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Graphs, Disjoint Matchings and Some Inequalities

Lianna Hambardzumyan, Vahan Mkrtchyan

Abstract. A graph G is k-edge-colorable if the edges of G can be assigned a color
from {1, ..., k} so that adjacent edges of G receive different colors. A maximum k-
edge-colorable subgraph of G is a k-edge-colorable subgraph of G containing maximum
number of edges. For k ≥ 1 and a graph G, let νk(G) denote the number of edges
in a maximum k-edge-colorable subgraph of G. In 2010 Mkrtchyan, Petrosyan and
Vardanyan proved that if G is a cubic graph, then ν2(G) ≤ |V (G)|+2·ν3(G)

4
[13]. For

cubic graphs containing a perfect matching, in particular, for bridgeless cubic graphs,
this inequality can be stated as ν2(G) ≤ ν1(G)+ν3(G)

2
. One may wonder whether there

are other well-known graph classes, where a similar result can be obtained. In this

work, we prove lower bounds for νk(G) in terms of
νk−1(G)+νk+1(G)

2
for k ≥ 2 and

graphs G containing at most 1 cycle. We also present the corresponding conjectures
for nearly bipartite graphs.

Mathematics subject classification: 05C15, 05C70.
Keywords and phrases: Bipartite graph, Tree, Unicyclic graph, Edge-coloring,
Parsimonious edge-coloring.

1 Introduction

In this paper graphs are assumed to be finite, undirected and without loops,
though they may contain multi-edges. The set of vertices and edges of a graph G
will be denoted by V (G) and E(G), respectively. The degree of a vertex u of G is
denoted by dG(u). Let ∆(G) be the maximum degree of a vertex of G. A graph is
cubic if every vertex has degree 3.

A matching in a graph is a set of edges without common vertices. A matching
which covers all vertices of the graph is called a perfect matching. A tree is a
connected graph that does not contain a cycle. In the paper, we will consider trees
as rooted. Let T be a tree and let r be a vertex of T . We will call r the root of T .
Now, let u be any vertex of T . We will say that a vertex v of T is a child of u if v
is adjacent to u and it does not lie on the unique path of T connecting u and r. A
vertex w of T is called grand-child of u if w is a child of a child of u. Similarly, one
can define the notion of a grand-grand-child, etc.

A graph G is called k-edge colorable if its edges can be assigned k colors so
that adjacent edges receive different colors. A subgraph H of a graph G is called
maximum k-edge-colorable if H is k-edge-colorable and contains maximum number
of edges among all k-edge-colorable graphs. If H is a k-edge-colorable subgraph of
G and e /∈ E(H), then we will say that e is an uncolored edge with respect to H. If
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it is clear from the context with respect to which subgraph an edge is uncolored, we
will not mention the subgraph.

By a classical result due to Shannon [17, 20, 22], we have that cubic graphs are
4-edge-colorable. It is an interesting and useful problem to investigate the sizes of
subgraphs of cubic graphs that are colorable only with 1, 2 or 3 colors.

For k ≥ 1 and a graph G let

νk(G) = max{|E(H)| : H is a k-edge-colorable subgraph of G}.

Albertson and Haas [1, 2], Steffen [18, 19] and Mkrtchyan et al.[13] investigated

the lower bounds for νk(G)
|V (G)| in cubic graphs. As a result, in [13] an interesting relation

between ν2(G) and ν3(G) is proved, which states that for any cubic graph G

ν2(G) ≤
|V (G)| + 2 · ν3(G)

4
.

Observe that when G contains a perfect matching (ν1(G) = |V (G)|
2 ), in particular,

when G is a bridgeless cubic graph, the above-mentioned inequality can be written
as

ν2(G) ≤
ν1(G) + ν3(G)

2
.

One may wonder whether a bound for ν2(G) can be proved in terms of ν1(G)+ν3(G)
2

in other interesting graph classes. In the present work we investigate the problem in
nearly bipartite graphs. Recall that a graph G is bipartite if V (G) can be partitioned
into two sets V1 and V2 such that any edge of G joins a vertex from V1 to a vertex
from V2. G is nearly bipartite if G contains a vertex w such that G−w is bipartite.
Our conjecture states:

Conjecture 1. For any k ≥ 2 and a nearly bipartite graph G,

νk(G) ≥

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Let us note that in [12], the following result is obtained for bipartite graphs:

Theorem 1. [12] For any k ≥ 2, i = 1, ...., k, and a bipartite graph G,

νk(G) ≥
νk−i(G) + νk+i(G)

2
.

This theorem amounts to saying that the sequence νk is convex in the class of
bipartite graphs. Our main result states that Conjecture 1 is true for graphs G
containing at most 1 cycle. Let us note that in [12], the following general conjecture
is presented, which if true, would imply Conjecture 1:
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Conjecture 2. [12] For any k ≥ 2, i = 1, ...., k, and a graph G,

νk(G) ≥
νk−i(G) + νk+i(G) − b(G)

2
.

Finally, let us note that the lower bounds for νk(G)
|V (G)| in cubic graphs has been

investigated in [4,9,14,15,23] when k = 1, and for regular graphs of high girth in [6].
This lower bounds has also been investigated in the case when the graphs need not
be cubic [7, 11,16].

Terms and concepts that we do not define, can be found in [8, 24].

2 The main result

In this section, we prove some lemmas that will be helpful later in the section.
Then we verify Conjecture 1 for unicyclic graphs (graphs containing exactly 1 cycle).

Lemma 1. Let G be a graph, and let e = (u, v) ∈ E(G). Assume that dG(u) = 1.
Then for any k ≥ 1, there is a maximum k-edge-colorable subgraph Hk of G such
that e ∈ E(Hk).

Proof. Let Hk be any maximum k-edge-colorable subgraph of G. If e ∈ E(Hk),
then we are done. Thus, we can assume that e /∈ E(Hk). Since Hk is a maximum
k-edge-colorable subgraph of G and dG(u) = 1, there is an edge e′ ∈ E(Hk) such
that e′ is incident to v. Consider the subgraph H ′

k of G defined as follows: E(H ′
k) =

(E(Hk)\{e
′})∪{e}. Observe that H ′

k is k-edge-colorable, e ∈ E(H ′
k) and |E(H ′

k)| =
|E(Hk)|, hence H ′

k is a maximum k-edge-colorable subgraph of G containing e.

Lemma 2. Let k ≥ 1, G be a connected graph, and let e = (u, v) ∈ E(G) be a
bridge of G. Assume that there is a maximum k-edge-colorable subgraph Hk of G
such that e ∈ E(Hk). Then

νk(G) = νk(G1e) + νk(G2e) − 1.

Here G1 and G2 are the components of G − e, and G1e, G2e are the supergraphs
of G1 and G2, respectively, that satisfy the equalities E(G1e) = E(G1) ∪ {e} and
E(G2e) = E(G2) ∪ {e}.

Proof. Let H(1) and H(2) be the restrictions of Hk in the graphs G1e and G2e,
respectively. Clearly, these subgraphs are k-edge-colorable. We claim that H(1)

and H(2) are maximum k-edge-colorable subgraphs of G1e and G2e, respectively.
Assume that |E(H(1))| < νk(G1e). Then, by Lemma 1, there is a maximum k-edge-
colorable subgraph H ′(1) containing e. Consider the subgraph H ′

k of G defined as
follows:

E(H ′
k) = (E(Hk)\E(H(1))) ∪ E(H ′(1)).

Observe that H ′
k is k-edge-colorable and |E(H ′

k)| > |E(Hk)| contradicting the choice
of Hk. Similarly, one can prove that H(2) is a maximum k-edge-colorable subgraphs
of G2e.
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We have the following chain of equalities:

νk(G) = |E(Hk)| = |E(H(1))| + |E(H(2))| − 1 = νk(G1e) + νk(G2e) − 1.

Our first theorem verifies Conjecture 1 for connected graphs with at most 1 cycle.

Theorem 2. For any k ≥ 2 and a connected graph G containing at most 1 cycle,

νk(G) ≥

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Proof. Assume that the statement of the theorem is wrong. Consider all possi-
ble counter-examples G and among them choose one minimizing |V (G)| + |E(G)|.
Clearly, |V (G)| ≥ 3. Moreover, ∆(G) ≥ 3 (the statement of the theorem is true for
cycles and paths).

Let T be a tree defined as follows: if G is a tree, then T = G, otherwise T = G/C.
Here C is the only cycle of G, and T is the tree obtained from G by contracting C to
a vertex vC . View T as a rooted tree. The root of T is any of its vertices, if G = T ,
and is the vertex vC , otherwise. Below, we will speak about children, grand-children
of vertices of G. This relationship will be viewed from the perspective of the tree T .

Let us show that there is no vertex of G with degree 2 that is adjacent to a
vertex of degree 1. On the opposite assumption, consider a vertex z of degree 2
that is adjacent to a vertex y of degree 1. Observe that since k ≥ 2, we have
νi(G) = 1 + νi(G− y) for i = k, k + 1 and νk−1(G) ≤ 1 + νk−1(G− y). Thus, we will
have:

νk(G) = νk(G − y) + 1 ≥

⌊

νk−1(G − y) + νk+1(G − y)

2

⌋

+ 1

=

⌊

νk−1(G − y) + 1 + νk+1(G − y) + 1

2

⌋

≥

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Here we used the fact that G− y is not a counter-example to our statement. Thus,
there is no vertex of G that has degree 2 is adjacent to a vertex of degree 1.

Next, let us show that all vertices of G with degree at least 3 lie on C, the unique
cycle of G. On the opposite assumption, consider a vertex x of degree at least 3
that does not lie on the cycle and it has no children, grand-children, etc. that are of
degree at least 3. Observe that all the children of x are of degree 1. We will consider
some cases.

Case 1: dG(x) ≥ k + 2. Then G can be represented as in Figure 1.
It can be easily seen that in this case there is an edge e adjacent to x such that

νi(G) = νi(G − e) for i = k − 1, k, k + 1. Hence, we have:

νk(G) = νk(G − e) ≥

⌊

νk−1(G − e) + νk+1(G − e)

2

⌋

=

⌊

νk−1(G) + νk+1(G)

2

⌋

.
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≥ k + 1

x

G′

Figure 1. dG(x) ≥ k + 2

k

e
x

G′

E′

Figure 2. dG(x) = k + 1

Here we used the fact that G − e is not a counter-example to our statement.

Case 2: 3 ≤ dG(x) = k + 1. Then G can be represented as in Figure 2. Here E′

denotes the edge-set of the component of G − e containing x.
We have

νk−1(G) ≤ νk−1(G
′) + |E′| − 1,

νk(G) = νk(G
′) + |E′|,

νk+1(G) = νk+1(G
′e) + |E′|.

It is easy to see that νk+1(G
′e) ≤ νk+1(G

′) + 1. Since G′ is not a counter-example
to our statement, we have

⌊

νk−1(G
′) + νk+1(G

′e) − 1

2

⌋

≤

⌊

νk−1(G
′) + νk+1(G

′)

2

⌋

≤ νk(G
′).

The last inequality, in its turn, implies:

νk(G) = νk(G
′) + |E′| ≥

⌊

νk−1(G
′) + νk+1(G

′e) − 1

2

⌋

+ |E′| ≥

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Case 3: 3 ≤ dG(x) = k. Then G can be represented as in Figure 3. Here E′

denotes the edge-set of the component of G − e containing x.

We have the following equalities:

νk−1(G) = νk−1(G
′) + |E′|,

νk(G) = νk(G
′e) + |E′|,

νk+1(G) = νk+1(G
′e) + |E′|.
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k − 1

e
x

G′

E′

Figure 3. dG(x) = k

≤ k − 2

e
x

G′

E′

Figure 4. dG(x) ≤ k − 1

It is easy to see that νk−1(G
′) ≤ νk−1(G

′e). Since G′e is not a counter-example, we
have

⌊

νk−1(G
′) + νk+1(G

′e)

2

⌋

≤

⌊

νk−1(G
′e) + νk+1(G

′e)

2

⌋

≤ νk(G
′e).

The last inequality, in turn, implies:

νk(G) = νk(G
′e) + |E′| ≥

⌊

νk−1(G
′) + νk+1(G

′e)

2

⌋

+ |E′| =

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Case 4: 3 ≤ dG(x) ≤ k − 1. Then G can be represented as in Figure 4. Here E′

denotes the edge-set of the component of G− e containing x. We have the following
equalities:

νk−1(G) = νk−1(G
′e) + |E′|,

νk(G) = νk(G
′e) + |E′|,

νk+1(G) = νk+1(G
′e) + |E′|.

Since G′e is not a counter-example, we have

νk(G
′e) ≥

⌊

νk−1(G
′e) + νk+1(G

′e)

2

⌋

.

Hence,

νk(G) = νk(G
′e) + |E′| ≥

⌊

νk−1(G
′e) + νk+1(G

′e)

2

⌋

+ |E′|

=

⌊

νk−1(G
′e) + |E′| + νk+1(G

′e) + |E′|

2

⌋

=

⌊

νk−1(G) + νk+1(G)

2

⌋

.
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≥ k

x

Figure 5. dG(x) ≥ k + 2

≤ k − 1

x

Figure 6. dG(x) ≤ k + 1

The considered cases imply that all vertices of G with degree at least 3 lie on C.
If there is a vertex x of G lying on C with dG(x) ≥ k +2, then G can be represented
as in Figure 5.

Observe that there is an edge e of C that is incident to x and νk+1(G) = νk+1(G−
e). Moreover, for any edge f of C that is incident to x, νi(G) = νi(G − f) for
i = k − 1, k. Hence we have:

νk(G) = νk(G − e) ≥

⌊

νk−1(G − e) + νk+1(G − e)

2

⌋

=

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Here the inequality follows from the fact that G− e is not a counter-example to our
statement.

Thus, we can assume that for any vertex x of G lying on C, we have dG(x) ≤ k+1.
Then G can be represented as in Figure 6.

Let us show that νk+1(G) = |E(G)|, that is, G is (k+1)-edge-colorable. Consider
the colors {1, 2, ..., k, k+1}. Color the edges of the cycle C with colors 1, 2, 3. Observe
that at each vertex of C only two colors will be present. Hence at each vertex of C
k − 1 colors will be missing. Since each vertex x of C is adjacent to at most k − 1
vertices lying outside C, we can extend the edge-coloring of C, to a (k + 1)-edge-
coloring of G.

Define xk−1 and xk as the minimum number of edges of C that one needs to
remove from G in order to obtain a (k − 1)- or k-edge-colorable subgraph of G,
respectively. We have:

νk−1(G) = |E(G)| − xk−1,

νk(G) = |E(G)| − xk,

νk+1(G) = |E(G)|.
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Let us show that

xk ≤
⌈xk−1

2

⌉

. (1)

Let Jk−1 be a subgraph of C such that G − E(Jk−1) is (k − 1)-edge-colorable and
|E(Jk−1)| = xk−1. Observe that ∆(Jk−1) ≤ 2, hence

ν1(Jk−1) ≥

⌊

|E(Jk−1)|

2

⌋

=
⌊xk−1

2

⌋

.

Let Mk−1 be a maximum matching of Jk−1. Then G − (E(Jk−1)\Mk−1) is k-edge-
colorable, hence

xk ≤ |E(Jk−1)\Mk−1| ≤

⌈

|E(Jk−1)|

2

⌉

=
⌈xk−1

2

⌉

.

Finally, let us note that (1) is equivalent to

νk(G) ≥

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Hence G is not a counter-example, which contradicts our assumption.

Remark 1. For any k ≥ 2, there is an infinite sequence of connected graphs G
containing one cycle such that

νk(G) =

⌊

νk−1(G) + νk+1(G)

2

⌋

.

Proof. Let k ≥ 2 be a fixed integer. For a positive integer l ≥ 2 consider the graph
G from Figure 7. G contains one cycle Cl of length l. Every vertex lying on Cl is of
degree k + 1. It is incident to two edges lying on the cycle and k − 1 other edges,
whose other endvertices are of degree one.

k − 1

Cl

Figure 7. The infinite sequence of graphs.
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It can be easily checked that

νk−1(G) = l · (k − 1),

νk(G) = l · (k − 1) +

⌊

l

2

⌋

,

νk+1(G) = |E(G)| = l · (k − 1) + l,

hence

νk(G) =

⌊

νk−1(G) + νk+1(G)

2

⌋

.

The next theorem follows from Theorem 1.

Theorem 3. For any k ≥ 2 and a connected bipartite graph G containing at most
1 cycle,

νk(G) ≥
νk−1(G) + νk+1(G)

2
.

Corollary 1. For any k ≥ 2 and a tree T

νk(T ) ≥
νk−1(T ) + νk+1(T )

2
.

Combined with the classical theorem of König [24], Corollary 1 implies:

Corollary 2. If T is a tree containing a perfect matching and ∆(T ) = 3, then

ν2(T ) ≥
3|V (T )| − 2

4
.

Remark 2. For any k ≥ 2, there is an infinite sequence of connected bipartite
graphs G containing 1 cycle such that

νk(G) =
νk−1(G) + νk+1(G)

2
.

Proof. Consider the sequence of graphs G from Remark 1 when l is even. Observe
that

νk(G) =
νk−1(G) + νk+1(G)

2
.

Our final remark shows that the proved inequalities are true when G need not
be connected.
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Remark 3. Let G be a graph containing at most 1 cycle. Then:

(1) if G is bipartite, then νk(G) ≥
νk−1(G)+νk+1(G)

2 ,

(2) νk(G) ≥
⌊

νk−1(G)+νk+1(G)
2

⌋

.

Proof. Let G be comprised of t connected components G(1), ..., G(t). Then for
j = k − 1, k, k + 1, we have

νj(G) = νj(G
(1)) + ... + νj(G

(t)).

Hence if G is bipartite, we have the statement (1). Let us prove (2). We can assume
that G(1) contains exactly one odd cycle. Hence G(2), ..., G(t) are trees. Let R be
the graph comprised of components G(2), ..., G(t). By (1), we have

νk(R) ≥
νk−1(R) + νk+1(R)

2
.

Also, since G(1) is connected, we have

νk(G
(1)) ≥

⌊

νk−1(G
(1)) + νk+1(G

(1))

2

⌋

.

Thus,

2νk(G) = 2νk(G(1)) + 2νk(R) ≥ νk−1(G
(1)) + νk+1(G

(1)) − 1 + νk−1(R) + νk+1(R)

= νk−1(G) + νk+1(G) − 1,

which is equivalent to

νk(G) ≥

⌊

νk−1(G) + νk+1(G)

2

⌋

.
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