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Existence of solutions to multi-point boundary value

problem of fractional order on the half-line

Abdellatif Ghendir Aoun

Abstract. The purpose of this paper is to establish the existence of solutions to
multi-point fractional boundary value problem on an infinite interval. Using the fixed
point theory, sufficient conditions are obtained that guarantee the existence of at least
one solution. At the end, an example is presented to illustrate the main results
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1 Introduction

In this paper, we will consider the boundary value problem (bvp for short)







Dα
0+u(t) = f(t, u(t),Dα−1

0+ u(t),Dα−2
0+ u(t)), t ∈ (0,+∞),

I3−α
0+ u(0) = 0, Dα−2

0+ u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

i=p
∑

i=1
ciu(ξi),

(1.1)

where 2 < α ≤ 3, c1, c2, . . . , cp are given constants with p ∈ N
∗ and 0 < ξ1 < ξ2 <

. . . < ξp < +∞, f : [0,+∞) × R × R × R → R is given function. Dα
0+ refers to the

standard Riemann-Liouville fractional derivative and Iα
0+ is the standard Riemann-

Liouville fractional integral.

Fractional equations are a natural generalization of the classical integer-order
differential equations. They turn out to be very adequate for modeling dynamics of
many processes involving complex systems that can be found in science, engineer-
ing, aerodynamics, etc. Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical models of systems and processes in the
fields of physics, chemistry, electrical circuits, biology, and so on. Fractional deriva-
tives turn out to be an excellent tool for the description of memory and hereditary
properties of various materials and processes.

This is the main advantage of fractional differential equations in comparison with
classical integer-order models. Further, the concept of nonlocal boundary conditions
has been introduced to extend the study of classical boundary value problems. This
notion is more precise for describing natural phenomena than the classical notion
because additional information is taken into account.
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Recently, several papers have studied questions of existence of solutions for
some classes of bvps to fractional differential equations on finite intervals, see, e.g.,
[2,6,7,9,15,16] and references therein. Different methods have been employed. How-
ever, research works on the existence of multiple solutions to fractional differential
equations with nonlocal boundary condition on infinite intervals are few, we refer
to [3–5,10, 13, 14] and references therein.

By using famous Leray-Schauder Nonlinear Alternative theorem, Y. Gholami
[3] obtained an unbounded solution to the following multi-point bvp in unbounded
interval







Dα
0+u(t) + a(t)f(t, u(t), u′(t)) = 0, t ∈ (0,+∞),

u(0) = u′(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

m
∑

i=1
βiD

α−1
0+ u(ξi),

where 2 < α < 3, f ∈ C([0,+∞) × R × R,R), a ∈ C([0,+∞), [0,+∞)), 0 < ξ1 <

ξ2 < . . . < ξm < +∞, βi ∈ R with
m
∑

i=1
βi < 1.

In [13], Shen, Zhou and Yang established the existence results of positive solutions
to the bvp







Dα
0+u(t) + f(t, u(t),Dα−1

0+ u(t)) = 0, t ∈ (0,+∞),

u(0) = 0, u′(0) = 0, Dα−1
0+ u(+∞) =

m−2
∑

i=1
βiu(ξi),

where 2 < α ≤ 3, f ∈ C([0,+∞)×R× R,R) and Γ(α)−
m−2
∑

i=1
βiξ

α−1
i 6= 0. Using the

Schauder fixed point theorem, they have shown the existence of one solution with
suitable growth conditions imposed on the nonlinear term.
K. Ghanbari, Y. Gholami [4] discussed the existence and multiplicity of positive
solutions to an m-point nonlinear fractional bvp on an infinite interval







Dα
0+u(t) + λa(t)f(t, u(t)) = 0, t ∈ (0,+∞),

u(0) + u′(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

m−2
∑

i=1
βiu

′(ξi),

where 2 < α < 3, f ∈ C([0,+∞) × [0,+∞), [0,+∞)), a ∈ C([0,+∞), [0,+∞)), λ
is a positive parameter and 0 < ξ1 < ξ2 < . . . < ξm−2 < +∞, βi ∈ [0,+∞) with

0 <
m−2
∑

i=1
(α− 1)βiξ

α−1
i < Γ(α).

Z. Bai, Y. Zhang [2] studied the multi-point bvp on bounded interval






Dα
0+u(t) = f(t, u(t),Dα−1

0+ u(t),Dα−2
0+ u(t)), t ∈ (0 , 1),

I3−α
0+ u(0) = 0, Dα−1

0+ u(0) = Dα−1
0+ u(η), u(1) =

m
∑

i=1
αiu(ηi),

where 2 < α ≤ 3, 0 < η ≤ 1, 0 < η1 < η2 < . . . < ηm < 1, m ≥ 2, f : [0 , 1]×R
3 → R

satisfying the Caratheodory conditions and
m
∑

i=1
αiη

α−1
i =

m
∑

i=1
αiη

α−2
i = 1, that makes
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the above problem at resonance. They established an existence theorem under a
nonlinear growth restriction on f . Their method is based upon the coincidence
degree theory of Mawhin.

Motivated by the above works and by recent studies of nonlocal boundary value
problems of fractional order, we consider a more general problem of fractional differ-
ential equations of arbitrary order with nonlocal boundary conditions. Precisely, we
investigate the problem (1.1).

The work presented in this paper is a continuation of previous works and is
concerned with a bvp of fractional order set on the half-axis. The main difficulty
in treating this class of the fractional differential equations is the possible lack of
compactness due to the infinite interval. In order to overcome these difficulties, we
use a special Banach space in which similar inequalities as finite interval can be
established. The main tool used in this paper is Krasnosel’skii’ s fixed point theorem
(nonlinear alternative). Under a compactness criterion, the existence of solutions is
established.

The plan of the paper is as follows. In Section 2, we outline some basic concepts
of fractional calculus. In Section 3, we prove some technical lemmas which we use
in the main results. Section 4 is devoted to our main existence results. In Section 5,
an example of applications is supplied to illustrate our theoretical results.

2 Preliminaries

We start with some definitions and lemmas on the fractional calculus (see [8,11]).
One of the basic tools of the fractional calculus is the Gamma function which extends
the factorial to positive real numbers.

Definition 2.1. For α > 0, the Euler Gamma function is defined by

Γ(α) =

∫ +∞

0
tα−1e−tdt.

Proposition 2.1. Let α > 0, p > 0, q > 0 and n be a positive integer. Then

Γ(α+ 1) = αΓ(α), Γ

(

n+
1

2

)

=

√
πΓ(2n + 1)

22nΓ(n+ 1)
, B(p, q) =

Γ(p)Γ(q)

Γ(p + q)
.

Hence

Γ(α+ n) = α(α + 1)(α + 2) . . . (α+ n− 1)Γ(α).

In particular

Γ(1) =

∫ +∞

0
e−tdt = 1, Γ

(

1

2

)

=
√
π,

Γ(n+ 1) = n!, Γ

(

n+
1

2

)

=

√
π(2n)!

22nn!
.
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Definition 2.2. The fractional integral of order α > 0 for function h is defined by

Iα
0+h(t) =

1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds,

provided the right hand side is point-wise defined on (0,+∞).

Definition 2.3. For a given function h defined on the interval [0,+∞), the
Riemann-Liouville fractional derivative of order α > 0 is defined by

Dα
0+h(t) =

(

d

dt

)n

In−α
0+ h(t) =

1

Γ(n− α)

(

d

dt

)n ∫ t

0

h(s)

(t− s)α−n+1
ds,

where n = [α] + 1.

Lemma 2.1. [8] Let α > 0, then

Iα
0+D

α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + ...+ cnt

α−n,

for some ci ∈ R, i = 1, 2, ..., n, n = [α] + 1.

Proposition 2.2. [11] The following composition relations hold:
(a) Dα

0+I
α
0+h(t) = h(t), α > 0, h ∈ L1[0,+∞).

(b) Dα
0+I

γ

0+h(t) = I
γ−α

0+ h(t), γ > α > 0, h ∈ L1[0,+∞).

(c) Iα
0+I

γ

0+h(t) = I
α+γ

0+ h(t), α > 0, γ > 0, h ∈ L1[0,+∞).

(d) Dα
0+t

λ = Γ(λ+1)
Γ(λ−α+1) t

λ−α, for λ > −1, in particular for Dα
0+t

α−m = 0,
m = 1, 2, . . . , N, where N is the smallest integer greater than or equal to α.
(e) Iα

0+t
λ = Γ(λ+1)

Γ(α+λ+1) t
α+λ, α > 0, λ > −1.

The following result is needed to prove our main existence result. This is a
nonlinear alternative for Krasnosel’skii’ s fixed point theorem [1].

Theorem 2.1. [1] Let U be an open set in a closed, convex set C of a Banach space
E. Assume 0 ∈ U , F (U ) bounded and F : U → C is given by F = F1 + F2, where
F1 : U → E is continuous and completely continuous and F2 : U → E is
a nonlinear contraction (i.e., there exists a constant 0 < l < 1, such that
‖F2(x) − F2(y)‖ 6 l‖x− y‖, for all x, y ∈ U). Then either
(A1) F has a fixed point in U , or
(A2) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u).

3 Related Lemmas

Consider the Banach spaces X, Y defined by

X =

{

u ∈ C([0, +∞),R), sup
t≥0

|u(t)|
1 + tα−1

< +∞
}
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with the norm

‖u‖X = sup
t≥0

|u(t)|
1 + tα−1

and

Y =

{

u ∈ X, Dα−2
0+ u, Dα−1

0+ u ∈ C([0, +∞),R),

sup
t≥0

|Dα−2
0+ u(t)|
1 + t

< +∞, sup
t≥0

|Dα−1
0+ u(t)| < +∞

}

with the norm

‖u‖Y = max

{

sup
t≥0

|u(t)|
1 + tα−1

, sup
t≥0

|Dα−2
0+ u(t)|
1 + t

, sup
t≥0

|Dα−1
0+ u(t)|

}

.

Now, we list some conditions in this paper for convenience:
(H1) The function f : [0,+∞) × R × R × R → R is continuous.
(H2) There exist nonnegative functions (1 + tα−1)ϕ(t), ψ(t), (1 + t)µ(t), φ(t) ∈
L1[0, +∞) such that
|f(t, x, y, z)| 6 ϕ(t)|x| + ψ(t)|y| + µ(t)|z| + φ(t) for all x, y, z ∈ R and t ∈ [0,+∞).

(H3) 0 <
i=p
∑

i=1
ci
(

1 + ξα−1
i

)

< Γ(α).

Lemma 3.1. Let h ∈ L1[0,+∞), then the bvp







Dα
0+u(t) = h(t), t ∈ (0,+∞),

I3−α
0+ u(0) = 0, Dα−2

0+ u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

i=p
∑

i=1
ciu(ξi),

(3.1)

has a unique solution given by

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds − tα−1

Γ(α)

∫ +∞

0
h(s)ds +

tα−1

Γ(α)

i=p
∑

i=1

ciu(ξi).

Proof. By Lemma 2.1 and from Dα
0+u(t) = h(t), we have

u(t) = Iα
0+h(t) + c1t

α−1 + c2t
α−2 + c3t

α−3, for some constants c1, c2, c3 ∈ R.

So the solution of (3.1) can be written as

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + c1t

α−1 + c2t
α−2 + c3t

α−3.

Moreover

I3−α
0+ u(t) = I3

0+h(t) + c1
Γ(α)

2
t2 + c2Γ(α− 1)t+ c3Γ(α− 2)
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=
1

2

∫ t

0
(t− s)2h(s)ds + c1

Γ(α)

2
t2 + c2Γ(α− 1)t+ c3Γ(α− 2),

together with I3−α
0+ u(0) = 0, c3 = 0.

On the other hand, we have

Dα−2
0+ u(t) = Dα−2

0+ Iα
0+h(t) + c1Γ(α)t+ c2Γ(α− 1)

= I2
0+h(t) + c1Γ(α)t+ c2Γ(α− 1)

=

∫ t

0
(t− s)h(s)ds + c1Γ(α)t+ c2Γ(α− 1).

From Dα−2
0+ u(0) = 0 we known that c2 = 0.

Furthermore

Dα−1
0+ u(t) = Dα−1

0+ Iα
0+h(t) + c1Γ(α)

i.e.,

Dα−2
0+ u(t) = I1

0+h(t) + c1Γ(α)

=

∫ t

0
h(s)ds+ c1Γ(α).

From lim
t→+∞

Dα−1
0+ u(t) =

i=p
∑

i=1
ciu(ξi), we get c1 = 1

Γ(α)

i=p
∑

i=1
ciu(ξi) − 1

Γ(α)

∫ +∞
0 h(s)ds.

Therefore, the unique solution of fractional bvp (3.1) is

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds − tα−1

Γ(α)

∫ +∞

0
h(s)ds +

tα−1

Γ(α)

i=p
∑

i=1

ciu(ξi).

Now, define the following operators T1, T2, T on Y by

(T1u)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

− tα−1

Γ(α)

∫ +∞

0
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds,

(T2u)(t) =
tα−1

Γ(α)

i=p
∑

i=1

ciu(ξi),

(Tu)(t) = (T1u)(t) + (T2u)(t).

We will prove the existence of a fixed point of T . For this we verify that the operator
T satisfies all conditions of Theorem 2.1.
Since the Arzela-Ascoli theorem fails to work in the space Y , we need a modified
compactness criterion to prove T1 is compact.
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Lemma 3.2. [12] Let Z = {u ∈ Y, ‖u‖Y < l} be such that l > 0, Z1 = { u(t)
1+tα−1 , u ∈

Z}, Z2 = {Dα−1
0+ u(t), u ∈ Z} and Z3 =

{

Dα−2

0+
u(t)

1+t
, u ∈ Z

}

. Then Z is relatively

compact on Y if Z1, Z2 and Z3 are equicontinuous on any compact interval of [0,+∞)
and are equiconvergent at infinity.

Definition 3.1. Z1, Z2 and Z3 are called equiconvergent at infinity if and only if
for all ε > 0, there exists δ = δ(ε) > 0 such that

∣

∣

∣

∣

u(t1)

1 + tα−1
1

− u(t2)

1 + tα−1
2

∣

∣

∣

∣

< ε,
∣

∣Dα−1
0+ u(t1) −Dα−1

0+ u(t2)
∣

∣ < ε and

∣

∣

∣

∣

∣

Dα−2
0+ u(t1)

1 + t1
−
Dα−2

0+ u(t2)

1 + t2

∣

∣

∣

∣

∣

< ε,

for any t1, t2 > δ and u ∈ Z.

Let Ωr = {u ∈ Y, ‖u‖Y < r}, (r > 0) be the open ball of radius r in Y .

Lemma 3.3. If (H1) − (H4) hold, then T (Ωr) is a bounded set.

Proof. We have

sup
t≥0

∣

∣

∣

∣

(Tu)(t)

1 + tα−1

∣

∣

∣

∣

6
1

Γ(α)

(∫ t

0

(t− s)α−1

1 + tα−1
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi)

∣

∣

∣

∣

∣

)

6
1

Γ(α)

(

2

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+r

i=p
∑

i=1

ci
(

1 + ξα−1
i

)

)

.

In addition

sup
t≥0

∣

∣Dα−1
0+ Tu(t)

∣

∣ 6 2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds +

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi)

∣

∣

∣

∣

∣

6 2

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+

r
i=p
∑

i=1
ci
(

1 + ξα−1
i

)

Γ(α)
.
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Also

sup
t≥0

∣

∣

∣

∣

∣

Dα−2
0+ Tu(t)

1 + t

∣

∣

∣

∣

∣

6 2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds +

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi)

∣

∣

∣

∣

∣

6 2

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+

r
i=p
∑

i=1
ci
(

1 + ξα−1
i

)

Γ(α)
.

So
‖Tu‖Y < +∞, for u ∈ Ωr.

Lemma 3.4. If (H1), (H2) hold, then T1 : Ωr → Y is completely continuous.

Proof. We firstly verify that the set T1(Ωr) is bounded.
By definition of the operator T1 we have, for any u ∈ Ωr,

∣

∣

∣

∣

(T1u)(t)

1 + tα−1

∣

∣

∣

∣

6
1

Γ(α)

(
∫ t

0

(t− s)α−1

1 + tα−1
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds +

+
tα−1

1 + tα−1

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

)

6
2

Γ(α)

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds.

In addition

∣

∣Dα−1
0+ T1u(t)

∣

∣ 6 2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

6 2

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds.

Also
∣

∣

∣

∣

∣

Dα−2
0+ T1u(t)

1 + t

∣

∣

∣

∣

∣

6 2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

6 2

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds.

Hence

‖T1u‖Y 6 2

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds, for u ∈ Ωr.

Now, we divide the proof into three steps.
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Claim 1. We show that T1 is continuous.
Let un → u as n→ +∞ in Ωr, we have

∣

∣

∣

∣

(T1un)(t)

1 + tα−1
− (T1u)(t)

1 + tα−1

∣

∣

∣

∣

6
2

Γ(α)

∫ +∞

0
|f(s, un(s),Dα−1

0+ un(s),Dα−2
0+ un(s))

−f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

6
2

Γ(α)

∫ +∞

0
|f(s, un(s),Dα−1

0+ un(s),Dα−2
0+ un(s))|ds

+
2

Γ(α)

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

6
2

Γ(α)

∫ +∞

0
(‖un‖Y ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+
2

Γ(α)

∫ +∞

0
(‖u‖Y ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

6
4

Γ(α)

(
∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

)

< +∞.

Using the continuity of f , we obtain that

|f(s, un(s),Dα−1
0+ un(s),Dα−2

0+ un(s)) − f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))| → 0,

as n→ +∞,

which implies

‖T1un − T1u‖X = sup
t≥0

∣

∣

∣

∣

(T1un)(t)

1 + tα−1
− (T1u)(t)

1 + tα−1

∣

∣

∣

∣

→ 0,

uniformly as n→ +∞.
Moreover

∣

∣Dα−1
0+ T1un(t) −Dα−1

0+ T1u(t)
∣

∣ 6 2

∫ +∞

0
|f(s, un(s),Dα−1

0+ un(s),Dα−2
0+ un(s))

−f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

6 4

(∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

)

< +∞.

Also
∣

∣

∣

∣

∣

Dα−2
0+ T1un(t)

1 + t
−
Dα−2

0+ T1u(t)

1 + t

∣

∣

∣

∣

∣

6 2

∫ +∞

0
|f(s, un(s),Dα−1

0+ un(s),Dα−2
0+ un(s))

−f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

6 4

(
∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

)

< +∞.
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Using again the continuity of f , we get

sup
t≥0

∣

∣Dα−1
0+ T1un(t) −Dα−1

0+ T1u(t)
∣

∣→ 0, sup
t≥0

∣

∣

∣

∣

∣

Dα−2
0+ T1un(t)

1 + t
−
Dα−2

0+ T1u(t)

1 + t

∣

∣

∣

∣

∣

→ 0,

uniformly as n→ +∞. We conclude

‖T1un − T1u‖Y → 0, uniformly as n→ +∞, as claimed.

Claim 2. We show that T1 : Ωr → X is relatively compact.
According to the above T1(Ωr) is uniformly bounded. We show that functions from
{

T1Ωr

1+tα

}

, functions from {Dα−1
0+ T1Ωr} and from

{

Dα−2

0+
T1Ωr

1+t

}

are equicontinuous on

any compact interval of [0,+∞).
Let I ⊂ [0,+∞) be a compact interval. Then, for any t1, t2 ∈ I such that t1 < t2,
and for u ∈ Ωr, we have
∣

∣

∣

∣

(T1u)(t1)

1 + tα−1
1

− (T1u)(t2)

1 + tα−1
2

∣

∣

∣

∣

=
1

Γ(α)

∣

∣

∣

∣

∫ t1

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

−
∫ +∞

0

tα−1
1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

−
∫ t2

0

(t2 − s)α−1

1 + tα−1
2

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

+

∫ +∞

0

tα−1
2

1 + tα−1
2

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

∣

∣

∣

∣

6
1

Γ(α)

(∣

∣

∣

∣

∫ t1

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

−
∫ t2

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t2

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

−
∫ t2

0

(t2 − s)α−1

1 + tα−1
2

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

∣

∣

∣

∣

+

∫ +∞

0

|tα−1
2 − tα−1

1 |
(1 + tα−1

2 )(1 + tα−1
1 )

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds
)

6
1

Γ(α)

(∫ t2

t1

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+

∫ t2

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+

∫ +∞

0

∣

∣tα−1
1 − tα−1

2

∣

∣

(1 + tα−1
2 )(1 + tα−1

1 )
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

)
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6
1

Γ(α)

(∫ t2

t1

(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+

∫ t2

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+

∫ +∞

0

∣

∣tα−1
1 − tα−1

2

∣

∣

(1 + tα−1
2 )(1 + tα−1

1 )

(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds
)

.

The last term converges to 0 uniformly as |t1 − t2| → 0.
Moreover

∣

∣Dα−1
0+ T1u(t1) −Dα−1

0+ T1u(t2)
∣

∣ =

∣

∣

∣

∣

∫ t1

0
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

−
∫ t2

0
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

∣

∣

∣

∣

6

∫ t2

t1

(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds,

which converges to 0 uniformly as |t1 − t2| → 0. Also
∣

∣

∣

∣

∣

Dα−2
0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t1

0

t1 − s

1 + t1
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

−
∫ t2

0

t2 − s

1 + t2
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

+
t2 − t1

(1 + t1)(1 + t2)

∫ +∞

0
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ t1

0

t1 − s

1 + t1
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

−
∫ t2

0

t1 − s

1 + t1
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t2

0

t1 − s

1 + t1
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

−
∫ t2

0

t2 − s

1 + t2
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

∣

∣

∣

∣

+
|t2 − t1|

(1 + t1)(1 + t2)

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

6

∫ t2

t1

(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s))ds

+
2|t1 − t2|

(1 + t1)(1 + t2)

∫ +∞

0
(r((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s))
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+φ(s))ds,

which converges to 0 uniformly as |t1 − t2| → 0.
Then, for any ε > 0 there exists a δ > 0 such that

∣

∣

∣

∣

(T1u)(t1)

1 + tα−1
1

− (T1u)(t2)

1 + tα−1
2

∣

∣

∣

∣

< ε,
∣

∣Dα−1
0+ T1u(t1) −Dα−1

0+ T1u(t2)
∣

∣ < ε

and
∣

∣

∣

∣

∣

Dα−2
0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣

∣

∣

∣

∣

< ε,

for all u ∈ Ωr, if |t1 − t2| < δ, t1, t2 ∈ I.

Showing that, the functions belonging to { T1Ωr

1+tα−1 } and the functions belonging to

{Dα−1
0+ T1Ωr} and to

{

Dα−2

0+
T1Ωr

1+t

}

are locally equicontinuous on [0,+∞).

Claim 3. We show that the functions from { T1Ωr

1+tα−1 }, {Dα−1
0+ T1Ωr} and from

{

Dα−2

0+
T1Ωr

1+t

}

are equiconvergent at infinity.

For any u ∈ Ωr, we have

∫ +∞

0

∣

∣f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))
∣

∣ ds < +∞.

Considering condition (H2), for given ε > 0, there exists a constant L > 0 such that

∫ +∞

L

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds < ε.

On the other hand, since lim
t→+∞

(t−L)α−1

1+tα−1 = 1 and lim
t→+∞

t−L
1+t

= 1, there exists a

constant δ > L > 0 such that for any t1, t2 ≥ δ and 0 ≤ s ≤ L, we have

∣

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− 1 + 1 − (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

1 − (t1 − L)α−1

1 + tα−1
1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1 − (t2 − L)α−1

1 + tα−1
2

∣

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

t1 − s

1 + t1
− t2 − s

1 + t2

∣

∣

∣

∣

=

∣

∣

∣

∣

t1 − s

1 + t1
− 1 + 1 − t2 − s

1 + t2

∣

∣

∣

∣

6

∣

∣

∣

∣

1 − t1 − L

1 + t1

∣

∣

∣

∣

+

∣

∣

∣

∣

1 − t2 − L

1 + t2

∣

∣

∣

∣

< ε.
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Thus, for any t1, t2 ≥ δ > L > 0, we get

∣

∣

∣

∣

(T1u)(t1)

1 + tα−1
1

− (T1u)(t2)

1 + tα−1
2

∣

∣

∣

∣

=
1

Γ(α)

∣

∣

∣

∣

∫ t1

0

(t1 − s)α−1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

−
∫ +∞

0

tα−1
1

1 + tα−1
1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

−
∫ t2

0

(t2 − s)α−1

1 + tα−1
2

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

+

∫ +∞

0

tα−1
2

1 + tα−1
2

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

∣

∣

∣

∣

6
1

Γ(α)

(∫ L

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+

∫ t1

L

(t1 − s)α−1

1 + tα−1
1

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+

∫ t2

L

(t2 − s)α−1

1 + tα−1
2

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

)

6
1

Γ(α)

(
∫ L

0

∣

∣

∣

∣

(t1 − s)α−1

1 + tα−1
1

− (t2 − s)α−1

1 + tα−1
2

∣

∣

∣

∣

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+2

∫ L

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+4

∫ +∞

L

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds
)

6
1

Γ(α)

(

sup
s∈[0,L], u∈Ωr

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|Lε

+2 sup
s∈[0,L], u∈Ωr

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|L+ 4ε

)

.

Furthermore

∣

∣Dα−1
0+ T1u(t1) −Dα−1

0+ T1u(t2)
∣

∣ =

∣

∣

∣

∣

∫ t2

t1

f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))ds

∣

∣

∣

∣

6

∫ +∞

L

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds < ε
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and
∣

∣

∣

∣

∣

Dα−2
0+ T1u(t1)

1 + t1
−
Dα−2

0+ T1u(t2)

1 + t2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t1

0

t1 − s

1 + t1
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

−
∫ t2

0

t2 − s

1 + t2
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

− t1

1 + t1

∫ +∞

0
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

+
t2

1 + t2

∫ +∞

0
f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))ds

∣

∣

∣

∣

6

∫ L

0

∣

∣

∣

∣

t1 − s

1 + t1
− t2 − s

1 + t2

∣

∣

∣

∣

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds +

+

∫ t1

L

t1 − s

1 + t1
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+

∫ t2

L

t2 − s

1 + t2
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

6

∫ L

0

∣

∣

∣

∣

t1 − s

1 + t1
− t2 − s

1 + t2

∣

∣

∣

∣

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

+2

∫ L

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+4

∫ +∞

L

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|ds

6 sup
s∈[0,L], u∈Ωr

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|Lε

+2 sup
s∈[0,L], u∈Ωr

|f(s, u(s),Dα−1
0+ u(s),Dα−2

0+ u(s))|L+ 4ε.

Which yields that the functions from { T1Ωr

1+tα−1 }, {Dα−1
0+ T1Ωr} and from

{

Dα−2

0+
T1Ωr

1+t

}

are equiconvergent at infinity.

According to Lemma 3.2, it follows that T1(Ωr) is relatively compact, ending the
proof of the Lemma.

Lemma 3.5. If (H3) holds, then T2 : Ωr → Y is a contraction mapping.

Proof. We have

∣

∣

∣

∣

T2u(t)

1 + tα−1
− T2v(t)

1 + tα−1

∣

∣

∣

∣

6
1

Γ(α)

∣

∣

∣

∣

tα−1

1 + tα−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi) −
i=p
∑

i=1

civ(ξi)

∣

∣

∣

∣

∣
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6
1

Γ(α)

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi) −
i=p
∑

i=1

civ(ξi)

∣

∣

∣

∣

∣

6

i=p
∑

i=1
ci
(

1 + ξα−1
i

)

Γ(α)
‖u− v‖Y .

Moreover

∣

∣Dα−1
0+ T2u(t) −Dα−1

0+ T2v(t)
∣

∣ =

∣

∣

∣

∣

tα−1

1 + tα−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi) −
i=p
∑

i=1

civ(ξi)

∣

∣

∣

∣

∣

6

i=p
∑

i=1
ci
(

1 + ξα−1
i

)

Γ(α)
‖u− v‖Y .

Also
∣

∣

∣

∣

∣

Dα−2
0+ T2u(t)

1 + t
−
Dα−2

0+ T2v(t)

1 + t

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t

1 + t

(

i=p
∑

i=1

ciu(ξi) −
i=p
∑

i=1

civ(ξi)

)∣

∣

∣

∣

∣

6

i=p
∑

i=1
ci
(

1 + ξα−1
i

)

Γ(α)
‖u− v‖Y .

We conclude

‖T2u− T2v‖Y 6

i=p
∑

i=1
ci
(

1 + ξα−1
i

)

Γ(α)
‖u− v‖Y .

From (H3), we infer that T2 is a contraction mapping.

4 Main results

Theorem 4.1. Further to assumptions (H1) − (H3), assume that
(H4) there exists ρ > 0 such that

ρ

2
∫ +∞
0 (ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)) ds+

ρ
i=p
∑

i=1

ci(1+ξα−1

i
)

Γ(α)

> 1.

Then, the problem (1.1) has at least one solution.

Proof. Consider the parameterized bvp






Dα
0+u(t) = λf(t, u(t),Dα−1

0+ u(t),Dα−2
0+ u(t)), t ∈ (0,+∞),

I3−α
0+ u(0) = 0, Dα−2

0+ u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

i=p
∑

i=1
ciu(ξi),

(4.1)
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for λ ∈ (0, 1).
To solve problem (4.1) is equivalent to finding the fixed point of equation u = λTu.
Let

Ωρ = {u ∈ Y, ‖u‖Y < ρ}.

From Lemma 3.3, the set T (Ωρ) is bounded and by Lemma 3.4, the operator
T1 : Ωρ → Y is completely continuous, while Lemma 3.5 implies that the operator
T2 : Ωρ → Y is contractive. So it remains to prove that u 6= λTu for u ∈ ∂Ωρ and
λ ∈ (0, 1).
Arguing by contradiction, if there exists u ∈ ∂Ωρ with u = λTu, then for λ ∈ (0, 1)
we have

sup
t≥0

∣

∣

∣

∣

u(t)

1 + tα−1

∣

∣

∣

∣

= sup
t≥0

∣

∣

∣

∣

(λTu)(t)

1 + tα−1

∣

∣

∣

∣

6 sup
t≥0

∣

∣

∣

∣

(Tu)(t)

1 + tα−1

∣

∣

∣

∣

6
1

Γ(α)

(∫ t

0

(t− s)α−1

1 + tα−1
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+
tα−1

1 + tα−1

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi)

∣

∣

∣

∣

∣

)

6
1

Γ(α)

(

2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+

∣

∣

∣

∣

∣

i=p
∑

i=1

ci(1 + ξα−1
i )

1

1 + ξα−1
i

u(ξi)

∣

∣

∣

∣

∣

)

6
1

Γ(α)

(

2

∫ +∞

0

(

ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)
)

ds

+

ρ
i=p
∑

i=1
ci(1 + ξα−1

i )

Γ(α)











.

In addition

sup
t≥0

∣

∣Dα−1
0+ u(t)

∣

∣ = sup
t≥0

∣

∣λDα−1
0+ Tu(t)

∣

∣

6 sup
t≥0

∣

∣Dα−1
0+ Tu(t)

∣

∣

6 2

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds +

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi)

∣

∣

∣

∣

∣
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6 2

∫ +∞

0

(

ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)
)

ds

+

ρ
i=p
∑

i=1
ci(1 + ξα−1

i )

Γ(α)

and

sup
t≥0

∣

∣

∣

∣

∣

Dα−2
0+ u(t)

1 + t

∣

∣

∣

∣

∣

= sup
t≥0

∣

∣

∣

∣

∣

λ
Dα−2

0+ Tu(t)

1 + t

∣

∣

∣

∣

∣

6 sup
t≥0

∣

∣

∣

∣

∣

Dα−2
0+ Tu(t)

1 + t

∣

∣

∣

∣

∣

6

∫ t

0

t− s

1 + t
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds

+
t

1 + t

∫ +∞

0
|f(s, u(s),Dα−1

0+ u(s),Dα−2
0+ u(s))|ds +

tα−1

1 + tα−1

∣

∣

∣

∣

∣

i=p
∑

i=1

ciu(ξi)

∣

∣

∣

∣

∣

6 2

∫ +∞

0

(

ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)
)

ds

+

ρ
i=p
∑

i=1
ci(1 + ξα−1

i )

Γ(α)
.

So

‖u‖Y 6 2

∫ +∞

0

(

ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)
)

ds

+

ρ
i=p
∑

i=1
ci(1 + ξα−1

i )

Γ(α)

and thus

ρ 6 2

∫ +∞

0

(

ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)
)

ds +

ρ
i=p
∑

i=1
ci(1 + ξα−1

i )

Γ(α)
.

This implies that

ρ

2
∫ +∞
0 (ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)) ds+

ρ
i=p
∑

i=1

ci(1+ξα−1

i
)

Γ(α)

6 1,

contradicting condition (H4). With Theorem 2.1 we conclude that bvp (1.1) has at
least one solution.
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5 Example

Example 5.1. Consider the bvp on infinite interval











D
5

2

0+u(t) = e−30t

1+
√

t3
u(t) +

D
3
2

0+
u(t)

(60+t)2
+

D
1
2

0+
u(t)

60(1+t)3
+ e−t, t ∈ (0,+∞),

I
1

2

0+u(0) = 0, D
1

2

0+u(0) = 0, lim
t→+∞

D
3

2

0+u(t) = 1
10u(1) + 1

20u(4) + 1
60u(9).

(5.1)

In this case, α = 5
2 , Γ(5

2 ) ≈ 1.329340388, c1 = 1
10 , c2 = 1

20 , c3 = 1
60 , ξ1 = 1, ξ2 =

4, ξ3 = 9.
We will apply Theorem 4.1 to show that the problem (5.1) has at least one solution.
Let

f(t, x, y, z) =
e−30t

1 +
√
t3
x+

y

(60 + t)2
+

z

60(1 + t)3
+ e−t.

Choose

ρ >
120Γ(5

2 )

52Γ(5
2 ) − 67

.

Then
(H1) f : [0,+∞) × R × R × R → ×R is continuous.

(H2) |f(t, x, y, z)| 6
e−30t

1+
√

t3
|x| + 1

(60+t)2 |y| +
1

60(1+t)3 |z| + e−t. So we may take

ϕ(t) =
e−30t

1 +
√
t3
, ψ(t) =

1

(60 + t)2
, µ(t) =

1

60(1 + t)3
, φ(t) = e−t

and note that (1 +
√
t3)ϕ(t), ψ(t), (1 + t)µ(t), φ(t) ∈ L1[0,+∞) such that

∫ +∞

0

(

1 + s
3

2

)

ϕ(s)ds =
1

30
,

∫ +∞

0
ψ(s)ds =

1

60
,

∫ +∞

0
(1 + s)µ(s)ds =

1

60
,

∫ +∞

0
φ(s)ds = 1.

(H3) We have γ = c1(1+
√

ξ31)+c2(1+
√

ξ32)+c3(1+
√

ξ33) = 67
60 verify 0 < γ < Γ(5

2 )

with

∣

∣

∣

∣

i=3
∑

i=1
ciu(ξi) −

i=3
∑

i=1
civ(ξi)

∣

∣

∣

∣

6
γ

Γ( 5

2
)
‖u− v‖Y for all u, v ∈ Y.

(H4)

ρ

2
∫ +∞
0 (ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)) ds+ γρ

Γ(α)

=
ρ

2 +
8Γ( 5

2
)+67

60Γ( 5

2
)
ρ
.

Thus,

ρ

2
∫ +∞
0 (ρ((1 + sα−1)ϕ(s) + ψ(s) + (1 + s)µ(s)) + φ(s)) ds+ γρ

Γ(α)

=
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=
60Γ(5

2 )

120Γ( 5

2
)

ρ
+ 8Γ(5

2) + 67
> 1.

Hence, all conditions of Theorem 4.1 are satisfied, we deduce that the bvp (5.1) has
at least one solution.
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