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On recursive 1-differentiability of the quasigroup

prolongations
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Abstract. The recursive differentiability of finite binary quasigroups is investi-
gated. We consider the Bruck and Belousov constructions of prolongation of finite
quasigroups and give necessary and sufficient conditions when such prolongations are
recursively 1-differentiable.
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The first construction of a quasigroup prolongation was proposed by Bruck (see
[1]) for the case of idempotent quasigroups in 1944. However, the notion of prolonga-
tion was introduced by Belousov (see [2]) in 1967. Constructions of prolongations of
finite quasigroups have been given by Osborn (1961), Yamamoto (1961), Denes and
Pasztor (1963), Belousov and Belyavskaya (1968), Belyavskaya (1969), Deriyenko
and Dudek (2008, 2013) and others (see [7]).

Belousov considered a construction of prolongations based on complete mappings
[2]. Recall that a complete mapping of a quasigroup Q, ·) is a bijection x 7→ θ(x)
of Q onto Q such that x · θ(x) = θ1(x) is also a bijective mapping of Q onto Q.
The determination of all quasigroups, in particular groups, which possess a com-
plete mapping remains at present an open problem [7]. In finite case, the complete
mappings of quasigroups define transversals of their Cayley tables. A transversal of
a latin square of order q is a set of q cells, taken by one from each row and each
column, such that the elements in these cells are pairwise different.

Let (Q, ·) be a finite quasigroup of order q, and let σ : Q 7→ Q be a complete
mapping. Then {(x, σ(x))|x ∈ Q} is a transversal of the latin square given by the
Cayley table of (Q, ·). The prolongation (Q′, ◦) of (Q, ·), where Q′ = Q ∪ {ξ} and
ξ 6∈ Q, considered by Belousov, is defined as follows:

x ◦ y =























x · y if y 6= σ(x) and x, y ∈ Q;
ξ if y = σ(x) and x, y ∈ Q;
x · σ(x) if y = ξ and x ∈ Q;
σ−1(y) · y if x = ξ and y ∈ Q;
ξ if x = y = ξ.

Analogously, we may construct prolongations of order q + k if (Q, ·) has k pairwise
distinct transversals.
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In the present work we study the recursive differentiability of Bruck and Belousov
prolongations, obtained by adding one element to a finite quasigroup.

The notions of recursive derivative and recursively r-differentiable k-quasigroup
(r ≥ 0, k ≥ 2) have been introduced in [3] in connection with complete k-recursive
codes.

Let Q be a finite set of q elements. Any nonempty subset C of Qn is called an n-
code (or a code of length n) over the alphabet Q. An n-code C ⊆ Qn, where |Q| = q,
with the minimum Hamming distance d, is called an [n, k, d]q-code if |C| = qk. It is
known that the parameters of an [n, k, d]q-code satisfy the inequality d ≤ n − k + 1
[7]. An [n, k, d]q-code with d = n − k + 1, i.e. which attains the Singleton bound,
is called an MDS-code. At present it is an open problem to determine all values of
the parameters q, n and d (for a fixed k ≥ 2) such that there exist [n, k, d]q-codes
meeting the Singleton bound.

A code C of length n over an alphabet Q is called a complete k-recursive code,
where 1 ≤ k ≤ n, if there exists a mapping f : Qk 7→ Q such that the components
of every code word u = (u0, u1, ..., un−1) ∈ C satisfy the conditions:

ui+k = f(ui, ui+1, ..., ui+k−1),

for every i = 0, 1, ..., n − k. So, if C is a complete k-recursive code of length n, over
an alphabet Q, then there exist the mappings f (0), f (1), ..., f (n−k−1) : Qk 7→ Q such
that C = {(x1, ..., xk, f (0)(xk

1), ..., f
(n−k−1)(xk

1)) | x1, ..., xk ∈ Q}, where

f (0)(xk
1) = f(xk

1),
f (1)(xk

1) = f(x2, ..., xk, f (0)(xk
1)),

..........
f (t)(xk

1) = f(xt+1, ..., xk, f (0)(xk
1), ..., f

(t−1)(xk
1)), for t < k, and

f (t)(xk
1) = f(f (t−k)(xk

1), ..., f
(t−1)(xk

1)), for t ≥ k.

The mapping f (t)(xk
1), where t ≥ 0, is called the recursive derivative of order

t of f . We say that a k-ary quasigroup (Q, f) is recursively s-differentiable if its
recursive derivatives f (1), ..., f (s) are quasigroup operations. A complete k-recursive
code C = {(x1, ..., xk, f (0)(xk

1), ..., f
(n−k−1)(xk

1)) | x1, ..., xk ∈ Q} is an MDS-code
if and only if the system of k-recursive derivatives {f (0), ..., f (n−k−1)} is strongly
orthogonal [3, 6]. As a corollary from this result we get that if the given above code
C attains the Singleton bound then the k-ary operation f is recursively (n− k− 1)-
differentiable.

As orthogonal systems of binary quasigroups are strongly orthogonal, we obtain
the following statement.
Theorem 1 [3] A complete 2-recursive code of length n

C = {(x, y, f (0)(x, y), ..., f (n−3)(x, y)) | x, y ∈ Q}

attains the Singleton bound if and only if (Q, f) is a recursively (n−3)-differentiable
quasigroup. In this case, {f (0), ..., f (n−3)} is an orthogonal system of quasigroups.

It follows from Theorem 1 that:
1) a binary finite quasigroup (Q, f) is recursively r-differentiable if and only if the
complete 2-recursive code
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C = {(x, y, f (0)(x, y), ..., f (r)(x, y)) | x, y ∈ Q}

is an MDS-code;
2) the maximum order r of recursive differentiability of a finite binary quasigroup
of order q satisfies the inequality r ≤ q − 2 (see [5]).

Various methods of construction of binary recursively differentiable quasigroups
are given in [3-6]. In particular, it is proved in [3] that, for every positive inte-
ger q, excepting 1, 2, 6, and possibly 14, 18, 24 and 42, there exist recursively 1-
differentiable binary quasigroups of order q. Later, in 2009, it was shown that there
exist recursively 1-differentiable quasigroups of order 42 (see [4]), but the question
is still opened for 14, 18 and 24.

Another open problem is to determine the maximum order r of the recursive
differentiability of a finite k-quasigroup. As it was mentioned above, in the binary
case we have r ≤ q − 2 and there exist recursively (q − 2)-differentiable binary
quasigroups of every primary order q ≥ 3 [3]. Necessary and sufficient conditions
when a binary finite abelian group is recursively r-differentiable, for r ≥ 1, are given
in [6]. A generalization of this result for a class of n-ary groups is considered in
[5]. Also a table with maximum known values of r for binary finite quasigroups of
order up to 200 is given in [5], where it is shown, in particular, that there exist finite
recursively 1-differentiable n-quasigroups of every odd order q ≥ 3, for every n ≥ 2.

Our aim in the present paper is to find necessary and sufficient conditions when
the prolongations of finite binary quasigroups, obtained using Bruck and Belousov
constructions, are recursively 1-differentiable. Let (Q, ·) be a finite quasigroup of
order n and Q = {1, 2, ..., n} such that the mapping x 7→ x · x is a bijection. Then
the main diagonal of the Cayley table of (Q, ·) is a transversal, which entries are
given by the mapping θ : Q 7→ Q, θ(x) = x · x. As it was mentioned above, Bruck
considered such prolongations for idempotent quasigroups, i.e. in the case θ = ε be
the identical mapping on Q.

Following Bruck’s idea, the operation of the prolongation (Q′, ◦) of a quasigroup
(Q, ·), where Q = {1, ..., n} and Q′ = Q ∪ {ξ}, ξ 6∈ Q, is defined as follows:

x ◦ y =























x · y if x 6= y and x, y ∈ Q;
ξ if x = y and x ∈ Q;
θ(x) if y = ξ and x ∈ Q;
θ(y) if x = ξ and y ∈ Q;
ξ if x = y = ξ.

(1)

So, the prolongation (Q′, ◦) is a quasigroup with the Cayley table:

◦ 1 ... n ξ

1 ξ ... ... θ(1)
... ... ... ... ...
n ... ... ξ θ(n)

ξ θ(1) ... θ(n) ξ

Table 1
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where x ◦ y = x · y, for every x 6= y from Q.

Remark that not every transversal on the main diagonal gives 1-differentiable
prolongations as it is shown in the following statement.

Proposition 1. Let (Q, ·) be a finite quasigroup such that the mapping θ : Q 7→ Q,
θ(x) = x · x is a bijection. If the prolongation (Q′, ◦), given by (1), where Q′ =
Q ∪ {ξ}, ξ 6∈ Q, is a quasigroup, then θ(x) 6= x,∀x ∈ Q.

Proof. Indeed, if there exists an element a ∈ Q such that a = θ(a) = a ·a, then using

(1) we get: a
1
◦ a = a · (a · a) = a · a = a and ξ

1
◦ a = a · (ξ · a) = a · θ(a) = a · a = a,

so (Q′, ◦) can not be a quasigroup.

Lemma 1. Let (Q, ·) be a finite quasigroup of order n, Q = {1, ..., n} and Q′ =
Q ∪ {ξ} where ξ 6∈ Q. If the mapping θ : Q 7→ Q, θ(x) = x · x is a bijection and
θ(x) 6= x, ∀x ∈ Q, then the recursive derivative of order 1 of the operation ” ◦ ”,
given in (1), is the following:

x
1
◦ y =































y · (x · y) if y 6= x · y, x 6= y, x, y ∈ Q;
ξ if y = x · y x 6= y, x, y ∈ Q;
θ(y) if x = y, x ∈ Q;
θ2(x) if y = ξ, x ∈ Q;
y · θ(y) if x = ξ, y ∈ Q;
ξ if x = y = ξ.

(2)

Proof. Using (1) and the fact that x
1
◦ y = y ◦ (x ◦ y),∀x, y ∈ Q′, we have:

x
1
◦ y =























y ◦ (x · y) if x 6= y and x, y ∈ Q;
y ◦ ξ if x = y, y ∈ Q;
ξ ◦ θ(x) if y = ξ, x ∈ Q;
y ◦ θ(y) if x = ξ, y ∈ Q;
ξ if x = y = ξ.

Now, using (1) for ” ◦ ” in the previous formulas, we get:

x
1
◦ y =







































y · (x · y) if y 6= x · y, x 6= y and x, y ∈ Q;
ξ if y = x · y, x 6= y and x, y ∈ Q;
θ(y) if x = y, y ∈ Q;
θ2(x) if y = ξ, x ∈ Q;
y · θ(y) if x = ξ, y 6= θ(y), y ∈ Q;
ξ if x = ξ, y = θ(y), y ∈ Q;
ξ if x = y = ξ.

If the mapping θ : Q 7→ Q, θ(x) = x · x is a bijection and θ(x) 6= x, ∀x ∈ Q, then

the prolongation (Q′, ◦) is a quasigroup and its recursive derivative (
1
◦) is defined as

it is shown in (2).
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Remark 1. According to Lemma 1, the Cayley table of the recursive derivative

(Q′,
1
◦) is the following:

1
◦ ... x ... y ... ξ

... ... ... ... ... ... ...
x ... θ(x) ... z ... θ2(x)
... ... ... ... ... ... ...

ξ ... x · θ(x) ... ... ... ξ

Table 2

where

z =

{

y · (x · y) if y 6= x · y;
ξ if y = x · y.

Theorem 2. Let (Q, ·) be a finite quasigroup such that the mapping θ : Q 7→ Q,
θ(x) = x · x is a bijection and θ(x) 6= x,∀x ∈ Q. Then the prolongation (Q′, ◦)
obtained using Bruck’s construction, where Q′ = Q ∪ {ξ}, ξ 6∈ Q, is recursively 1-
differentiable if and only if the following conditions are satisfied:
1. {fx | x ∈ Q} = Q, where fx · x = x,∀x ∈ Q;
2. θ is a complete mapping of (Q, ·);
3. for each x ∈ Q, {θ(x), y · (x · y), θ2(x) | y ∈ Q, x 6= y, y 6= x · y} = Q.

Proof. According to Proposition 1, the condition θ(x) 6= x,∀x ∈ Q, implies the

fact that the prolongation (Q′, ◦) is a quasigroup, so the equation x
1
◦ a = b ⇔

a ◦ (x ◦ a) = b has a unique solution in (Q′,
1
◦) and consequently, the rows in Table

2 are permutations of Q′. For x, y ∈ Q, the entry of the cell (x, y) is ξ if and only
if y = x · y, i.e. if and only if x = fy is the left local unit of y. Thus ξ will appear
exactly once in each row and each column of Table 2 if and only if {fy | y ∈ Q} = Q.
The row of the element ξ in Table 2 is a permutation of Q′ if and only if x 7→ x ·θ(x)
is a bijection on Q, i.e. if and only if θ is a complete mapping of (Q, ·).

Finally, the row of x ∈ Q is a permutation of Q′ if and only if
{θ(x), y · (x · y), θ2(x) | x 6= y, y 6= x · y, y ∈ Q} = Q.

Example 1. The prolongation of the quasigroup (Q, ·), obtained using the transver-
sal T={(1,1),(2,2),(3,3)}, is recursively 1-differentiable.

· 1 2 3

1 2 1 3
2 1 3 2
3 3 2 1

◦ 1 2 3 ξ

1 ξ 1 3 2
2 1 ξ 2 3
3 3 2 ξ 1

ξ 2 3 1 ξ

1
◦ 1 2 3 ξ

1 2 1 ξ 3
2 ξ 3 2 1
3 3 ξ 1 2
ξ 1 2 3 ξ

As it was mentioned above, the Belousov’s idea of prolongation uses an arbitrary
transversal of the Cayley table, not necessarily one on the main diagonal.
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Let {(x, θ(x)) | x ∈ Q}, where θ ∈ SQ, be a transversal of a finite quasigroup
(Q, ·). Then the mapping θ′ : Q → Q, θ′(x) = x · θ(x) is a bijection. Following the
Bruck’s idea, Belousov considered the prolongation (Q′, ◦), where Q′ = Q∪{ξ}, ξ 6∈ Q
and

x ◦ y =























x · y if y 6= θ(x) and x, y ∈ Q;
ξ if y = θ(x) and x, y ∈ Q;
θ′(θ−1(y)) if x = ξ and y ∈ Q;
θ′(x) if y = ξ and x ∈ Q;
ξ if x = y = ξ.

(3)

Remark 2. If θ′ is a bijection then (Q′, ◦) is a quasigroup with the following Cayley
table:

◦ ... θ(x) ... y ... ξ

... ... ... ... ... ... ...
x ... θ′(x) ... x · y ... θ′(x)
... ... ... ... ... ... ...

ξ ... ... ... θ′(θ−1(y)) ... ξ

Table 3

Let (Q, ·) be a finite quasigroup and θ ∈ SQ such that θ′ : Q → Q, θ′(x) = x ·θ(x)

is a bijection. Then the recursive derivative (Q′,
1
◦) of the prolongation (Q′, ◦) given

in (3) is the following:

x
1
◦ y =







































y · (x · y) if y 6= θ(x · y), y 6= θ(x) and x, y ∈ Q;
ξ if y = θ(x · y), y 6= θ(x) and x, y ∈ Q;
θ′(θ(x)) if y = θ(x) and x, y ∈ Q;
y · θ′(θ−1(y)) if y 6= θ(θ′(θ−1(y))), x = ξ and y ∈ Q;
ξ if y = θ(θ′(θ−1(y))), x = ξ and y ∈ Q;
θ′(θ−1(θ′(x))) if y = ξ and x ∈ Q;
ξ if x = y = ξ.

(4)

Proof. Indeed, (4) follows from (3), using the definition of the recursive derivative

x
1
◦ y = y ◦ (x ◦ y),∀x, y ∈ Q.

Remark 3. If y = θ(θ′(θ−1(y))), where y ∈ Q, then ξ
1
◦ y = ξ = ξ

1
◦ ξ, so (Q′,

1
◦) is

not a quasigroup.

Now, using (4) and Remark 3, we get the following statement.

Lemma 2. Let (Q, ·) be a finite quasigroup, θ ∈ SQ such that θ′ : Q 7→ Q, θ′(x) =
x · θ(x) is a bijection and y 6= θ(θ′(θ−1(y))),∀y ∈ Q. Then the recursive derivative
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(Q′,
1
◦) of the Belousov’s prolongation (Q′, ◦) is:

x
1
◦ y =































y · (x · y) if y 6= θ(x · y), y 6= θ(x) and x, y ∈ Q;
ξ if y = θ(x · y), y 6= θ(x) and x, y ∈ Q;
θ′(θ(x)) if y = θ(x) and x, y ∈ Q;
y · θ′(θ−1(y)) if x = ξ and y ∈ Q;
θ′(θ−1(θ′(x))) if y = ξ and x ∈ Q;
ξ if x = y = ξ.

(5)

Proof. The proof follows from (4) and the condition y 6= θ(θ′(θ−1(y))),∀y ∈ Q.

Remark 4. The Cayley table of (Q′,
1
◦), given in (5) is the following:

1
◦ ... θ(x) ... y ... ξ

... ... ... ... ... ... ...
x ... θ′(θ(x)) ... w ... θ′(θ−1(θ′(x))
... ... ... ... ... ... ...

ξ ... ... ... y · θ′(θ−1(y)) ... ξ

Table 4

where

w =

{

y · xy if y 6= θ(x · y), y 6= θ(x);
ξ if y = θ(x · y), y 6= θ(x).

Theorem 3. Let (Q, ·) be a finite quasigroup, θ ∈ SQ such that the mapping
θ′ : Q 7→ Q, θ′(x) = x · θ(x) is a bijection and θ−1(y) 6= θ′(θ−1(y)),∀y ∈ Q.
Then the Belousov’s prolongation (Q′, ◦) is recursively 1-differentiable if and only if
the following conditions hold:
1. {θ−1(y)/y | y ∈ Q} = Q;
2. the mapping y 7→ y · θ′(θ−1(y)) is a bijection on Q;
3. for each x ∈ Q, {θ′(θ(x)), y ·xy, θ′(θ−1(θ′(x)))|y 6= θ(x ·y), y 6= θ(x), y ∈ Q} = Q.

Proof. According to Belousov’s construction, (Q′, ◦) is a quasigroup, so the equation

x
1
◦ a = b ⇔ a ◦ (x ◦ a) = b has a unique solution in Q′, for every a, b ∈ Q′. Thus

the rows in the Cayley table (5) are permutations of Q′. The element ξ appears in

a cell (x, y) with x, y ∈ Q if y = θ(x · y), y 6= θ(x), i.e. if x = θ−1(y)/y. If (Q′,
1
◦) is

a quasigroup, then {θ−1(y)/y | y ∈ Q} = Q.

According to Table 4, the row of ξ is a permutation of Q′ if and only if the
mapping y 7→ y · θ′(θ−1(y)) is a bijection on Q.

Finally, the row of x ∈ Q in Table 4, is a permutation of Q′ if and only if the
third condition is fulfilled.
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Example 2. The prolongation of the quasigroup (Q, ·), obtained using the transver-
sal T={(1,2),(2,1),(3,3)}, is recursively 1-differentiable.

· 1 2 3

1 2 3 1
2 1 2 3
3 3 1 2

◦ 1 2 3 ξ

1 2 ξ 1 3
2 ξ 2 3 1
3 3 1 ξ 2

ξ 1 3 2 ξ

1
◦ 1 2 3 ξ

1 ξ 1 3 2
2 3 2 ξ 1
3 1 ξ 2 3
ξ 2 3 1 ξ
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