. Notice that,
contrary to an equation of the form

y′(t) = y(t − τ), (4)

we only need the value of y(t) at time t = 0, rather than in the interval [−τ, 0].
Similarly for Eq. (2).

c© Mario Lefebvre, 2023
DOI: https://doi.org/10.56415/basm.y2023.i3.p96

96



DIFFERENTIAL EQUATIONS WITH DIFFERENT ARGUMENTS 97

To solve DDEs, various authors have proposed algorithms that sometimes enable
one to obtain the exact solutions to certain equations. However, in general these
algorithms yield either approximate or numerical solutions to DDEs. Therefore, it
is important to have exact solutions to a number of DDEs in order to check whether
the algorithms provide accurate solutions.

Currently, the mathematical software packages Mathematica and Maple are un-
able to give exact solutions to differential equations with different arguments. Using
the NDSolve function in Mathematica, one can obtain numerical solutions to DDEs
with constant delays. Maple can handle variable delays and also systems of DDEs.

In the next section, Eqs. (1) and (2) will be respectively generalized to

y′(t) = c1 ec2ty(c0t) + c3y(t), (5)

where ci is a constant for i = 0, 1, 2, 3, and to

y′(t) = c0 + c1y
2(c2t). (6)

Explicit and exact solutions to these equations will be obtained.

In Section 3, various differential equations with different arguments will be con-
sidered and exact solutions will be provided. We will also solve systems of two
coupled linear first-order differential equations with different arguments.

2 Generalized equations

First, we consider Eq. (5). We look for a solution of the form y(t) = ekt. Substi-
tuting into Eq. (5), we find that the above function is indeed a solution of this DDE
if and only if

kc0 + c2 − k = 0 and k = c1 + c3. (7)

Therefore, we can state the following proposition.

Proposition 2.1. If c0 6= 1, then the function y(t) = ekt is an exact solution of the
linear DDE (5) if and only if

k =
c2

1 − c0
and k = c1 + c3. (8)

Moreover, y(t) satisfies the initial condition y(0) = 1.

Remarks. (i) In the case considered in [1], c0 = c1 = c2 = c3 = 1/2. We can check
that the two conditions in Proposition 2.1 are indeed satisfied with k = 1.

(ii) Equation (1) can be transformed into an approximate ordinary differential equa-
tion (ODE) by using Taylor’s formula:

y

(

t

2

)

= y

(

t − t

2

)

≈ y(t) − t

2
y′(t). (9)



98 MARIO LEFEBVRE

Equation (1) becomes

y′(t) ≈ 1

2
et/2

(

y(t) − t

2
y′(t)

)

+
1

2
y(t). (10)

The solution that satisfies the initial condition y(0) = 1 is

yappr(t) = exp

{

∫ t

0

2(ez/2 + 1)

zez/2 + 4
dz

}

. (11)

As can be seen in Figure 1, the functions y(t) = et and yappr(t) are very similar in
the interval [0, 1].

Figure 1. Functions y(t) = et (solid line) and yappr(t) defined in Eq. (11) in the
interval [0, 1].

Next, we turn to Eq. (6). This time, we look for a solution of the form y(t) =
sin(kt). Substituting y(t) into Eq. (6), we find that we must have

cos2(kc2 t)c1 + k cos(kt) − c0 − c1 = 0. (12)

Assume that c2 = 1/2. Then, using the identity

cos (kt) = −1 + 2 cos2
(

kt

2

)

, (13)

we find that Eq. (12) reduces to

cos2

(

kt

2

)

(c1 + 2k) − k − c0 − c1 = 0. (14)



DIFFERENTIAL EQUATIONS WITH DIFFERENT ARGUMENTS 99

Proposition 2.2. The function y(t) = sin(kt) is an exact solution of the non-linear
DDE (6) with c2 = 1/2 if and only if

k = c0 = −c1

2
. (15)

Moreover, y(t) satisfies the initial condition y(0) = 0.

For instance, suppose that c1 = −1. Then, we must have k = c0 = 1/2. Equa-
tion (6) becomes

y′(t) =
1

2
− y2

(

t

2

)

. (16)

One can check that the function y(t) = sin(t/2) is indeed a solution of the above
equation.

3 Other differential equations with different arguments

1. First, we consider the non-linear first-order differential equation with constant
coefficients

[y′(t)]2 = c1 + c2y(2t) (17)

for 0 ≤ t ≤ 1, such that y(0) = 1. We can write that y(2t) = y(t + t). Hence,
Eq. (17) is a DDE with negative delay τ = −t.

We try a solution of the form y(t) = cos(kt). We have

cos(2kt) = cos2(kt) − sin2(kt) = 1 − 2 sin2(kt), (18)

so that the constants c1 and c2 must be such that

k2 sin2(kt) = c1 + c2 − 2c2 sin2(kt). (19)

Hence, we must set c1 = −c2 > 0 and k =
√
−2c2. Moreover, the solution y(t) =

cos(kt) satisfies the initial condition y(0) = 1.

2. Next, we look for a solution of the non-linear first-order differential equation with
non-constant coefficients

[c1 + c2 ty′(t)]2y(c3 t) = 0 (20)

for t ≥ 1, with y(1) = c ∈ R. Let y(t) = ln(kt), where k > 0. We find that this
function is indeed a solution of Eq. (20) for any constant c3 > 0, iff c1 + c2 = 0.
Moreover, the constant k must be equal to ec.

Assume that c3 = 1/2. Then, using Taylor’s formula, we can write that

[c1 + c2 ty′(t)]2
[

y(t) − t

2
y′(t)

]

≃ 0. (21)

This equation, when c2 = −c1 6= 0, has two solutions that satisfy the initial condition
y(1) = c:

y(t) = ln(t) + c and y(t) = ct2. (22)
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The first solution is actually the exact solution, since ln (ec t) = c + ln(t), while the
second one is a very poor approximation to the exact solution, unless c is small and
t is not too large.

3. Assume now that

y′(t) = c1 ty(c2 t)ec3t2 for t ≥ 0, (23)

where c2 6= 1, and y(0) = 1. If we let y(t) = ekt2 , we obtain that

2ktekt2 = c1 te(kc22+c3)t2 . (24)

Hence, we must have

k =
c1

2
and k =

c3

1 − c2
2

. (25)

Suppose that c1 = 1, c2 = 1/2 and c3 = 3/8. An exact solution to Eq. (23) is
then y(t) = et2/2. The approximate equation deduced from Taylor’s formula is

y′1(t) ≈ t

[

y1(t) −
t

2
y′1(t)

]

e3t2/8. (26)

The solution that satisfies the initial condition y1(0) = 1 is

y1(t) = exp

{

∫ t

0

2we3w2/8

w2 e3w2/8 + 2
dw

}

. (27)

We see in Figure 2 that, as in the case of the first equation considered in Section 2,
the function y1(t) is a good approximation to the exact solution y(t) = et2/2 in the
interval [0, 1].

Figure 2. Functions y(t) = et2/2 (solid line) and y1(t) defined in Eq. (27) in the
interval [0, 1].
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4. We consider the system

x′(t) = c1x(t) + c2y(c3 t), (28)

y′(t) = c4x(c5 t) + c6y(t), (29)

for t ≥ 0, with x(0) = y(0) = 1. We assume that c3 and c5 are not equal to 1 and
are different from 0. If we define x(t) = ek1t and y(t) = ek2t, then we find that we
must have

k1 = c1 + c2 and k2 = c4 + c6. (30)

Moreover, the relations k1 = c3k2 and c3 = 1/c5 must hold.

5. Finally, we look for a solution of the system (where c3 and c6 6= 1 and c3 c6 6= 0)

x′(t) = c1x(c3 t) + c2 y(c3 t), (31)

y′(t) = c4x(c6 t) + c5 y(c6 t) (32)

for t ≥ 0, such that x(0) = y(0) = 1. As in the previous case, we define x(t) = ek1t

and y(t) = ek2t. We then find that we must have c1 = c5 = 0, k1 = c2 and k2 = c4,
as well as c3 = 1/c6.

For example, if c2 = c3 = 1/2, c4 = 1 and c6 = 2, so that

x′(t) =
1

2
y(t/2), (33)

y′(t) = x(2t), (34)

one sees at once that x(t) = et/2 and y(t) = et satisfy both equations and the initial
conditions.

4 Conclusion

The aim of this paper was to provide exact solutions to differential equations with
different arguments. Although the calculations are straightforward, these solutions
should be useful to measure the accuracy of the algorithms that many authors have
proposed to obtain numerical solutions to delay differential equations.

After having generalized two equations that appear in various papers, we gave
explicit solutions to other differential equations with different arguments. We were
also able to solve two systems of coupled first-order differential equations with dif-
ferent arguments.

We also saw that by making use of Taylor’s formula, we sometimes obtain ap-
proximate solutions that are quite accurate (or even exact), at least within a short
interval after the initial time.

All the solutions obtained in this paper were elementary functions. It would be
interesting to find solutions that are expressed in terms of special functions, such as
Bessel functions and hypergeometric functions. We could also consider higher-order
equations and/or partial differential equations.
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