On the order of recursive differentiability of finite binary quasigroups

Parascovia Syrbu

Abstract

The recursive derivatives of an algebraic operation are defined in [1], where they appear as control mappings of complete recursive codes. It is proved in [1], in particular, that the recursive derivatives of order up to r of a finite binary quasigroup ($Q, \cdot)$ are quasigroup operations if and only if (Q, \cdot) defines a recursive MDS-code of length $r+3$. The author of the present note gives an algebraic proof of an equivalent statement: a finite binary quasigroup (Q, \cdot) is recursively r-differentiable ($r \geq 0$) if and only if the system consisting of its recursive derivatives of order up to r and of the binary selectors, is orthogonal. This involves the fact that the maximum order of recursive differentiability of a finite binary quasigroup of order q does not exceed $q-2$.

Mathematics subject classification: 20N05, 20N15, 11 T 71.
Keywords and phrases: quasigroup, recursive derivative, recursively differentiable quasigroup.

The notions of recursive derivative and recursively differentiable quasigroup have been introduced in [1], where the authors considered recursive MDS-codes (Maximum Distance Separable codes).

Let denote by $A^{(t)}$ the recursive derivative of order $t \geq 0$ of a binary groupoid (Q, A), which is defined as follows:

$$
\begin{aligned}
& A^{(0)}=A, \\
& A^{(1)}(x, y)=A\left(y, A^{(0)}(x, y)\right), \\
& A^{(t)}(x, y)=A\left(A^{(t-2)}(x, y), A^{(t-1)}(x, y)\right), \forall t \geq 2, \forall x, y \in Q .
\end{aligned}
$$

A quasigroup (Q, A) is called recursively r-differentiable if the recursive derivatives $A^{(0)}, A^{(1)}, \ldots, A^{(r)}$ are quasigroup operations ($r \geq 0$).

The notion of recursive derivative of a k-ary quasigrup (Q, A), where $k \geq 2$, is defined in a similar way:

$$
\begin{aligned}
& A^{(0)}=A, \\
& A^{(t)}\left(x_{1}^{k}\right)=A\left(x_{t+1}, \ldots, x_{k}, A^{(0)}\left(x_{1}^{k}\right), \ldots, A^{(t-1)}\left(x_{1}^{k}\right)\right), \text { if } 1 \leq t<k ; \\
& A^{(t)}\left(x_{1}^{k}\right)=A\left(A^{(t-k)}\left(x_{1}^{k}\right), \ldots, A^{(k-1)}\left(x_{1}^{k}\right)\right), \text { if } t \geq k, \forall x_{1}, \ldots, x_{k} \in Q
\end{aligned}
$$

(we denote by x_{1}^{k} the sequence $x_{1}, x_{2}, \ldots, x_{k}$).
The length n of the codewords in a k-recursive code

$$
C(n, A)=\left\{\left(x_{1}, \ldots, x_{k}, A^{(0)}\left(x_{1}^{k}\right), \ldots, A^{(n-k-1)}\left(x_{1}^{k}\right)\right) \mid x_{1}, \ldots, x_{k} \in Q\right\}
$$

[^0]given on an alphabet Q of q elements, where $A: Q^{k} \rightarrow Q$ is the defining k-ary operation, satisfies the condition $n \leq r+k+1$, where r is the maximum order of the used recursive derivatives of (Q, A). On the other hand, $C(n, A)$ is an MDS-code if and only if $d=n-k+1$, where d is the minimum Hamming distance of this code. At present it is an open problem to determine all triplets (n, d, q) of natural numbers such that there exists an MDS-code C of length n, on an alphabet of q elements, with $|C|=q^{k}$ and with the minimum Hamming distance d, for each $k \geq 2$. This general question implies, in particular, the problem of determining the maximum order of recursive differentiability of finite k-ary quasigroups ($k \geq 2$).

It is known that there exist recursively 1-differentiable finite binary quasigroups of each order, excepting $1,2,6$, and possibly $14,18,26[1,2]$. Estimations of the maximum order r of recursive differentiability of finite n-quasigroups ($n \geq 2$) are given in $[1,3-6]$. General properties of recursively differentiable binary quasigroups are studied in $[5,8]$.

The recursive differentiability of quasigroups is closely connected to the orthogonality of the recursive derivatives $[1,5,8]$. It is shown in [1] that a k-quasigroup defines an MDS-code of length n if and only if its first $n-k-1$ recursive derivatives are strongly orthogonal. Hence the defining k-quasigroup operation of a recursive MDS-code of length n is recursively ($n-k-1$)-differentiable. On the other hand, it is known that a system of binary quasigroups is strongly orthogonal if and only if it is (simply) orthogonal [7]. It is proved in [1] that the recursive derivatives of order up to r of a finite binary quasigroup $(Q, *)$ are quasigroup operations if and only if $(Q, *)$ defines a recursive MDS-code of length $r+3$.

In the present note we give an algebraic proof of the statement: a finite binary quasigroup $(Q, *)$ is recursively r-differentiable if and only if the system consisting of its recursive derivatives of order up to r is strongly orthogonal. This statement implies the fact that $r \leq q-2$, where $q=|Q|$ and r is the maximum order of the recursive differentiability of the quasigroup Q.

Two binary operations A and B, defined on a set Q , are called orthogonal if the system of equations $A(x, y)=a, B(x, y)=b$ has a unique solution in Q, for every $a, b \in Q$. It follows from the previous definition that two binary operations A and B, defined on a set Q , are orthogonal if and only if the mapping

$$
\sigma: Q \times Q \mapsto Q \times Q, \sigma(x, y)=(A(x, y), B(x, y))
$$

is a bijection.
A system of binary operations $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, n \geq 2$, is said to be orthogonal if each two operations are orthogonal.

Denoting by F and E the binary selectors on a set $Q: F(x, y)=x$ and $E(x, y)=$ $y, \forall x, y \in Q$, we get that a binary groupoid (Q, A) is a quasigroup if and only if A is orthogonal to each of two selectors.

Let (Q, A) be a binary quasigroup. It was observed by G. Belyavskaya [8] that $A^{(k)}=A \theta^{n}, \forall k \geq 1$, where $\theta=(E, A)$. An analogous representation for the recursive derivatives of k-ary operations $(k \geq 2)$ was given in [5].

Theorem 1. A finite binary quasigroup (Q, A) is recursively n-differentiable if and only if the system $\left\{F, E, A, A^{(1)}, \ldots, A^{(n)}\right\}$ is orthogonal.

Proof. Let (Q, A) be a recursively n-differentiable finite binary quasigroup. Then the recursive derivatives $A^{(1)}, \ldots, A^{(n)}$ are quasigroup operations, so each recursive derivative A^{k} of the system is orthogonal to the selectors F and E.

Now, let k and s be two distinct numbers between 0 and $n: 0 \leq k<s \leq n$. As

$$
\left(A^{(k)}, A^{(s)}\right)=\left(A \theta^{k}, A \theta^{s}\right)=\left(A, A^{(s-k)}\right) \theta^{k}
$$

where $\theta=(E, A)$ is a bijection, we get that $A^{(k)}$ and $A^{(s)}$ are orthogonal if and only if A and $A^{(s-k)}$ are orthogonal, i.e. if and only if A and $A^{(m)}$ are orthogonal, for every $m=1,2, \ldots, n$. On the other hand,

$$
A^{(m)}(x, y)=A^{(m-1)}(E, A)(x, y)=A^{(m-1)}(y, A(x, y))
$$

hence the system of equations

$$
\left\{\begin{array}{l}
A(x, y)=a \\
A^{(m)}(x, y)=b
\end{array}\right.
$$

is equivalent to

$$
\left\{\begin{array}{l}
A(x, y)=a \\
A^{(m-1)}(y, a)=b
\end{array}\right.
$$

which has a unique solution as A and $A^{(m-1)}$ are quasigroup operations. Therefore the system $\left\{F, E, A, A^{(1)}, \ldots, A^{(n)}\right\}$ is orthogonal.

Conversely, if the system $\left\{F, E, A, A^{(1)}, \ldots, A^{(n)}\right\}$ is orthogonal, then each of the recursive derivatives $A, A^{(1)}, \ldots, A^{(n)}$ is orthogonal to the selectors F and E, hence the recursive derivatives of order up to n are quasigroup operations, i.e. (Q, A) is recursively n-orthogonal.

Corollary 1. The maximum order r of recursive differentiability of a finite binary quasigroup of order q does not exceed $q-2$.

Proof. The proof follows from the fact that there exist at most $q-1$ pairwise orthogonal latin squares of order q, which implies that the maximum order r of recursive differentiability satisfies the inequality $r+1 \leq q-1$, hence $r \leq q-2$.

It is shown in [1] that there exist recursively ($q-2$)-differentiable finite binary quasigroups of every primary order $q \geq 3$. However, it is an open problem to find the maximum order of recursive differentiability of finite k-ary quasigroups of order q, for $k \geq 2$ and an arbitrary non-primary q.

Acknowledgment. This work is partially supported by National Agency for Research and Development of the Republic of Moldova, project 20.80009.5007.25.

References

[1] Couselo E., Gonzalez S., Markov V., Nechaev A. Recursive MDS-codes and recursively differentiable quasigroups, Discret. Mat., 10, no.2, 1998, 3-29 (Russian).
[2] Markov V., Nechaev A., Skazhenik S., Tveritinov E. Pseudogeometries with clusters and an example of a recursive $[4,2,3]_{42}$-code,J. Math. Sci. 163, no. 5, 2009, 563-571.
[3] Couselo E., Gonzalez S., Markov V., Nechaev A. Parameters of recursive MDS-codes, Discrete Math. Appl. 10, no.5, 2000, 433-454.
[4] Abashin A.S. Linear recursive MDS-codes of dimention 2 and 3, Discrete Math. Appl. 12, no.3, 2000, 319-332.
[5] Izbash V., Syrbu P. Recursively differentiable quasigroups and complete recursive codes. Comment.Math.Univ.Carolin. 45, no. 2, 2004, 257-263.
[6] Syrbu P., Cuzneţov E. On recursively differentiable k - quasigroups. Bul. Acad. Ştiinţe Repub. Mold. Mat., 99, no. 2, 2022, 68-75.
[7] Keedwell A.D., Denes J. Latin Squares and Their Applications. Second edition. North Holland, 2015, 424 p.
[8] Belyavskaya G.B. Recursively r-differentiable quasigroups within S-systems and MDS-codes. Quasigroups and Related Systems, 20, 2012, no.2, 157-168.

Parascovia Syrbu
Received July 21, 2022
Moldova State University,
Department of Mathematics
E-mail: parascovia.syrbu@gmail.com

[^0]: (C) P. Syrbu, 2023

 DOI: https://doi.org/10.56415/basm.y2023.i3.p103

