Graphs, Disjoint Matchings and Some Inequalities

Lianna Hambardzumyan, Vahan Mkrtchyan

Abstract

A graph G is k-edge-colorable if the edges of G can be assigned a color from $\{1, \ldots, k\}$ so that adjacent edges of G receive different colors. A maximum k -edge-colorable subgraph of G is a k-edge-colorable subgraph of G containing maximum number of edges. For $k \geq 1$ and a graph G, let $\nu_{k}(G)$ denote the number of edges in a maximum k-edge-colorable subgraph of G. In 2010 Mkrtchyan, Petrosyan and Vardanyan proved that if G is a cubic graph, then $\nu_{2}(G) \leq \frac{|V(G)|+2 \cdot \nu_{3}(G)}{4}$ [13]. For cubic graphs containing a perfect matching, in particular, for bridgeless cubic graphs, this inequality can be stated as $\nu_{2}(G) \leq \frac{\nu_{1}(G)+\nu_{3}(G)}{2}$. One may wonder whether there are other well-known graph classes, where a similar result can be obtained. In this work, we prove lower bounds for $\nu_{k}(G)$ in terms of $\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}$ for $k \geq 2$ and graphs G containing at most 1 cycle. We also present the corresponding conjectures for nearly bipartite graphs.

Mathematics subject classification: 05C15, 05C70.
Keywords and phrases: Bipartite graph, Tree, Unicyclic graph, Edge-coloring, Parsimonious edge-coloring.

1 Introduction

In this paper graphs are assumed to be finite, undirected and without loops, though they may contain multi-edges. The set of vertices and edges of a graph G will be denoted by $V(G)$ and $E(G)$, respectively. The degree of a vertex u of G is denoted by $d_{G}(u)$. Let $\Delta(G)$ be the maximum degree of a vertex of G. A graph is cubic if every vertex has degree 3 .

A matching in a graph is a set of edges without common vertices. A matching which covers all vertices of the graph is called a perfect matching. A tree is a connected graph that does not contain a cycle. In the paper, we will consider trees as rooted. Let T be a tree and let r be a vertex of T. We will call r the root of T. Now, let u be any vertex of T. We will say that a vertex v of T is a child of u if v is adjacent to u and it does not lie on the unique path of T connecting u and r. A vertex w of T is called grand-child of u if w is a child of a child of u. Similarly, one can define the notion of a grand-grand-child, etc.

A graph G is called k-edge colorable if its edges can be assigned k colors so that adjacent edges receive different colors. A subgraph H of a graph G is called maximum k-edge-colorable if H is k-edge-colorable and contains maximum number of edges among all k-edge-colorable graphs. If H is a k-edge-colorable subgraph of G and $e \notin E(H)$, then we will say that e is an uncolored edge with respect to H. If

[^0]it is clear from the context with respect to which subgraph an edge is uncolored, we will not mention the subgraph.

By a classical result due to Shannon [17,20,22], we have that cubic graphs are 4 -edge-colorable. It is an interesting and useful problem to investigate the sizes of subgraphs of cubic graphs that are colorable only with 1,2 or 3 colors.

For $k \geq 1$ and a graph G let

$$
\nu_{k}(G)=\max \{|E(H)|: H \text { is a } k \text {-edge-colorable subgraph of } G\} .
$$

Albertson and Haas [1, 2], Steffen [18, 19] and Mkrtchyan et al.[13] investigated the lower bounds for $\frac{\nu_{k}(G)}{|V(G)|}$ in cubic graphs. As a result, in [13] an interesting relation between $\nu_{2}(G)$ and $\nu_{3}(G)$ is proved, which states that for any cubic graph G

$$
\nu_{2}(G) \leq \frac{|V(G)|+2 \cdot \nu_{3}(G)}{4} .
$$

Observe that when G contains a perfect matching $\left(\nu_{1}(G)=\frac{|V(G)|}{2}\right)$, in particular, when G is a bridgeless cubic graph, the above-mentioned inequality can be written as

$$
\nu_{2}(G) \leq \frac{\nu_{1}(G)+\nu_{3}(G)}{2}
$$

One may wonder whether a bound for $\nu_{2}(G)$ can be proved in terms of $\frac{\nu_{1}(G)+\nu_{3}(G)}{2}$ in other interesting graph classes. In the present work we investigate the problem in nearly bipartite graphs. Recall that a graph G is bipartite if $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that any edge of G joins a vertex from V_{1} to a vertex from V_{2}. G is nearly bipartite if G contains a vertex w such that $G-w$ is bipartite. Our conjecture states:

Conjecture 1. For any $k \geq 2$ and a nearly bipartite graph G,

$$
\nu_{k}(G) \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
$$

Let us note that in [12], the following result is obtained for bipartite graphs:
Theorem 1. [12] For any $k \geq 2, i=1, \ldots ., k$, and a bipartite graph G,

$$
\nu_{k}(G) \geq \frac{\nu_{k-i}(G)+\nu_{k+i}(G)}{2} .
$$

This theorem amounts to saying that the sequence ν_{k} is convex in the class of bipartite graphs. Our main result states that Conjecture 1 is true for graphs G containing at most 1 cycle. Let us note that in [12], the following general conjecture is presented, which if true, would imply Conjecture 1:

Conjecture 2. [12] For any $k \geq 2, i=1, \ldots, k$, and a graph G,

$$
\nu_{k}(G) \geq \frac{\nu_{k-i}(G)+\nu_{k+i}(G)-b(G)}{2}
$$

Finally, let us note that the lower bounds for $\frac{\nu_{k}(G)}{|V(G)|}$ in cubic graphs has been investigated in $[4,9,14,15,23]$ when $k=1$, and for regular graphs of high girth in [6]. This lower bounds has also been investigated in the case when the graphs need not be cubic [7,11, 16].

Terms and concepts that we do not define, can be found in $[8,24]$.

2 The main result

In this section, we prove some lemmas that will be helpful later in the section. Then we verify Conjecture $\$$ for unicyclic graphs (graphs containing exactly 1 cycle).

Lemma 1. Let G be a graph, and let $e=(u, v) \in E(G)$. Assume that $d_{G}(u)=1$. Then for any $k \geq 1$, there is a maximum k-edge-colorable subgraph H_{k} of G such that $e \in E\left(H_{k}\right)$.

Proof. Let H_{k} be any maximum k-edge-colorable subgraph of G. If $e \in E\left(H_{k}\right)$, then we are done. Thus, we can assume that $e \notin E\left(H_{k}\right)$. Since H_{k} is a maximum k-edge-colorable subgraph of G and $d_{G}(u)=1$, there is an edge $e^{\prime} \in E\left(H_{k}\right)$ such that e^{\prime} is incident to v. Consider the subgraph H_{k}^{\prime} of G defined as follows: $E\left(H_{k}^{\prime}\right)=$ $\left(E\left(H_{k}\right) \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$. Observe that H_{k}^{\prime} is k-edge-colorable, $e \in E\left(H_{k}^{\prime}\right)$ and $\left|E\left(H_{k}^{\prime}\right)\right|=$ $\left|E\left(H_{k}\right)\right|$, hence H_{k}^{\prime} is a maximum k-edge-colorable subgraph of G containing e.

Lemma 2. Let $k \geq 1, G$ be a connected graph, and let $e=(u, v) \in E(G)$ be a bridge of G. Assume that there is a maximum k-edge-colorable subgraph H_{k} of G such that $e \in E\left(H_{k}\right)$. Then

$$
\nu_{k}(G)=\nu_{k}\left(G_{1} e\right)+\nu_{k}\left(G_{2} e\right)-1 .
$$

Here G_{1} and G_{2} are the components of $G-e$, and $G_{1} e, G_{2} e$ are the supergraphs of G_{1} and G_{2}, respectively, that satisfy the equalities $E\left(G_{1} e\right)=E\left(G_{1}\right) \cup\{e\}$ and $E\left(G_{2} e\right)=E\left(G_{2}\right) \cup\{e\}$.
Proof. Let $H^{(1)}$ and $H^{(2)}$ be the restrictions of H_{k} in the graphs $G_{1} e$ and $G_{2} e$, respectively. Clearly, these subgraphs are k-edge-colorable. We claim that $H^{(1)}$ and $H^{(2)}$ are maximum k-edge-colorable subgraphs of $G_{1} e$ and $G_{2} e$, respectively. Assume that $\left|E\left(H^{(1)}\right)\right|<\nu_{k}\left(G_{1} e\right)$. Then, by Lemma there is a maximum k-edgecolorable subgraph $H^{\prime(1)}$ containing e. Consider the subgraph H_{k}^{\prime} of G defined as follows:

$$
E\left(H_{k}^{\prime}\right)=\left(E\left(H_{k}\right) \backslash E\left(H^{(1)}\right)\right) \cup E\left(H^{\prime(1)}\right) .
$$

Observe that H_{k}^{\prime} is k-edge-colorable and $\left|E\left(H_{k}^{\prime}\right)\right|>\left|E\left(H_{k}\right)\right|$ contradicting the choice of H_{k}. Similarly, one can prove that $H^{(2)}$ is a maximum k-edge-colorable subgraphs of $G_{2} e$.

We have the following chain of equalities:

$$
\nu_{k}(G)=\left|E\left(H_{k}\right)\right|=\left|E\left(H^{(1)}\right)\right|+\left|E\left(H^{(2)}\right)\right|-1=\nu_{k}\left(G_{1} e\right)+\nu_{k}\left(G_{2} e\right)-1
$$

Our first theorem verifies Conjecture 1 for connected graphs with at most 1 cycle.
Theorem 2. For any $k \geq 2$ and a connected graph G containing at most 1 cycle,

$$
\nu_{k}(G) \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
$$

Proof. Assume that the statement of the theorem is wrong. Consider all possible counter-examples G and among them choose one minimizing $|V(G)|+|E(G)|$. Clearly, $|V(G)| \geq 3$. Moreover, $\Delta(G) \geq 3$ (the statement of the theorem is true for cycles and paths).

Let T be a tree defined as follows: if G is a tree, then $T=G$, otherwise $T=G / C$. Here C is the only cycle of G, and T is the tree obtained from G by contracting C to a vertex v_{C}. View T as a rooted tree. The root of T is any of its vertices, if $G=T$, and is the vertex v_{C}, otherwise. Below, we will speak about children, grand-children of vertices of G. This relationship will be viewed from the perspective of the tree T.

Let us show that there is no vertex of G with degree 2 that is adjacent to a vertex of degree 1 . On the opposite assumption, consider a vertex z of degree 2 that is adjacent to a vertex y of degree 1 . Observe that since $k \geq 2$, we have $\nu_{i}(G)=1+\nu_{i}(G-y)$ for $i=k, k+1$ and $\nu_{k-1}(G) \leq 1+\nu_{k-1}(G-y)$. Thus, we will have:

$$
\begin{aligned}
\nu_{k}(G) & =\nu_{k}(G-y)+1 \geq\left\lfloor\frac{\nu_{k-1}(G-y)+\nu_{k+1}(G-y)}{2}\right\rfloor+1 \\
& =\left\lfloor\frac{\nu_{k-1}(G-y)+1+\nu_{k+1}(G-y)+1}{2}\right\rfloor \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
\end{aligned}
$$

Here we used the fact that $G-y$ is not a counter-example to our statement. Thus, there is no vertex of G that has degree 2 is adjacent to a vertex of degree 1 .

Next, let us show that all vertices of G with degree at least 3 lie on C, the unique cycle of G. On the opposite assumption, consider a vertex x of degree at least 3 that does not lie on the cycle and it has no children, grand-children, etc. that are of degree at least 3 . Observe that all the children of x are of degree 1 . We will consider some cases.

Case 1: $d_{G}(x) \geq k+2$. Then G can be represented as in Figure 1 .
It can be easily seen that in this case there is an edge e adjacent to x such that $\nu_{i}(G)=\nu_{i}(G-e)$ for $i=k-1, k, k+1$. Hence, we have:

$$
\nu_{k}(G)=\nu_{k}(G-e) \geq\left\lfloor\frac{\nu_{k-1}(G-e)+\nu_{k+1}(G-e)}{2}\right\rfloor=\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
$$

Figure 1. $\quad d_{G}(x) \geq k+2$
k

Figure 2. $\quad d_{G}(x)=k+1$

Here we used the fact that $G-e$ is not a counter-example to our statement.
Case 2: $3 \leq d_{G}(x)=k+1$. Then G can be represented as in Figure 2, Here E^{\prime} denotes the edge-set of the component of $G-e$ containing x.

We have

$$
\begin{gathered}
\nu_{k-1}(G) \leq \nu_{k-1}\left(G^{\prime}\right)+\left|E^{\prime}\right|-1 \\
\nu_{k}(G)=\nu_{k}\left(G^{\prime}\right)+\left|E^{\prime}\right| \\
\nu_{k+1}(G)=\nu_{k+1}\left(G^{\prime} e\right)+\left|E^{\prime}\right|
\end{gathered}
$$

It is easy to see that $\nu_{k+1}\left(G^{\prime} e\right) \leq \nu_{k+1}\left(G^{\prime}\right)+1$. Since G^{\prime} is not a counter-example to our statement, we have

$$
\left\lfloor\frac{\nu_{k-1}\left(G^{\prime}\right)+\nu_{k+1}\left(G^{\prime} e\right)-1}{2}\right\rfloor \leq\left\lfloor\frac{\nu_{k-1}\left(G^{\prime}\right)+\nu_{k+1}\left(G^{\prime}\right)}{2}\right\rfloor \leq \nu_{k}\left(G^{\prime}\right) .
$$

The last inequality, in its turn, implies:
$\nu_{k}(G)=\nu_{k}\left(G^{\prime}\right)+\left|E^{\prime}\right| \geq\left\lfloor\frac{\nu_{k-1}\left(G^{\prime}\right)+\nu_{k+1}\left(G^{\prime} e\right)-1}{2}\right\rfloor+\left|E^{\prime}\right| \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor$.
Case 3: $3 \leq d_{G}(x)=k$. Then G can be represented as in Figure 3, Here E^{\prime} denotes the edge-set of the component of $G-e$ containing x.

We have the following equalities:

$$
\begin{aligned}
\nu_{k-1}(G) & =\nu_{k-1}\left(G^{\prime}\right)+\left|E^{\prime}\right|, \\
\nu_{k}(G) & =\nu_{k}\left(G^{\prime} e\right)+\left|E^{\prime}\right| \\
\nu_{k+1}(G) & =\nu_{k+1}\left(G^{\prime} e\right)+\left|E^{\prime}\right| .
\end{aligned}
$$

Figure 3. $\quad d_{G}(x)=k$

$$
\leq k-2
$$

Figure 4. $\quad d_{G}(x) \leq k-1$

It is easy to see that $\nu_{k-1}\left(G^{\prime}\right) \leq \nu_{k-1}\left(G^{\prime} e\right)$. Since $G^{\prime} e$ is not a counter-example, we have

$$
\left\lfloor\frac{\nu_{k-1}\left(G^{\prime}\right)+\nu_{k+1}\left(G^{\prime} e\right)}{2}\right\rfloor \leq\left\lfloor\frac{\nu_{k-1}\left(G^{\prime} e\right)+\nu_{k+1}\left(G^{\prime} e\right)}{2}\right\rfloor \leq \nu_{k}\left(G^{\prime} e\right)
$$

The last inequality, in turn, implies:
$\nu_{k}(G)=\nu_{k}\left(G^{\prime} e\right)+\left|E^{\prime}\right| \geq\left\lfloor\frac{\nu_{k-1}\left(G^{\prime}\right)+\nu_{k+1}\left(G^{\prime} e\right)}{2}\right\rfloor+\left|E^{\prime}\right|=\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor$.
Case 4: $3 \leq d_{G}(x) \leq k-1$. Then G can be represented as in Figure 4. Here E^{\prime} denotes the edge-set of the component of $G-e$ containing x. We have the following equalities:

$$
\begin{aligned}
\nu_{k-1}(G) & =\nu_{k-1}\left(G^{\prime} e\right)+\left|E^{\prime}\right|, \\
\nu_{k}(G) & =\nu_{k}\left(G^{\prime} e\right)+\left|E^{\prime}\right|, \\
\nu_{k+1}(G) & =\nu_{k+1}\left(G^{\prime} e\right)+\left|E^{\prime}\right| .
\end{aligned}
$$

Since $G^{\prime} e$ is not a counter-example, we have

$$
\nu_{k}\left(G^{\prime} e\right) \geq\left\lfloor\frac{\nu_{k-1}\left(G^{\prime} e\right)+\nu_{k+1}\left(G^{\prime} e\right)}{2}\right\rfloor .
$$

Hence,

$$
\begin{aligned}
\nu_{k}(G) & =\nu_{k}\left(G^{\prime} e\right)+\left|E^{\prime}\right| \geq\left\lfloor\frac{\nu_{k-1}\left(G^{\prime} e\right)+\nu_{k+1}\left(G^{\prime} e\right)}{2}\right\rfloor+\left|E^{\prime}\right| \\
& =\left\lfloor\frac{\nu_{k-1}\left(G^{\prime} e\right)+\left|E^{\prime}\right|+\nu_{k+1}\left(G^{\prime} e\right)+\left|E^{\prime}\right|}{2}\right\rfloor=\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
\end{aligned}
$$

Figure 5. $\quad d_{G}(x) \geq k+2$
$\leq k-1$

Figure 6. $\quad d_{G}(x) \leq k+1$

The considered cases imply that all vertices of G with degree at least 3 lie on C. If there is a vertex x of G lying on C with $d_{G}(x) \geq k+2$, then G can be represented as in Figure 5 .

Observe that there is an edge e of C that is incident to x and $\nu_{k+1}(G)=\nu_{k+1}(G-$ $e)$. Moreover, for any edge f of C that is incident to $x, \nu_{i}(G)=\nu_{i}(G-f)$ for $i=k-1, k$. Hence we have:

$$
\nu_{k}(G)=\nu_{k}(G-e) \geq\left\lfloor\frac{\nu_{k-1}(G-e)+\nu_{k+1}(G-e)}{2}\right\rfloor=\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
$$

Here the inequality follows from the fact that $G-e$ is not a counter-example to our statement.

Thus, we can assume that for any vertex x of G lying on C, we have $d_{G}(x) \leq k+1$. Then G can be represented as in Figure 6.

Let us show that $\nu_{k+1}(G)=|E(G)|$, that is, G is $(k+1)$-edge-colorable. Consider the colors $\{1,2, \ldots, k, k+1\}$. Color the edges of the cycle C with colors $1,2,3$. Observe that at each vertex of C only two colors will be present. Hence at each vertex of C $k-1$ colors will be missing. Since each vertex x of C is adjacent to at most $k-1$ vertices lying outside C, we can extend the edge-coloring of C, to a ($k+1$)-edgecoloring of G.

Define x_{k-1} and x_{k} as the minimum number of edges of C that one needs to remove from G in order to obtain a $(k-1)$ - or k-edge-colorable subgraph of G, respectively. We have:

$$
\begin{gathered}
\nu_{k-1}(G)=|E(G)|-x_{k-1}, \\
\nu_{k}(G)=|E(G)|-x_{k}, \\
\nu_{k+1}(G)=|E(G)| .
\end{gathered}
$$

Let us show that

$$
\begin{equation*}
x_{k} \leq\left\lceil\frac{x_{k-1}}{2}\right\rceil . \tag{1}
\end{equation*}
$$

Let J_{k-1} be a subgraph of C such that $G-E\left(J_{k-1}\right)$ is ($k-1$)-edge-colorable and $\left|E\left(J_{k-1}\right)\right|=x_{k-1}$. Observe that $\Delta\left(J_{k-1}\right) \leq 2$, hence

$$
\nu_{1}\left(J_{k-1}\right) \geq\left\lfloor\frac{\left|E\left(J_{k-1}\right)\right|}{2}\right\rfloor=\left\lfloor\frac{x_{k-1}}{2}\right\rfloor .
$$

Let M_{k-1} be a maximum matching of J_{k-1}. Then $G-\left(E\left(J_{k-1}\right) \backslash M_{k-1}\right)$ is k-edgecolorable, hence

$$
x_{k} \leq\left|E\left(J_{k-1}\right) \backslash M_{k-1}\right| \leq\left\lceil\frac{\left|E\left(J_{k-1}\right)\right|}{2}\right\rceil=\left\lceil\frac{x_{k-1}}{2}\right\rceil .
$$

Finally, let us note that (1) is equivalent to

$$
\nu_{k}(G) \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor
$$

Hence G is not a counter-example, which contradicts our assumption.
Remark 1. For any $k \geq 2$, there is an infinite sequence of connected graphs G containing one cycle such that

$$
\nu_{k}(G)=\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
$$

Proof. Let $k \geq 2$ be a fixed integer. For a positive integer $l \geq 2$ consider the graph G from Figure 7. G contains one cycle C_{l} of length l. Every vertex lying on C_{l} is of degree $k+1$. It is incident to two edges lying on the cycle and $k-1$ other edges, whose other endvertices are of degree one.

Figure 7. The infinite sequence of graphs.

It can be easily checked that

$$
\begin{aligned}
\nu_{k-1}(G) & =l \cdot(k-1) \\
\nu_{k}(G) & =l \cdot(k-1)+\left\lfloor\frac{l}{2}\right\rfloor \\
\nu_{k+1}(G) & =|E(G)|=l \cdot(k-1)+l
\end{aligned}
$$

hence

$$
\nu_{k}(G)=\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor
$$

The next theorem follows from Theorem 1.
Theorem 3. For any $k \geq 2$ and a connected bipartite graph G containing at most 1 cycle,

$$
\nu_{k}(G) \geq \frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}
$$

Corollary 1. For any $k \geq 2$ and a tree T

$$
\nu_{k}(T) \geq \frac{\nu_{k-1}(T)+\nu_{k+1}(T)}{2}
$$

Combined with the classical theorem of König [24], Corollary 1 implies:
Corollary 2. If T is a tree containing a perfect matching and $\Delta(T)=3$, then

$$
\nu_{2}(T) \geq \frac{3|V(T)|-2}{4}
$$

Remark 2. For any $k \geq 2$, there is an infinite sequence of connected bipartite graphs G containing 1 cycle such that

$$
\nu_{k}(G)=\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}
$$

Proof. Consider the sequence of graphs G from Remark 1 when l is even. Observe that

$$
\nu_{k}(G)=\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}
$$

Our final remark shows that the proved inequalities are true when G need not be connected.

Remark 3. Let G be a graph containing at most 1 cycle. Then:
(1) if G is bipartite, then $\nu_{k}(G) \geq \frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}$,
(2) $\nu_{k}(G) \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor$.

Proof. Let G be comprised of t connected components $G^{(1)}, \ldots, G^{(t)}$. Then for $j=k-1, k, k+1$, we have

$$
\nu_{j}(G)=\nu_{j}\left(G^{(1)}\right)+\ldots+\nu_{j}\left(G^{(t)}\right) .
$$

Hence if G is bipartite, we have the statement (1). Let us prove (2). We can assume that $G^{(1)}$ contains exactly one odd cycle. Hence $G^{(2)}, \ldots, G^{(t)}$ are trees. Let R be the graph comprised of components $G^{(2)}, \ldots, G^{(t)}$. By (1), we have

$$
\nu_{k}(R) \geq \frac{\nu_{k-1}(R)+\nu_{k+1}(R)}{2} .
$$

Also, since $G^{(1)}$ is connected, we have

$$
\nu_{k}\left(G^{(1)}\right) \geq\left\lfloor\frac{\nu_{k-1}\left(G^{(1)}\right)+\nu_{k+1}\left(G^{(1)}\right)}{2}\right\rfloor .
$$

Thus,

$$
\begin{aligned}
2 \nu_{k}(G) & =2 \nu_{k}\left(G^{(1)}\right)+2 \nu_{k}(R) \geq \nu_{k-1}\left(G^{(1)}\right)+\nu_{k+1}\left(G^{(1)}\right)-1+\nu_{k-1}(R)+\nu_{k+1}(R) \\
& =\nu_{k-1}(G)+\nu_{k+1}(G)-1,
\end{aligned}
$$

which is equivalent to

$$
\nu_{k}(G) \geq\left\lfloor\frac{\nu_{k-1}(G)+\nu_{k+1}(G)}{2}\right\rfloor .
$$

References

[1] M. Albertson and R. Haas, Parsimonious edge coloring, Discrete Math., (148): 1-7, 1996.
[2] M. Albertson and R. Haas, The edge chromatic difference sequence of a cubic graph, Discrete Math., (177): 1-8, 1997.
[3] D. Aslanyan, V. Mkrtchyan, S. Petrosyan, and G. Vardanyan, On disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs, Discrete Appl. Math., (172): 12-27, 2014.
[4] B. Bollobas, Extremal Graph Theory, Academic Press, London, New York, San Francisco, 1978.
[5] A. Cavicchioli, M. Meschiari, B. Ruini, and F. Spaggiari, A survey on snarks and new results: Products, reducibility and a computer search, J. Graph Theory 28(2): 57-86, 1998.
[6] A. D. Flaxman and S. Hoory, Maximum matchings in regular graphs of high girth, Electron. J. Combin. 14(1): 1-4, 2007.
[7] J.-L. Fouquet and J.-M. Vanherpe, On parsimonious edge-colouring of graphs with maximum degree three, Graphs Combin., 29(3): 475-487, 2013.
[8] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[9] M. A. Henning and A. Yeo, Tight lower bounds on the size of a maximum matching in a regular graph, Graphs Combin., 23(6): 647-657, 2007.
[10] S. il Oum, Perfect matchings in claw-free cubic graphs, Electron. J. Combin. 18(1), P62, 2011.
[11] M. J. Kaminski and L. Kowalik, Beyond the Vizing's bound for at most seven colors, SIAM J. Discrete Math., 28(3): 1334-1362, 2014.
[12] L. Karapetyan, V.V. Mkrtchyan, On maximum k-edge-colorable subgraphs of bipartite graphs, Discrete Appl. Math., 257(31), 226-232, 2019.
[13] V. Mkrtchyan, S. Petrosyan, and G. Vardanyan, On disjoint matchings in cubic graphs, Discrete Math., (310):1588-1613, 2010.
[14] T. Nishizeki, On the maximum matchings of regular multigraphs, Discrete Math., 37:105-114, 1981.
[15] T. Nishizeki and I. Baybars, Lower bounds on the cardinality of the maximum matchings of planar graphs, Discrete Math., 28: 255-267, 1979.
[16] R. Rizzi, Approximating the maximum 3-edge-colorable subgraph problem, Discrete Math., 309(12): 4166-4170, 2009.
[17] C. E. Shannon, A theorem on coloring the lines of a network, J. Math. Phys., (28): 148-151, 1949.
[18] E. Steffen, Classifications and characterizations of snarks, Discrete Math., (188): 183-203, 1998.
[19] E. Steffen, Measurements of edge-uncolorability, Discrete Math., (280): 191-214, 2004.
[20] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt, Graph Edge Coloring, John Wiley and Sons, 2012.
[21] D. P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc., (42): 8-12, 1974.
[22] V. Vizing, On an estimate of the chromatic class of a p-graph, Discret Analiz, (3): 25-30, 1964.
[23] J. Weinstein, Large matchings in graphs, Canad. J. Math., 26(6): 1498-1508, 1974.
[24] D. West., Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, 1996.

Lianna Hambardzumyan
Received February 28, 2020
Department of Informatics and Applied Mathematics, Yerevan State University, Yerevan, 0025, Armenia
E-mail: lianna.hambardzumyan@mail.mcgill.ca
Vahan Mkrtchyan
Gran Sasso Science Institute, School
of Advanced Studies, L'Aquila, Italy
E-mail: vahan.mkrtchyan@gssi.it

[^0]: © L. Hambardzumyan, V. Mkrtchyan, 2023
 DOI: https://doi.org/10.56415/basm.y2023.i3.p26

