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Finite algebras in the design of multivariate

cryptography algorithms
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Abstract. A new approach to the design of multivariate public-key cryptalgorithms
is introduced. It envisages using non-linear mappings defined as squaring and cubic
operations in finite fields represented as finite algebras. The developed approach al-
lows significant reduction of the size of public key and thereby make post-quantum
algorithms of multivariate cryptography much more practical. In the developed algo-
rithms, the secret key includes a set of values of structural constants that determine
the modifications of the finite fields used and the coefficients in the set of sixth degree
polynomials that make up the public key.
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Introduction

The security of multivariate cryptography algorithms is based on the compu-
tational complexity of solving systems of many power (usually quadratic) equa-
tions with many unknowns. For solving the latter problem a quantum computer
is not efficient, therefore the multivariate public-key cryptalgorithms (MPC) are
post-quantum ones [1], and multivariate cryptography represents significant interest
for practical application in the coming postquantum era [2, 3]. However, from a
practical point of view, the MPC algorithms have a significant drawback, which is
the extremely large size of the public key (up to several megabytes at a security
level of 2256).

The present paper introduces a new approach to the development of MPC al-
gorithms, which allows reducing the size of the public key by 20 times or more at
a given level of security. The proposed approach is characterized by the use of a
non-linear mapping specified in the form of exponentiation operations to the second
and third powers in finite fields GF (pm) set in the form of finite algebras [4]. The
latter allows you to specify the calculation of the result of the said operations in
the form of calculating the values of u polynomials of the second and third degrees,
which are set over GF (p). Such possibility, provided by the vector form of finite
fields, is exploited in the proposed approach to development of the MPC algorithms.
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1 Preliminaries

In the MPC algorithms, the public key is calculated in the form of a set of power
(usually quadratic and sometimes cubic) polynomials over a finite field GF (q) (of
rather small order q = 4 to 256) that specify a non-linear mapping Π of an input n-
dimensional vector into a u-dimentional output vector (u ≥ n) [1,5]. The coordinates
of the input vector are variables in the polynomials. The coordinates of the output
vector are computed as values of polynomials. The mapping Π is difficult to reverse,
but it includes a secret trapdoor known to the owner of the public key. The latter
is provided, for example, by the following method for calculating Π, which includes
the next steps:

1. Compose over GF (q) a set of u secret power polinomials f ′

j (x1, x2, . . . , xn),
where j = 1, . . . u, in n variables such that the non-linear mapping Ψ of the vector
X = (x1, x2, . . . , xn) into the vector Y = (y1, y2, . . . , yu) (where yi = f ′

i) is easy to
reverse, i. e., one can easily find a computationally efficient reverse mapping Ψ−1.

2. Generate over GF (q) two secret reversible matrices A and B of the sizes n×n
and u×u correspondingly, which specify linear mappings Λ1 and Λ2 implemented by
the following formulas Λ1(V ) = XA and Λ2(Y ) = Y B describing multiplication of
the vectors V and Y by matrices A and B.

3. Calculate the set of u power polinomials fj (x1, x2, . . . , xn), which specify the
next non-linear mapping Π:

W = Π(V ) = Λ2◦Ψ◦Λ1(V ) = Λ2 (Ψ (Λ1(V ))) , (1)

where wj = fj for j = 1, 2, . . . u. When Λ1, Ψ , and Λ2 are properly designed, the
superpositon Π of these three mappings, given in the form of u power polynomials,
is a computationally irreversible non-linear mapping with a secret trap door, the
latter being the next superposition Λ−1

1 ◦Ψ−1◦Λ−1
2 (note that Λ−1

2 and Λ−1
2 can be

easily performed).

The reversible mappings Λ1 and Λ2 mask the structure of central non-linear
mapping Ψ and are important parts of secret key (note that instead of Λ1 and Λ2

one can use two affine mappings). Designing an MPC is determined mainly by the
construction of the central (see formula (1)) non-linear mapping Ψ [6, 7].

Using the public key Π, one can encrypt the input message represented in the
form of n-dimensional vector M , producing the following ciphertext

C = Π(M).

The owner (and nobody other) of the public key Π decrypts the ciphertext, com-
puting the preimage of the u-dimensional vector C by the next formula:

M = Λ−1
1 ◦Ψ−1◦Λ−1

2 (C).

To calculate a digital signature S to an electronic document M , the owner of public
key Π performs the following signature generation algorithm:
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1. Using a preagreed hash-function h(·), calculate the hash value from M and
represent it in the form of u-dimensional vector H.

2. Calculate preimage S of the vector H: S = Λ−1
1 ◦Ψ−1◦Λ−1

2 (H).

The signature S to the document M can be verified as follows:

1. Compute the image H ′ of the n-dimensional vector S: H ′ = Π(S).

2. Calculate the hash value h(M) and represent it as an u-dimensional vector
H. If H = H ′, then the signature S is genuine, otherwise the signature is rejected.

This article introduces a novel method for developing the MPC algorithms with
a public key Π in which two different non-linear mappings Ψ1 and Ψ2 are specified
on the base of exponentiation operations to the second and third powers in finite
fields GF (pm1) and GF (pm2), where 1 < m1 < m2 < n, m1m2 = n = u. Thus,
the mappings Ψ−1

1 and Ψ−1
2 can be performed using operations of finding roots of

the second and third degrees in GF (pm). Such non-linear mappings provide mutual
masking, therefore it is sufficient to use additionally only very simple linear mappings
that do not increase the number of terms in the power polynomials specifying the
public key Π. To provide possibility (requiered to specify Π as a set of power
polynomials) to define non-linear mappings Ψ1 and Ψ2 as two sets of polynomials,
the fields GF (pm1) and GF (pm2) are set in the form of finite algebras (in the vector
form) over GF (p).

An m-dimensional vector space over a finite field GF (q), where q is a prime or
a prime power, with the defined additionally multiplication operation that is left-
and right-distributive over addition operation is called an m-dimensional algebra.
The multiplication of two vectors A = (a1, a2, a3, a4) = a1e1 + a2e2 + · · · + amem,
where e1, e2, . . . , em are basis vectors, and B = (b1, b2, b3, b4) is specified by the next
formula:

AB =
m

∑

i=1

m
∑

j=1

aibj (eiej) ,

where every product eiej is to be replaced by a one-component vector µek indicated
in the cell at the intersection of the ith row and jth column of so called basis vector
multilication table (BVMT). In [4] it had been shown that if m ≥ 2 divides the
value q− 1, then it is possible to specify a BVMT such that the algebra is the finite
field GF (qm). Table 1 shows the form of BVMTs with three different structural
constants µ, ǫ, and τ , which was introduced for specifying the vector finite fields of
arbitrary dimension m ≥ 2.

2 Specifying the vector finite fields with large number of modifica-

tions

For a given dimension value m, there are BVMTs with different distributions
of basis vectors for which vector fields can be specified. However, a particular kind
of table cannot be used as a secret element because the number of these tables is
relatively small. Therefore, the use of vector finite fields to set secret non-linear



FINITE ALGEBRAS IN THE DESIGN OF MULTIVARIATE ... 83

Table 1

Setting the fields GF (qm) in the vector form [4] for m ≥ 2.

· e1 e2 e3 e4 · · · em−1 em

e1 τe1 τe2 τe3 τe4 τ · · · τem−1 τem

e2 τe2 ǫe3 ǫe4 ǫ · · · ǫem−1 ǫem µǫτ−1
e1

e3 τe3 ǫe4 ǫ · · · ǫem−1 ǫem µǫτ−1
e1 µe2

e4 τe4 ǫ · · · ǫem−1 ǫem µǫτ−1
e1 µe2 µe3

· · · τ · · · ǫem−1 ǫem µǫτ−1
e1 µe2 µe3 µ . . .

em−1 τem−1 ǫem µǫτ−1
e1 µe2 µe3 µ · · · µem−2

em τem µǫτ−1
e1 µe2 µe3 µ · · · µem−2 µem−1

mappings Ψ1 and Ψ2 involves BVMTs with a sufficiently large number of different
structural constants as elements of the secret key.

Having performed many computations experiments, for a given value of the di-
mension m (4 ≤ m ≤ 23) we have obtained for Table 1 m−3 additional distributions
of other structural constants. Besides, for other kinds of the BVMTs we have also
found m different distributions of structural constants. Tables 2 and 3 show the
examples of BVMTs suitable for setting secret mappings Ψ1 and Ψ2.

In the vector field GF (p5) (where 5|p − 1) specified by Table 2, the unit el-
ement is the vector

(

τ−1, 0, 0, 0, 0
)

and the exponentiation of the vector X =
(x1, x2, x3, x4, x5) to the power 2 can be implemented as computation of the val-
ues of the next four polynomials over GF (p), where Y = (y1, y2, y3, y4, y5) = X2:



































y1 = τx2
1 + 2πx2x5 + 2πx3x4;

y2 = 2τx1x2 + 2µσx3x5 + λµx2
4;

y3 = 2τx1x3 + 3ǫλx2
2 + 2λµx4x5;

y4 = 2τx1x4 + 2σǫx2x3 + µσx2
5;

y5 = 2τx1x5 + 2ǫλx2x4 + ǫσx2
3.

Table 2

Setting the field GF (p5) in the form of finite algebra (π = ǫλµστ−1).

· e1 e2 e3 e4 e5

e1 τe1 τe2 τe3 τe4 τe5

e2 τe2 ǫλe3 ǫσe4 ǫλe5 πe1

e3 τe3 ǫσe3 ǫσe5 πe1 λσe2

e4 τe4 ǫλe5 πe1 λµe2 λµe3

e5 τe5 πe1 µσe2 λµe3 µσe4
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The cube operation Y = X3 in the field GF (p5) can be implemented as calcula-
tion of the next five polynomials of the third power:























































































y1 = τ2x3
1 + 6ǫλµσx1x2x5 + 6ǫλµσx1x3x4+

+ 3ǫ2λ2µσx2
2x4 + 3ǫ2λµσ2x2x

2
3 + 3ǫλµ2σ2x3x

2
5 + 3ǫλ2µ2σx2

4x5;

y2 = 3τ2x2
1x2 + 6µστx1x3x5 + 3λµτx1x

2
4+

+ 3ǫλµσx2
2x5 + 6ǫλµσx2x3x4 + ǫµσ2x3

3 + 3λµ2σx4x
2
5;

y3 = 3τ2x2
1x3 + 3ǫλτx1x

2
2 + 6λµτx1x4x5+

+ 6ǫλµσx2x3x5 + 3ǫλµσx2x
2
4 + 3ǫλµσx2

3x4 + λµ2σx3
5;

y4 = 3τ2x2
1x4 + 6ǫστx1x2x3 + 3µστx1x

2
5+

+ ǫ2λσx3
2 + 6ǫλµσx2x4x5 + 3ǫµσ2x2

3x5 + 3ǫλµσx3x
2
4;

y5 = 3τ2x2
1x5 + 6ǫλτx1x2x4 + 3λστx1x

2
3+

+ 3ǫ2λσx2
2x3 + 3ǫλµσx2x

2
5 + 6ǫλµσx3x4x5 + ǫλ2µx3

4.

(2)

Note that every polynomial in (2) contains seven terms. It is obviously that all
modifications of the vector field GF (p5) specified by Table 3 are isomorphic, but
each of them has a unique representation of the cube operation as a set of five poly-
nomials. It is the latter that is required for specifying secret nonlinear mapping Ψ1.
For specifying the nonlinear mapping Ψ2 we will use representation of the squar-
ing operation in GF (pm2) (where m2 = n/5 and m2|p − 1) as a set of quadratic
polynomials over GF (p). We are going to present an implementation of the MPC
algorithm, in various modifications of which the input vector has different dimension
values n = 5m2. Therefore, the mapping Ψ2 will be specified using the vector fields
GF (pm2) for different values of m2. In all such cases the vector fields GF (pm2) can
be specified using the unified BVMT shown in Table 1 in which we suppose m − 3
additional structural constants. Other kinds of BVMTs also can be used to specify
the mapping Ψ2 like in the case m2 = 7 shown in Table 3 (where π = δǫλµηρτ−1)
with structural constants δ, ǫ, λ, µ, η, ρ, and τ .

Table 3

Setting the field GF (p7) with using 7 structural constants.

· e1 e2 e3 e4 e5 e6 e7

e1 τe1 τe2 τe3 τe4 τe5 τe6 τe7

e2 τe2 ǫµρe4 ǫµρe6 µηρe5 δǫµe7 πe1 µηρe3

e3 τe3 ǫµρe6 ǫλρe5 πe1 δǫλe2 δǫλe7 ǫλρe4

e4 τe4 µηρe5 πe1 δµηe7 δµηe3 δληe2 µηρe6

e5 τe5 δǫµe7 δǫλe2 δµηe3 δǫµe6 δǫλe4 πe1

e6 τe6 πe1 δǫλe7 δληe2 δǫλe4 δληe3 ληρe5

e7 τe7 µηρe3 ǫλρe4 µηρe6 πe1 ληρe5 ληρe2

In the vector field GF (p7) (where 7|p − 1) specified by Table 3, the unit
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element is the vector
(

τ−1, 0, 0, 0, 0, 0, 0
)

and the squaring of a vector W =
(w1, w2, w3, w4, w5, w6, w7), i.e. the operation Z = (z1, z2, z3, z4, z5, z6, z7) = W 2,
can be performed as calculation of the values of the next seven polynomials:























































z1 = τw2
1 + 2π (w2w6 + w3w4 + w5w7) ;

z2 = 2τw1w2 + 2δǫλw3w5 + 2δληw4w6 + ληρw2
7;

z3 = 2τw1w3 + 2µηρw2w7 + 2δµηw4w5 + δληw2
6 ;

z4 = 2τw1w4 + ǫµρw2
2 + 2ǫλρw3w7 + 2δǫλw5w6;

z5 = 2τw1w5 + 2µηρw2w4 + 2ληρw6w7 + ǫλρw2
3;

z6 = 2τw1w6 + 2ǫµρw2w3 + 2µηρw4w7 + δǫµw2
5;

z7 = 2τw1w7 + 2δǫµw2w5 + 2δǫλw3w6 + δµηw2
4 .

(3)

Note that every polynomial in (3) contains four terms. The structural constants
are used as secret elements, therefore their values are generated at randon. Then
a check is performed for the presence of an algebra element having order equal to
(pm − 1). If such an element cannot be found, then the value of one of the structural
constants (different from τ) is modified and the indicated check is repeated until the
algebra element G of order (pm − 1) is found for the current combination of values
of the structural constants. It is obvious that under the specified condition, the m-
dimensional vector G is a generator of a cyclic group containing all nonzero elements
of the algebra, i.e. the latter is the finite field GF (pm) set, for example, by Tables 2
and 3.

3 The proposed MPC algorithm

The used public key has the structure

Z = Π(V ) = Ψ2◦Λt◦Ψ1◦Λ×(V ),

where dimensions of input (V ) and output (Z) vectors are equal (we specify n = u =
5m2) and linear mappings Λ× and Λt are such that they do not increase the number
of terms in the set of polynomials specifying the nonlinear mapping representing the
public key Π.

The mapping Λ×(V ) is specified as pairwise multiplication (in the field GF (p))
of the coordinates of the input vector V = (v1, v2, . . . vn) and secret vector K =
(k1, k2, . . . kn), i. e., by the formula

Λ×(V ) = X = (v1k1, v2k2, . . . vnkn) .

The mapping Λt(Y ) is specified as the permutation of the coodinates of the input
n-dimensional vector

Y = (y1, y2, . . . yn) = (Y1, Y2, . . . , Ym2) =

=
(

y
(1)
1 , y

(1)
2 , y

(1)
3 , y

(1)
4 , y

(1)
5 , y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 y

(2)
5 , . . . , y

(m2)
1 , y

(m2)
2 , y

(m2)
3 , y

(m2)
4 , y

(m2)
5

)

,



86 MOLDOVYAN N. A.

where Yi =
(

y
(i)
1 , y

(i)
2 , y

(i)
3 , y

(i)
4 , y

(i)
5

)

, i = 1, 2, . . . ,m2, are 5-dimensional vectors.

Namely, the next formulas describe the linear mapping Λt:

Λt(Y ) = W = (w1, w2, . . . , wn) = (W1,W2,W3,W4,W5) =

=
(

w
(1)
1 , w

(1)
2 , . . . , w(1)

m2
, w

(2)
1 , w

(2)
2 , . . . , w(2)

m2
, . . . , w

(5)
1 , w

(5)
2 , . . . , w(5)

m2

)

;

where Wj =
(

w
(j)
1 , w

(j)
2 , . . . , w(j)

m2

)

for j = 1, 2, 3, 4, 5;

and w
(j)
i = y

(i)
j for i = 1, 2, . . . ,m2.

(4)

The mapping Y = Ψ1(X) is performed, representing the input and output vectors
X = (X1,X2, . . . ,Xm2) and Y = (Y1, Y2, . . . , Ym2) as respective ordered sets of the

5-dimensional vectors Xi =
(

x
(i)
1 , x

(i)
2 , . . . , x

(i)
5

)

and Yi =
(

y
(i)
1 , y

(i)
2 , . . . , y

(i)
5

)

, where

for i = 1, 2, . . . ,m2 calculating the vectors Yi with cube operations in the GF (p5)
fields (m2 different fields GF (p5) are specified with unique secret sets of structural
constants), i. e., by the formula Yi = X3

i .
The mapping Z = Ψ2(W ) is performed, representing the input vectors W =

(W1,W2,W3,W4,W5) and output vectors Z = (Z1, Z2, Z3, Z4, Z5) as respective

ordered sets of the m2-dimensional vectors Wj =
(

w
(j)
1 , w

(j)
2 , . . . w

(j)
m2

)

and Zj =
(

z
(j)
1 , z

(j)
2 , . . . z

(j)
m2

)

, where j = 1, 2, . . . , 5, and calculating the vectors Zj with squar-

ing operations in the GF (pm2) fields (five different modifications of the field GF (pm2)
are specified with unique secret sets of structural constants), i. e., by the formula
Zj = Y 2

j .
It can be seen from formulas (4) that every m2-dimensional vector Wj includes

exactly one coordinate of every of the input 5-dimensional vectors. Thus, every of
the polynomials of Π depends on every coordinate of the input vector V , contains
α = 49 (m2 + 1) /2 terms and has power equal to six. Suppose in every of the said
polynomials the terms are ordered in lexicographic order of products of six variables
(this part of the terms is public), then the public key can be represented as a set of

β = αn = 5αm2 coefficients c
(j)
i ∈ GF (p), where j = 1, 2, . . . , n and i = 1, 2, . . . , α,

in n power polynomials.
To send a secret meaningful (i. e., information-redundant) message M , repre-

sented in the form of n-dimensional vector over GF (p), via a public channel, one
can encrypt M by formula C = Π(M) and send the ciphertext C to the owner of
the public key Π. The latter knows the secret trapdoor in the form of the next three
inverse mappings Λ−1

×
, Ψ−1

1 , and Ψ−1
2 (note that Λ−1

t is not secret).
The mapping W = Ψ−1

2 (Z) is performed, representing the input and output
vectors Z = (Z1, . . . , Z5) and W = (W1, . . . ,W5) as ordered sets of the m2-

dimensional vectors Wj =
(

w
(j)
1 , w

(j)
2 , . . . , w

(j)
m2

)

and Zj =
(

z
(j)
1 , z

(j)
2 , . . . , z

(j)
m2

)

,

where j = 1, 2, . . . , 5, and calculating the vectors Wj with the exponentiation oper-
ations (in GF (pm2)) by the formula Wj = ±Zb

j , where b = (pm2 + 1) /4 (the reader
can easily derive this formula for the used case pm2 ≡ 3 mod 4). Note that one gets
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two different square roots from every of the five values Zj, therefore, the mapping
W = Ψ−1

2 (Z) produces 32 different preimages of the vector Z. Thus, when executing
decryption, all of the latter are to be used to perform the following decryption steps
(which include operations that give an unambiguous result), untill a meaningful
message is obtained. On average, this reduces the decryption speed by ≈ 4 times.

The mapping X = Ψ−1
1 (Y ) is performed, representing the input and output vec-

tors Y = (Y1, Y2, . . . , Ym2) and X = (X1,X2, . . . ,Xm2) as respective ordered sets of

the 5-dimensional vectors Yi =
(

y
(i)
1 , y

(i)
2 , . . . , y

(i)
5

)

and Xi =
(

x
(i)
1 , x

(i)
2 , . . . , x

(i)
5

)

,

where i = 1, 2, . . . ,m2, and calculating the vectors Xi with exponentiation op-
erations in the respective GF (p5) fields, i. e., by the formula Xi = ±Y d

i , where
d = 3−1 mod

(

p5 − 1
)

. Note that the latter condition dictates the need to use the
field characteristic p such that 3 does not divide the integer p5 − 1.

The mapping V = Λ−1
×

(X) is implemented as pairwise multiplication of the
vector X and vector K ′ =

(

k−1
1 , k−1

2 , . . . , k−1
n

)

, the latter being defined by secret
vector K.

Thus the owner of public key is able to restore the source message M by the
next formula:

M = Λ−1
×

(

Ψ−1
1

(

Λ−1
t

(

Ψ−1
2 (C)

)))

.

In order to speed up the decryption of the ciphertext, the Ψ2 mapping can be set
using the cube operations in the field GF (pm2), however this leads to an increase in
the size of the public key, for example, to the value of ≈60 (and ≈156) Kilobytes for
m2 = 5 (and m2 = 7). Within the framework of the proposed approach, a higher
performance of the decryption procedure with a small size of the public key can be
provided by specifying mappings Ψ1 and Ψ2 based on cube operations performed in
finite fields of characteristic two, but consideration of this issue is beyond the scope
of this article.

4 Security estimation

Like in other MPC algorithm, the direct attack on the proposed algorithm is
solving a system of 5m2 power equations in the 5m2 unknowns, the latter being co-
ordinates of input vector V used as variables in the plynomials composing the public
key Π. This system is given by equating the polynomial values to the corresponding
coordinates of the output vector Z. The best known methods for solving such sys-
tems of arbitrary equations are based on using so called F4 and F5 algorithms [8,9]
and their computational complexity exponentiationally depends on the number of
equations and weakly depends on the order of the field in which the equations are
given and on the value of the degree of polynomials. Table 4 [1] illustrates security
level L of the MPC algorithms to direct attack in dependence on the number of
equations and on the order of the field (in the case when number of equations is
equal to number of unknowns).

Security level of different modifications (specified by different values m2) of the
proposed MPC algorithm to the direct attack is shown in Table 5, where the values
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Table 4

The minimum number of equations in GF (q) to get the required security level [1].

L = . . . 280 2100 2128 2192 2256

q = 16 30 39 51 80 110

q = 31 28 36 49 75 103

q = 256 26 33 43 68 93

of p satisfy the following conditions: i) 5|p − 1; ii) m2|p − 1, iii) pm2 ≡ 3 mod 4,
and iv) number 3 does not divide the integer p5 − 1. Structural attacks proposed
for the known MPC algorithms seem to be ineffective for the proposed one due to a
significant difference in its structure.

As a structural attack on the proposed algorithm, one can propose the calculation
of the structural constants used to set m2 modifications of the field GF (p5) and 5
modifications of the field GF (pm2) and n coordinates of the secret vector from the
known coefficients in the power equations describing the mapping Π. Such structural
attack is connecting with solving a specific system of ≈25nm2 equations of the
sixth power with 3n unknowns. Estimation of the security level to this structural
attack and development of other kinds of structural attacks represent a topic of an
independent research.

Also of interest is another topic of independent research, which is the devel-
opment of the MPC algorithms with standard masking linear mappings (see for-
mula (1)) and setting a central non-linear mapping using squaring and cube opera-
tions in finite vector fields.

Table 5

Some parameters of the developed MPC algorithm.

m2 p n size of public key, Kb size of secret key, bytes L

5 251 25 ≈ 4 75 ≈ 280

7 71 35 ≈ 7 < 110 280

11 1871 55 ≈ 20 ≈ 250 >2128

13 131 65 ≈ 23 ≈ 200 ≈ 2192

19 191 95 ≈ 47 ≈ 300 2256

Conclusion

For the first time the operations in finite vector fields have been proposed as
basic element for development of the public-key algorithms of multivariate cryptog-
raphy. For a fixed dimension m and fixed BVMT, different combinations of the
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values of m structural constants can be used to specify sufficiently large number of
different modifications of the vector finite field GF (pm). A specific algorithm that
implements this approach is proposed and an estimate of the security level of various
modifications of the proposed algorithm is given.

Within the framework of the proposed approach, it seems very interesting to
use vector fields GF ((2z)m) defined over binary-polynomial fields GF (2z), and this
item represents a topic of future research.
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