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Abstract. The main aim of this paper is to study some comparative growth prop-
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(p, @)-th lower order of entire function with respect to another entire function where
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1 Introduction, Definitions and Notations

We assume that the reader is familiar with the fundamental results and the
standard notations of the theory of entire functions which are available in [22].
Let f(z) be an entire function defined in the open complex plane C and N be the
sets of all positive integers. The maximum modulus function M¢(r) is defined as
My(r) = m‘ax| f(z)|. Since My(r) is strictly increasing and continuous, its inverse

Z|=Tr

|2|=
function exists. For another entire function g(z), My(r) is defined and the ra-

tio %’; E:; as 7 — oo is called the growth of f(z) with respect to g(z) in terms

of their maximum moduli. The maximum term p¢(r) of f(z) can be defined as
pr(r) = m%((]an]r"). In fact pf(r) is much weaker than M(r) in some sense. So

from another angle of view Z;—E;; as r — 400 is also called the growth of f(z) with

respect to g(z) where piq(r) denotes the maximum term of entire function g(z).

If f(z) and g(z) are entire functions, then the iteration of f(z) with respect to
g(z) is defined as follows (see [14]):

f1(2) = f(2);
fo(2) = = [f(9(2) = f(q1(2));
f3(z) = = f(9(f(2)) = f(9(f1(2))) = f(92(2));

fa(z) = =Flg(f---(h(z))--)) (neN),
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where h(z) = f(z) when 7 is odd and h(z) = g(z) when 7 is even.
Similarly one defines

gn(2) = = 9(f(gn-2(2))) = 9(f-1(2)) (n€N).

It is obvious that f,(z) and g,(z) (n € N) are all entire functions. Similarly
for another two entire functions /(z) and k(z), one can easily define l¢(z) and k¢(z)
where £ € N. Further we assume that throughout the present paper 7, £ € N always
denote the even numbers.

For z € [0,00) and k € N, define iterations of the exponential and logarithmic
functions as exp® 2 = exp(exp* U z) and log!*! z = log(logl* " ) with convention
that log[o} z =z logm s = expu, expl z = 2 and expl~H 2z = log z. Now consid-
ering this, let us recall that Juneja et al.[13] defined the (p, ¢)-th order and (p, ¢)-th
lower order of an entire function respectively, as follows:

Definition 1. [13] The (p, ¢)-th order and (p, ¢)-th lower order of an entire function
f(2) are defined as:

loglP! M logl?! A
pPD(f) = lim SHPM and AP9(f) = lim infu

r—+oo  logldy r—too  Jogldy

where p and ¢ always denote positive integers with p > q.

Extending the notion of (p,q)-th order, Shen et al.[20] introduced the new concept
of [p,q]-¢ order of an entire function where p > ¢. Later on, combining the definition
of (p,q)-th order and [p,q]-¢ order, Biswas (see, e.g.,[3]) redefined the (p,q)-th order
of an entire function without restriction p > g¢.

In this connection we just recall the following definition where we will give a
minor modification to the original definition (see e.g.[13]):

Definition 2. An entire function f(z) is said to have index-pair (p,q)
if b < pP9(f) < co and P~14=D(f) is not a nonzero finite number, where b = 1 if
p = q and b = 0 otherwise. Moreover if 0 < p®9(f) < 400, then

p(p—n,q)(f) = +00 for n <p,
p(p,q—n)(f) =0 for n<g,
p(p+n,q+n)(f) =1 for n=1,2,.--

Similarly for 0 < )\(p’q)( f) < +o0, one can easily verify that

A(p_nvq) (f) = +OO fOl“ n < p,
)\(pvq_n) (f) = O fOr n < Q7
)\(p+n,q+n)(f) =1 for n= 1,2,---



ON SOME APPLICATIONS OF RELATIVE (P, Q)-TH ORDER..... )

An entire function f(z) of index-pair (p, q) is said to be of regular (p,q) growth
if its (p, ¢)-th order coincides with its (p, ¢)-th lower order, otherwise f(z) is said to
be of irregular (p,q) growth.

However the above definition is very useful for measuring the growth of entire
functions. If p = [ and ¢ = 1 then we write pD (f) = pW(f) and XED(f) = AO(f)
where p) () and A (f) are respectively known as generalized order and generalized
lower order of entire function f. For details about generalized order one may see [17].
Also for p =2 and ¢ = 1, we respectively denote p(>1(f) and A2V (f) by p(f) and
A(f) which are classical growth indicators such as order and lower order of entire
function f(z).

Since for 0 < r < R,

ps(r) < My(r) < =g (R) ek 9]}

it is easy to see that

9

log!”! logl?!
i (rq) = Timsup 222 o 3 () = tim inf 18T
r—+oo  logldr r—+oo Jogld y-

where p,q € N.

For entire functions, the notions of their growth indicators such as order are
classical in complex analysis and during the past decades, several researchers have
already been exploring their studies in the area of comparative growth properties of
composite entire functions in different directions using the classical growth indica-
tors. But at that time, the concepts of relative orders of entire functions introduced
by Bernal [1,2] as well as their technical advantages of not comparing with the
growths of exp z are not at all known to the researchers of this area. Therefore
the studies of the growths of composite entire functions in the light of their relative
orders are the prime concern of this paper. In fact some light has already been
thrown on such type of works (see [3] to [7] and [9] to [11]). Extending the notion of
relative order of entire function as introduced Bernal [1,2], Lahiri and Banerjee [15]
introduced the definition of relative (p, ¢)-th order of entire functions as follows.

Definition 3. [15] Let p and ¢ be any two positive integers with p > ¢. The relative
(p, q)-th order of f(z) with respect to g(z) is defined by

. log!! Mt (My(r))
ngvQ)(f) - ligigop logg[Q] r

Then pL(f) = py(p,q) and pg" TV () = py)(f) for any &k > 1.

Sénchez Ruiz et al.[16] gave a more natural definition of relative (p, ¢)-th order
of an entire function in the light of index-pair. In the next definition, we will give a
minor modification to the original definition (see e.g.[16]):
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Definition 4. Let f(z) and g(z) be any two entire functions with index-pairs (m, q)
and (m, p) respectively where p, ¢ and m are all positive integers. Then the relative
(p, q)-th order of f(z) with respect to g(z) is defined as

log) M 1(M
pPD(f) = limsup o8 g f(r)).
g r—+00 logld

Similarly one can define the relative (p,q)-th lower order of an entire function

f(2) with respect to another entire function g(z) denoted by /\gp ’q)( f) where p and
q are any two positive integers in the following way:

log) M 1(M
)\gp’q)(f): lim jnf—2 g f(r)).

In fact Definition 4 improves Definition 3 ignoring the restriction p > q.

If f(z) and g(z) have got index-pair (m,1) and (m, k), respectively, then Def-
inition 4 reduces to generalized relative order of f(z) with respect to g(z). If the
entire functions f(z) and g(z) have the same index-pair (p,1) where p is any posi-
tive integer, we get the definition of relative order introduced by Bernal [1,2] and if
g(2) = expl™ U 2, then p,(f) = p[m} and pgp’q)(f) = p¢(m,q). Further if f(z) is an
entire function with index-pair (2,1) and g(z) = exp z, then Definition 4 becomes
the classical one given in [21].

An entire function f(z) for which relative (p,q)-th order and relative (p,q)-th
lower order with respect to another entire function g(z) are the same is called a
function of regular relative (p,q) growth with respect to g(z). Otherwise, f(z) is
said to be irregular relative (p,q) growth with respect to g(z).

In terms of maximum terms of entire functions, Definition 4 can be
reformulated as:

Definition 5. For any positive integer p and ¢, the growth indicators pgp ’q)( f) and

)\gp ’q)( f) of an entire function f(z) with respect to another entire function g(z) are
defined as:

o log g (g (r)
D =

In fact, the equivalence of Definition 4 and Definition 5 has been
established in [4].

In this paper we establish some newly developed results related to the growth
rates of iteration of entire functions on the basis of relative (p,q)-th order and
relative (p, q)-th lower order improving some earlier results where p and ¢ are any
two positive integers.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
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Lemma 1. [8] Let f(z) and g(z) be any two entire functions with g(0) = 0. Let (3
satisfy 0 < < 1 and c¢(f) = %. Then for all sufficiently large values of r,
My (c(B)Mg(Br)) < Myog(r) < My(My(r)).

In addition if 8 = %, then for all sufficiently large values of r,

12 30 (1 ().

Lemma 2. [18] Let f(z) and g(z) be any two entire functions. Then for every o > 1
and 0 <r < R,

« aR
< .
Pfog(r) < — 1uf(R — T/‘g(R))

Lemma 3. [18] If f(z) and g(z) are any two entire functions with g (0) = 0, then
for all sufficiently large values of r,

[ifog(T) = %Mf (éug (2) ) :

Lemma 4. [6] Suppose f(z) is an entire function and o > 1, 0 < 3 < a. Then for
all sufficiently large r,
Mg (ar) = BM(r).

Lemma 5. [12] If f(z) is an entire function and o > 1, 0 < < «, then for all
sufficiently large r,
pf(ar) > Bry(r).

3 Main Results

In this section we present the main results of the paper.

Theorem 1. Let f(z) and h(z) be any two entire functions with index-pairs (1, q)
and (1, p) respectively such that 0 < A;Lp’q)(f) < pgp’q)(f) < 400 and g(z) be an entire
function with non-zero (m,n)-th order where l,p,q,m and n are all positive integers.
Then for every positive constant A,

() limsup B i (g )
rtoo log? it (g (expldl r4))
log?! i (g, (explatnti=ml 1))

11) lim sup = 4ooifg>mandg+n—m <1
(0 fim s log”! g1y (1 (expld r4)) !

4o ifg=m and n =1,

and

(i) T sup 28 g, (501 1)

=+4ooifg<m—-1,n<land < A< (mn) (Y,
r——+00 log[p] 'u}:l('uf(exp[fﬂ T‘A)) fq p (g)
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Proof. From the definition of pﬁlp ’q)( f), in terms of maximum terms, we obtain for
arbitrary positive ¢(> 0) and for all sufficiently large values of r that

tog i (s (expl® ) < (P (£) + ). M

Also from the definition of (m,n)-th order of g(z) in terms of maximum terms, we
get for a sequence of values of r tending to infinity that

lg+n+1-m] . exp[q—l—n—l—l—m} r

loglml ,, (SPTT S (M) () — o) loghtl (SR T

0g ug( (196)3 ) (0" (g) —¢)log ( (196)% )
[g+n+1-m]

] m exp T n —m

1.€., log[ ]M9<W> = (,0( ’ )(g) —6) eXp[‘H'l }T'—FO(l)
[gtn+1-m],.

ie., loglt™™ log!™ ug(exp 196)7 ) > logl?=™l((p(™™ (g) — &) expl?™ =y 4 O(1))
2

[g+n+1-m]

. ex T

ie., logld ,ug< p(196)% > > expr+ 0(1), (2)

and
g™ 1 (M) > (4™ (g) — &) log (M)
I\ (196)% (196) %
[n—1]
. [m] €xp T > (pmn) -
i.e., log ug(i(l%)g ) z (p"™"(g) —e)logr + O(1)
[n—1] man
i.e., log[m_l} MQ(%) P T(p( ORD) + O(l) (3)

Case I. Let ¢ =m and n = 1.

Since ,u;l (r) is an increasing function of r, it follows from Lemma 3 and Lemma
5 for all sufficiently large values of r that

10g!! 11, (17, ((196) £1)) > 1ogl?! 1, (1 (11g,, -, (1)) (4)

ive.s Log?) i (117, ((196) 1)) = (N (F) = 2) logl? g, , (1)
e, log 1 (117, ((196)21)) > (AP (f) — ) log™ pg (g, _, (1)) (5)
iie., log it (7, ((196) 21)) = (N (f) = )N () — ) logl" g, (1), (6)
Applying (6) to continue this process, we have
tog” i (a1, (196)31) 2 (1) = YA (g) = YA = ) Tog g, (1),

and so on.
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We finally have the following inequality for all sufficiently large values of r,

log? i (1, ((196) 21)) >
n

NP () = YA (g) = )3T AL () — )3 ogl pug(r). (7)
Now from above we get for all sufficiently large values of r that
log!”! 1 (py, (expl™ M 7)) >

eXp[n-i-l} ,r.)
(196) 2

Now it follows from above for a sequence of values of r tending to infinity that

D) =)™ (g) = )T D) — )3 log

log?”) it (s, (exp 1 1)) >

expln 7’)

(p,9) _ (mn) () _ ~\2—1(\(,q) _ i1, mn) o) — o) ool
(A () =) (A (g) —e)2 (A (f) —g)2 (p"(g) —¢€) log ( (1952
i.e., logl?! ,ugl(,ufn(exp[”"'l] r)) >

AL = A (g) = )3 AL (f) — ) E T (oMM (g) — ) expr + O(1). (8)

CaseIl. Let g >mand g+ n—m < [.

In view of (5), we obtain for all sufficiently large values of r that
log?) i, " (117, ((196) 2)) > (P (f) — &) log®™ ™ logl"™ g (s, (1))

e, log i (uy, ((196)27)) = (APD(£)—e) logl=™ (A" (g)—€) log™ (s, , (1))
ive., Tog i (1uy, ((196)37)) = (PP (f) = ) loglt ™= g, (1) + O(1)
i.e., logl? (g, (196)27)) > AP (f) — ) logh uy, ,(r) +0(1),  (9)

Applying (9) to continue this process, we have

) = APY(f) =) AED (f) — ) logld g, (1) + O(1),

n
2

log”! 11y, " (1, ((196)

and so on.
We finally have the following inequality,

log® 11" (g, ((196)21)) >

APD () — ) AED(£) — £)3 N ogld) py (r) + O(1). (10)

Now from (2) and (10), it follows for a sequence of values of r tending to infinity
that

log”! g1y, (g, (expldt 1=l 1)) >
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l[g+n+1-m]
(P.a) gy _ GO () — o) 31100l ,, (P "
A A 1 O(1).
) = (1) = ) oghl uy (S o) + o)
e, logl i (g, (explt™H1=m)) > APV () — ) ABD(f) — )3 expr + O(1).

(11)
Case IIL. Let ¢ <m — 1, n <l and 0 < A < p™")(g).

In view of (3) and (7), we obtain for a sequence of values of r tending to infinity
that

logl”! 11, (g, (expl =1 7)) >

APD (P Z YA (g) — )3T AGD (f) — )1 ogld (S T

) =) = A = )3 oghl g (S
ie., log i (g, (expl™ 7)) >

[n_l}r

/\(IMZ) _ /\(m,n) o\ 2-1 )\(l,q) _ ﬂ—ll [m—1] exp __

L) = HN™Mg) = ) () = ) Hogm g (S o)
i.e., logl! ,u;l(,ufn(exp["_u r)) >

APV (f) = )W) (g) — ) 31N () — ) 37199 L 0(1). (12)

Now combining (1) and (8) of Case I it follows for a sequence of values of r tending
to infinity that

log 5, (pg, (expt™* )
log”! 11y, " (5 (explal r4))

APV () =A™ (g) = )3T AL () — )3 (p " (g) &) expr 4+ O(1)
(o () + )

Since =%~ — +00 as r — 400, then from above it follows that

—1 n
- Suplog[”} 1y, (g, (expl™ 1))

= —1—007
r—+oo logl?! 1 (pyp (expld r4))

from which the first part of the theorem follows.
Again combining (1) and (11) of Case II we obtain for a sequence of values of r
tending to infinity that

log? puy (g, (explt ™)) APV () — )M (f) — )3 expr + O(1)
log i (pp(expld 4)) (BPO(f) + e)rA

log?) ;1 [g+n+1—m]
i.e. limsup 08 Hn (ufn(exp r)

r—+oo logl?! i, (g (expldl 74))

= +00.
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This establishes the second part of the theorem.
Once more, it follows from (1) and (12) of Case III for a sequence of values of r
tending to infinity that

log?! gy, (g, (exp =Y 7))
log”! 11y, ! (115 (explal r4))

()\ELP,II)(f) o 8)()\(m,n) (9) — 5)%—1(/\(l7q)(f) _ 5)%—1T(P(m’”)(g)—5) +0O(1)

(13)
(o () + eyt
As A < p(™m™)(g) we can choose £ (> 0) in such a way that
A< pmm(g) —e. (14)
Thus from (13) and (14) we get that
log?! ;=1 [n—1]
AL TG e
r—+oo log® p* (pup(expld r4))
This proves the third part of the theorem.
Thus the theorem follows. O

In view of Theorem 1 the following theorem can be carried out:

Theorem 2. Let f(z) and h(z) be any two entire functions with index-pairs (1, q)

and (1, p) respectively such that 0 < A;Lp’q)(f) < pgp’q)(f) < 400 and g(z) be an entire
function with positive (m,n)-th lower order where l,p,q,m and n are all positive
integers. Then for every positive constant A,

- log g (g, (exp Y 1)
r=too loglP! i, (s (expldl r4))
log[p} Mﬁl(,ufn (exp[q+n+1—m} r))

(73) lim — = 4ooifg>mand g+n—m <I
r=teo logll (g (expld r4))

(4)

400 if g=m and n =1,

and

(iii) lim log?”! 11! (17, (expl" =1 7))

=40 ifg<m—-1,n<land )0 < A< (mn) (Y.

Theorem 3. Let f(z) and h(z) be any two entire functions with index-pairs (1, q)

and (l,p) respectively such that 0 < /\%D’Q)(f) < pglp’q)(f) < +oo. Suppose g(z) is

an entire function with positive (m,n)-th order p'™™ (g) and finite relative (p,n)-th

order p,(gp’")(g) with respect to another entire function k(z) where l,p,q, m and n are

all positive integers. Then for every positive constant A,

logl?! ;1 [n+1]
(7) lim sup o8 'u_hl (g, (exp - r) = +4ooifqg=mandn=1,
r—too Pl (pg(explnl r4))
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10g[17} N}Zl(ﬂfn (exp[q—i-n—i-l—m] 7,))
N1 _ . <
(i) l:ﬂn_q:gop [p]/hzl(,ug(eXp[n} ) oo ifg>m and g+n—m <1

and

logl?! ;1 n—1]
(i4) limsup—o—Lh (1, (expn= 7))

! = too ifg<m—1,n <l and 0 < A< p™™)(g).
r——400 [p}ﬂk 1(ug(exp["] TA))

Proof. Suppose 0 < A < Ag.
Case I. Let ¢ = m and n = [. Then in view of the first part of Theorem 1, we get
for a sequence of values of r tending to infinity that

log[p] ugl(,ufn (exp["ﬂ} r)) > (A%p’q)(f) — E)TAO. (15)

Case II. Also let ¢ > m and ¢ +n —m < [. Then we obtain from the second part
of Theorem 1 for a sequence of values of r tending to infinity that

log!?! i (juy, (explat™H1=ml 1)) > (APD) () — oo, (16)

Case III. Againlet g <m—1,n<land 0 < A < p(mn) (9). Then we get from the
third part of Theorem 1 for a sequence of values of r tending to infinity that

log” 1 (s, (expl™ 7)) > (AP (f) — e)ro, (17)

Now from the definition of pglp ) (9) in terms of maximum terms, we obtain for all

sufficiently large values of r that

log™ i (g expl™ ) < (™ (g) + ). (18)

Now combining (15) of Case I and (18) it follows for a sequence of values of  tending
to infinity that

log? 11 (g, (exp™ 7)) (APD(f) — g)pho
Py (g (explrl 74)) (o™ (g) + e)rA

(19)

Since Ag > A, from (19) it follows that

_1 n
- Suplog[”} 15, (g, (expl 1 7))

- = +00,
r—+00 [P}uk 1(ug(exp["] r4))

from which the first part of the theorem follows.
Similarly for Ayg > A, we obtain from (16) of Case II and (18) for a sequence of
values of r tending to infinity that

log? iy (g, (explt 1)) - APO(p) — ey
Pl gy, (g (expl?d r4)) (p,(f’") (g) +e)r4
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logP! ;,~1 explatnti-m] .
i.e. lim sup & P ('uf”( P ) = +4oo.

r—+00 [p}ugl(ug(exp[”] r4))

This establishes the second part of the theorem.
Again it follows from (17) of Case III and (18) for a sequence of values of r
tending to infinity that

log”! iy (g, (exp" 1)) APD(f) — ey

- > — : (20)
Plp, 1(Mg(eXP["} r4)) (pl(f’ )(g) +e)rd
Now suppose Ay is such that 0 < A < Ag < p(™™ (g).
Therefore from (20) we get that
logl?) ;1 [n—1]
o 2 (e )
r—+oc logl?! 13 (g (expll 74))
This proves the third part of the theorem.
Thus the theorem is established. O

Theorem 4. Let f(z) and h(z) be any two entire functions with index-pairs (I, q)

and (l,p) respectively such that 0 < /\%D’Q)(f) < pglp’q)(f) < +oo. Suppose g(z) is
an entire function with positive (m,n)-th lower order X" (g) and finite relative
(p,n)-th order p,ip’") (g9) with respect to another entire function k(z) where l,p,q,m

and n are all positive integers. Then for every positive constant A,

- log g (g, (expt U )
r=+o0 loglP! it (g (expll r4))
logl”! pu " (g, (explatnti=mlp))

(73) lim — = 4ooifg>mand g+n—m <lI
roo ol (g (explil 1))

(4)

400 if g=m and n =1,

and

PO el (G el

= +4ooifg<m—1,n<land0 < A< p™™(g).
r—-+00 10g[p] M;l(ﬂg(exp[”] rAY) fa P (9)

The proof of Theorem 4 is omitted as it can be carried out in the line of Theorem
3 and with the help of Theorem 2.

Theorem 5. Let f(z) and h(z) be any two entire functions with index-pairs (1, q)
and (1, p) respectively such that 0 < A;Lp’q)(f) < pgp’q)(f) < 400 and g(z) be an entire
function with finite (m,n)-th order and (m,n)-th lower order where l,p,q,m and n
are all positive integers. Then

log?) ;71 ld] A
(i)  limsup 08" iy (s (expr7)) = 4ooifg>m,n=1and A>1,

r—+o0 logl ;™ (g, (expl r)
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= 4ooifg=morqg>m(#1)—1,

o log™! iy (g (exple! 7))
(7) limsup oo -
r—-+oo log” i, (1, (expln=1 1))

n > 1and A> X (g)

and

TN logl?! 1 (s (expld) ) _
(¢i7) lim sup1 [p-i—(m—q)(ﬂ—{l)—l] f—1 = = 4ooifm>q+1, n>1
r—+oo log 2 py, (g, (exptn=tr))

and A > Amm(g).

Proof. From the definition of )\Elp ) (f) in terms of maximum terms, we obtain for
arbitrary positive ¢(> 0) and for all sufficiently large values of r that

tog? i (g (expl 1)) = (P (1) = ) (21)

Also from the definition of (m,n)-th lower order of g(z) in terms of maximum terms
and for @« > 1, 0 < B < a, we get for a sequence of values of r tending to infinity
that

Mﬂw)) ? el ")

(" g) +e)log™ (55521

IN

i.e., log™ ug((—(a —h+ 1)6))% expl*~1 r) ()\(m’") (9) + E) logr + O(1)

(@a=1)(B-1

i.e., logl™ ug<(%) ? explr1l 7“) < log P (9)+e) O(1) (22)

ie.. loglm=1] Mg((((a — B+ 1)5))% expln-1! r)

@-DE-1 PO L o). (23)

IN

Case I. Let ¢ > m and n = [.

Since ,ugl (r) is an increasing function of r, taking R = (r in Lemma 2 and in
view of Lemma 5 it follows for all sufficiently large values of r that

logl?! ;i1 (an ((w) gr)) < log (s (11, (1))

(a@— 6+ 1)p
i g i s, (0051 0) < 000+ optont ) 20

i o i (o, ( () 20)) < 200+ 291 g, )
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i.e., logll yi, ! (an ( (%) gT)) =

(P (F)+e)(p™ ™ (g)+2) log" g, , (1),
(25)
Applying (25) to continue this process, we have

od i o (=3 m0) ) <

(pép,Q)(f) +&)(p™™ (g) + ) (pD (f) + €) logl? Ig,—s(T),

and so on.
We finally have the following inequality for all sufficiently large values of r,

et o () )

(pgp,q)(f) + 6)(,0(m’n) (g) + 5)g_1(p(l’q)(f) + 6)%_1 log[fﬂ Iug(r). (26)

Now from above we get for all sufficiently large values of r that
log? iy (e, (exp™ r)) <

n a_ﬁ“‘l)ﬁ)g

(p2p7Q)(f)+E)(p(m,n) (9)+€) T 1 (pbD (f)+e)2  ogld! Mg(((ix G- expl™ 7»)

(27)
i.e., logl! ,u,:l(,ufn (exp"r)) <

n

D)+ 420 (1400 g (LTI i),

Now it follows from above for a sequence of values of r tending to infinity that
logl”! 1, (g, (expll r)) <

(pgpﬂ) (f) + E)(p(m,n) (g) + E)%’—l(p(l#l) (f) 4 E)%—l()\(m,n) (g) + E)T + O(l) (28)

Further from (23) and (26), we obtain for a sequence of values of r tending to infinity
that

log? iy (s, (exp" M) <

L e L T B e P (e e Ry

i.e. logl! i (uy, (expl™ 1)) <
(P70 + )™ (g) + TP (F) + )30 o). (20)
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Case II. Let m > ¢+ 1, n >l and A > \(m")(g).

In view of (24), we obtain for all sufficiently large values of r that

loglPtm—dl M}Zl (qun <<w> %T>> < logl™ Hg,—1 (1) +O(1)

@=B+17
. Tog il @h«a‘;+1ﬁf))«% b5, ()) + O(1)
L&bﬂwwmf@n«%_z+l YA < (0 )+ g™, () +O()

e logt "7y 0%(<Q_Z+1g)%n

(0™ (g)+e)log" pg, _, (r)+0(1),
(30)
Applying (30) to continue this process, we have

o i o () )

(™™ (g)+e) (phD (f)+e) logl fg,-5(r)+O(1), (31)

and so on.
We finally have the following inequality

logP+(m-a)(3-1)) ;-1 ( u, (( (?a—_lg(f I);) >

n
2

r)) <108 uy(r) + O(1)

(a—B+1)p
(a—=1)(8-1)
Now from (22) and above, it follows for a sequence of values of r tending to infinity
that

n
i.e., loglPt(m=a)(3-1)] 1y, (g, (expl™ 7)) < log™ ,ug<( > * expln T) +0(1).

10g[p+(m—Q)(g—1)] Mﬁl(uf,,(exp["_” 7‘)) < 10gr()\(m,n)(g)+e)_’_0(1)
e., loglPt(m= (3=~ ]ugl(ufn(exp[”_l]r)) < r()‘(m'")(g)ﬁ)—FO(l). (32)

Now if ¢ > m, n=1and A > 1, we get from (21) and (28) of Case I for a sequence
of values of r tending to infinity that

logl”! piy " (y (expld 7))
log?! i (s, (explil )
N N (f) —e)r
> (p;lp q)(f) + &) (pmm) (g) + )31 (pD (f) + &) 3L (Amm) (g) + &)r + 0(1)7
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from which the first part of the theorem follows.
Again combining (21) and (29), we obtain for a sequence of values of r tending
to infinity when ¢ > m, n = and A" (g) < A

log!?! i, (g (expldl 7))
log!?! i, (7, (expln=1 1))

>

() — e

(p.9) 1-1 21, (A(mm) ' (33)
(o, (f) +)(pmm(g) +€)2 7 (PO (f) + £) 2 rA™ M9 +e) + O(1)
As A > A\™™)(g) we can choose £(> 0) in such a way that
Amn)(g) 4o < A, (34)

Thus from (33) and (34), we get that

log?) 1! (g (expld) 74))
lim sup

] - Tee
r—+o0 log?! pu;, ! (e, (expln=11 7))

This establishes the second part of the theorem.
When m > ¢+ 1, n > 1 and A > \(™™)(g), it follows from (21) and (32) of Case
III for a sequence of values of r tending to infinity that

Lo 1y, " (s (expldl 1)) o PP —ept

7 . 35
logPHm=0G=D=1 1)y (expln=1l7)) — (A" 0)+e) 4 (1) (35)
Now from (34) and (35) we obtain that
logP! ;=1 lq] A
lim sup _og Ef? _(1uf(_elxp ) = +o00.
r—+too loglPt(m=a)(z-1) }Mh (1, (explr=11 7))
This proves the third part of the theorem.
Thus the theorem follows. O

In the line of Theorem 5 we may state the following theorem without proof.

Theorem 6. Let f(z) and h(z) be any two entire functions with index-pairs (I, q)

and (1, p) respectively such that 0 < )\Elp’q)(f) < pglp’q)(f) < 400 and g(z) be an entire
function with 0 < A (g) < pmn)(g) < +oo and finite relative (p,n)-th lower

order A,gp’n) (g) with respect to another entire function k(z) where [, p,q, m and n are
all positive integers. Then

log! it (1 (expl™ )

()  limsup 5 = 4ooifqg>m,n=10and A>1,
r—+o0 log! i, (i, (explnl r))
log? 11 rA
(7) limsup o8 (,u (expl"l r)) = 4ooifg=morqg>m(#£1)—1,
r—toc logl?! i "y, (explr=17r))
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n > land A> X (g)
and

. log”! 11" (g (expl™ r)) .
(¢i7) lim supl [p-i—(m—q)(ﬂ—f)—l] J — - = 4ooifm>q+1, n>1
r—+oo log 2 1, (,uf,7 (exp T))

and A > X™m)(g).

Theorem 7. Let f(z) and h(z) be any two entire functions with index-pairs (I, q)

and (1, p) respectively such that 0 < )\Elp’q)(f) < pglp’q)(f) < 400 and g(z) be an entire
function with finite (m,n)-th order where l,p,q,m and n are all positive integers.
Then

log? 1 ld] pA
(7) lim o8 (,uf(exp ) = 4ooifqg>m,n=1and A>1,
r—oo log[p] py (g, (expli 7))
log® 1 rA
(#i) lim O%] (,uf(exp ) = 4ooifg=morqg>m(#£1)—1,
r=+oologh 1 (g, (expln =1l 7))

n > land A> p™™(g)

and

(i3i)  lim log i (y (exple r))
r—-+oo]gglpt(m= a)(5-1)-1] ,ugl(,ufn(exp["—ﬂ r))

and A > p™"(g).

+oo ifm>qg+1, n>1

Theorem 8. Let f(z) and h(z) be any two entire functions with index-pairs (1, q)
and (1, p) respectively such that 0 < )\Elp’q)(f) < pglp’q)(f) < 400 and g(z) be an entire

function with 0 < p(mn) (9) < 400 and finite relative (p,n)-th lower order )\,(f’") (9)
with respect to another entire function k(z) where l,p,q,m and n are all positive
integers. Then

log!?! ‘1(ug(exp nlrAY)

(7) lim = 4ooifqg>m,n=1and A>1,
r=too loghl it (g, (expl )
log?! 1 [n] -A
(73) lim Oi] g exp ) = 4ooifg=morqg>m(#1)—1,
r=+ocloglPl it (g, (expln=17))

n > land A> p™"(g)
and

1og?) 11! (g (expl™l 1)) .
@) g 1], oy — tedm>a+l nzi
og (g, (exptn=tir))

and A > plmm)(g).
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We omit the proof of Theorem 7 and Theorem 8 as those can be carried out in
the line of Theorem 5 and Theorem 6 respectively.

As an application of Theorem 1 and Theorem 5, we may state the following
theorem:

Theorem 9. Let f(z) and h(z) be any two entire functions with index-pairs (I, q)

and (l,p) respectively such that 0 < )\ép’q)(f) < pép’q)(f) < +oo and g(z) be an
entire function with \(™ )( )< A< plm: ")( ) where I, p,q,m and n are all positive

integers. Then forq=m(#1)—1 and n=1.
hmsup (l‘fn(eXp - 7)) <1< lim inf® f'uf" (exp AT)),
r—too g, (g (expldrA)) r=too (g (expld r4))

Proof. In view of Theorem 1 we get for a sequence of values of r tending to infinity
and for K > 1

log® i, (g, (expl™™ 7)) > Klogl?! iyt (g (expl? 7))
K
e Togh i (ug, (expl ) > og {log" =) i ey (expl® (r4)) §

e, 10g% 1 (g, (exp" ™)) > log {log? ! i (s (expl® (+4))) |

ey iy (g, (exp™ ) > (g (expl® (1))
-1 [n—1]
ie. u}il(ufn(exp AT)) S
1y, (pg(expld (r4)))
-1 [n—1]
i.e., limsup'u}i (pig, (exp A?“)) > 1. (36)
r—too i, (fry(expld (r4)))

Again from Theorem 5 we obtain for a sequence of values of r tending to infinity
and for P > 1

log[p} ,u,_Ll(,uf(exp[q] rA)) > Plog[p] u;l(ufn(exp["_” T)
P
e., logl”) i, (g (expl ) > log{log[”‘” u;l(ufn(exp["‘”r)}

e., 1og® i (up(expl rd)) > log{log[”‘” u;l(ufn(exp[”‘”r)}

u;l(uf(exp[‘” A)) > (g, (expl® ™)

i.e., < 1

i.e., liminf h
r—too uh( (exp ))

Thus the theorem follows from (36) and (37). O
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In view of Theorem 3 and Theorem 6, the following theorem can be carried out:

Theorem 10. Let f(z) and h(z) be any two entire functions with indezx-pairs (1, q)
and (1, p) respectively such that 0 < A;Lp’q)(f) < pgp’q)(f) < 400 and g(z) be an entire
function with \™™)(g) < A < pl™™)(g) and finite relative (p,n)-th order p(p’ )( )

and relative (p,n)-th lower order A,ip’") (g) with respect to another entire function
k(z) where l,p,q,m and n are all positive integers. Then for ¢ = m(# 1) — 1 and
n=1I.
[n—1] [n—1]
Jim sup 1(uf L e Y n i (g, (expl )
r—+oo i (fig(expll (r4) ) =S 1y (pg(expl(r4)))

The proof is omitted.

Theorem 11. Let l(z), f(z) and h(z) be any three entire functions with index-pairs
(¢,d), (¢,q) and (c,p) respectively such that Aép’d) (1) >0 and pép’q)(f) < 4o00. Also
let g(z) and k(z) be two entire functions with p™™ (g) < X (k) where a, b, ¢, d,
m, n, p and q are all positive integers.

loglP—1 -1 [b—1]
() lim og P 1y, (e ((exp®~Hr)) o

r=+0logl 1 1T (1, (expln17)) - 1og? = iy jup (expli—1 7))
ifd<a—-1,b6<c,q>mandn=1,
y log? ™" 11, (uu (expl=1 1)
(i) lim T TR =
r—teologlPHm=0 G =D (1 (explr=r)) - loglP !y, (up(expla=tlr))
ifd<a—1,b<c¢,m—q=2andn >1

and

- log" =Y 11 (pu, ((expl®=1 7))
LR N o e o e 1 =1, —1 T
rmteclog wy, (g, (expli=tr)) log®= 1 (g (exple=tr))

:+OO

ifd<a—-1,b<c,m—q>2andn >1I.

Proof. From the definition of (m,n)-th order of g(z) in terms of maximum terms
and for « > 1, 0 < B < a,, we get for arbitrary positive ¢ and for all sufficiently
large values of r that

5 s () )

i.e., logl™ ,u%(%)g explt—U r) < <p(m’") (9) + z—:) logr + O(1)
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(a=1)(B-1)
i.e., loglm~1 ug<<%> ? expln] r) < P+ 4 O(1). (39)

Also from the definition of (a, b)-th lower order of k(z) in terms of maximum terms,
we get for all sufficiently large values of r that

a exple=1 a explt—H
logl™ (pi) > (A@Y (k) — £) log” <p7)

(196) 2 (196)3
[b-1] .
ie., logld 1y (%) > log pADR)=2) 4 O(1) (40)
2
[b-1] .
i.e., logle=1l ﬂk(%) > rAR)=2) 4 0(1). (41)
2

Again from the definition of (p, ¢)-th relative order of f(z) with respect to h(z) in
terms of maximum terms, we have for all sufficiently large values of r that

log” 11 (g (expl= U 1)) < (pPP(f) + &) log 7
iy Tog ™ i (up (explt™ ) < i (942), (42)

Casel. Let d<a—1and b <ec.

Since u;l (r) is an increasing function of r, it follows from Lemma 3 and in view
of (4), for all sufficiently large values r that

1og™”! 115, (1 ((196)
i.e., log? iy (pu, ((196)

NI

T)) > 10g[p}ﬂﬁl(ﬂl(ﬂk§71(7‘)))
r) = AP0 - o) logh g (r)

[NIB

ive log 1! (u ((196) 1)) > (N (1) — ) logl) (s, (1)
iie., log it (1, ((196)21)) > (N (1) = ) AP () = &) 1og™ pu_, (r)
ivey 1og 1! (i, ((196)% 7)) > (N (1) = )NV (k) — ) log e, (). (43)
Applying (43) to continue this process, we have
ive., 1ogl?! i (g, ((196)37)) > NP (1) =) (A (k) =) AP (1) =) Log™ g, (1),

and so on.
We finally have the following inequality for all sufficiently large values of r,

logl?”! 11, (pu ((196) 27)) >

()\ép,d)(l) — &) (A (k) — g)%—l()\(c,d)(l) _ g)%_l log!® pug (7).
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Now from above we get for all sufficiently large values of r that

log 1, (e (expl” 7)) >

explt—1] r)
(196)z /7

Now we get from (41) and (44) for all sufficiently large values of r that

()\;Lp,d)(l) _ 5)()\(a’b)(/€) . E)%—l()\(c,d)(l) _ E)%—l log[a—l} Nk< (44)

log”! g1y (e ((exp~1 7)) >
AD(0) = )N (k) = )3T NN (1) — )31 B o)
ie., logP = it (g, ((expl 1)) >

exp(APD (1) =) (A@) (k) —g) T 7L (AED (1) — ) 51N K== L O(1)). (45)

Case 1I. Let ¢ > m and n = 1.

Since ¢ > m, therefore ¢ > m — 1. Now we obtain in view of (27) and (39) for
all sufficiently large values of r

log?! pi; (g, (exp" =Y 7)) <

D+ g4 0 ()40 oy (L5 E D) gl )

ie., logl! i, (g, (exp" 1)) <
() + ) (g) + )2 (D (f) + )T 4 0(1)
i.e., loglP~1 (g, (expl™=1r)) <
exp((p? () + ) (™™ (g) + )3 L (D (f) + )3 L™ 9+ 1 O(1)).  (46)

Case IIl. Let ¢ <m and n > (.

In view of (31) and (38), we derived the following inequality for all sufficiently
large values of r that

logP+(m=a)(E =1 1 (1 (expl 7)) <

(@a—=B+1)BN\Z [
m) exp" 1 7‘) +0(1)

i.e., logPtm=DG=01 2t (expl™ 7)) < explm=aU ™ @F) 4 O(1). (47)

expl™ log™ 1) <<

Now if m — ¢ = 2, then we get from (47) for all sufficiently large values of r that

loglPt(m=a)(3-1)] Nﬁl(ﬂfn (exp 7)) < expr(p(’”’”)(g)%) +0(1). (48)
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Also if m — ¢ > 2, then we get from (47) for all sufficiently large values of r that
loglm—a-2 [bgw(m—q)(g—l)] i (g, (expln =1 T))]

< loglm—a—2 [eXp[m—q—I] PP (@)te) 4 0(1)}

e, loglPtm=03-2 1oLy (expl=l ) < expr?™ O+ L O(1). (49)
Now as p(™™ (g) < M@ (k), we can choose £(> 0) in such a manner that
P (g) + e < NV (k) —e. (50)

Therefore combining (42), (45) of Case I and (46) of Case II it follows for all suffi-
ciently large values of r that

log®! 11, ! (g, ((expl=Y 7))
log? ™! iy (g, (expln= 7)) - logl? =1 1 (g (expla=tlr))
exp(A (1) — ) ACD (k) — )3T ACD (D) — 5B o)
r(pl(lp,q)(f)_i_a) ) eXp((ng’q)(f) + 6)(p(m,n) (9) + 5)%—1(p(174)(f) + 6)%—1r(p(m,n)(g)+€) +0(1))

Thus in view of (50) first part of the theorem follows from above.
Again combining (42), (45) of Case I, (48) of Case III and (50) we obtain for all
sufficiently large values of r that

£
2

log[P—l] N;:l (ng ((exp[b—l] 7‘))
log? =G uy, (expl=17)) - og !y g (explo=11 )

exp((APD (1) — ) M@0 (k) — &) 51 (ACD (1) — ) 51NV (k)=2) 4 O(1))

(p.q)

r(ph (f+e) . [exp T(P(m’n)(g)+5) + O(l)]

; logP~ ;! (g ((expl=Y 7))

im

r—-+toc]oglPt(m=a)(3-1)] Mf—Ll(an (exp[—1 7)) - log[P~1] gt (g (expla=tl 7))
which is the second part of the theorem.

Similarly combining (42), (45) of Case I, (49) of Case III and (50) we get for all
sufficiently large values of r that

i.e.,

= —1—007

logP~ ;! (g ((expl®=Y 7))
loglPHm=a)3 =21 (g, (explr=1r)) - loglP =1y, (g (expla=1lr))
exp((APD (1) — £)(A@D) (k) — £) 21 (M) (1) — £) 5 1A W)=2) 4 O(1))

(psq)

’f'(ph (f)+e) . exp T(p(m,n)(g)+5) + 0(1)]

, logP~ ! 1 (pu ((expl=1 7))
TEI—ll—lool [p+(m—q)3-2] -1 [n—1] -1 1] | —1 [g—1]
og 277wy, (g, (expl®=1r)) - log®™ % g, = (py (expla=tir))

This proves the third part of the theorem.
Thus the theorem follows. O

i.e.,

= 4-00.
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Remark 1. If we consider p(™™ (g) < p(@b) (k) instead of p™™ (g) < A@) (k) and
the other conditions remain the same, the conclusion of Theorem 11 remains valid
with “limit superior” replaced by “limit”.

Remark 2. The same results of above theorems and remarks in terms of maximum
modulus of entire functions can also be deduced with the help of Lemma 1 and
Lemma 4.
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