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Some families of quadratic systems

with at most one limit cycle

Jaume Llibre

Abstract. The work of Chicone and Shafer published in 1982 together with the
work of Bamon published in 1986 proved that any polynomial differential system of
degree two has finitely many limit cycles. But the problem remains open of providing
a uniform upper bound for the maximum number of limit cycles that a polynomial
differential system of degree two can have, i.e. the second part of the 16th Hilbert
problem restricted to the polynomial differential systems of degree two remains open.
Here we present six subclasses of polynomial differential systems of degree two for
which we can prove that an upper bound for their maximum number of limit cycles
is one.
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1 Introduction and statement of the main results

We deal with polynomial differential systems in R
2 of the form

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y).

The degree of such a polynomial system is the maximum of the degrees of the
polynomials P and Q. In what follows the polynomial differential systems of degree
2 are simply called quadratic systems.

We recall that a limit cycle of a differential system is a periodic orbit of this
system isolated in the set of all periodic orbits of the system. As far as we know the
notion of limit cycle appeared in the work of Poincaré [14] in the year 1885.

At the Second International Congress of Mathematicians, held in Paris in 1900,
Hilbert [8] proposed his famous 16th problem, whose second part essentially says:
Find an upper bound for the maximum number of limit cycles that the polynomial
differential systems in R

2 of a given degree can have.
The works of Chicone and Shafer [5] and of Bamon [1] proved that any polyno-

mial differential system of degree 2 has finitely many limit cycles. This result uses
previous results of Ilyashenko [9]. Up to now the second part of the 16th Hilbert
problem remains unsolved, also for the quadratic systems.

In 1957 Petrovskii and Landis [12] claimed that the polynomial differential sys-
tems of degree n = 2 have at most 3 limit cycles. Soon (in 1959) a gap was found
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in the arguments of Petrovskii and Landis, see [13]. Later, Lan Sun Chen and Ming
Shu Wang [3] in 1979, and Songling Shi [16] in 1982, provided the first quadratic
systems having 4 limit cycles, and up to now 4 is the maximum number of limit
cycles known for a quadratic system.

We recall the following three well known properties of quadratic systems.

(a) In the region limited by a periodic orbit of a quadratic system there is a unique
equilibrium point, see Theorem 2 of Coppel [6], or Theorem 2.8 of Chicone and
Jinghuang [4].

(b) A periodic orbit of a quadratic system surrounds a focus or a center, proved
by Vorob’ev [17], see also Theorem 6 of Coppel [6].

(d) Quadratic systems having a center have no limit cycles, see Vulpe [18] and
Schlomiuk [15].

From these three properties if follows that if a quadratic system has a limit cycle
this must surround a focus.

Let O be a focus or a center of a quadratic system, without loss of generality
we can assume that O is localized at the origin of coordinates, otherwise we do
a translation sending O to the origin of coordinates. Kaptein [10, 11] proved that
any quadratic system having a focus or a center at the origin of coordinates can be
written as (see also Bautin [2])

ẋ = λ1x − y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,
ẏ = x + λ1y + λ2x

2 + (2λ3 + λ4)xy − λ2y
2.

(1)

In order to avoid subindexes we denote

λ1 = λ, λ2 = a, λ3 = b, λ4 = c, λ5 = d, λ6 = e.

Then system (1) becomes

ẋ = λx − y − bx2 + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + (2b + c)xy − ay2.

(2)

The goal of this paper is to give conditions on the parameters of system (2) for
the presence of a maximum of one limit cycle for the system surrounding the origin.
For this we rely on the paper [7] where a theorem is stated giving conditions for
having at most three limit cycles in an Abel differential equation.

A good tool for studying the possible limit cycles surrounding the origin O of
the quadratic system (2) is to write this quadratic system in polar coordinates (r, θ),
where x = r cos θ, y = r sin θ. Then system (2) becomes

ṙ = λr + f(θ)r2,

θ̇ = 1 + g(θ)r,
(3)
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where

f(θ) = −a sin3 θ + (2b + c + 3) sin2 θ cos θ + (3a + d) sin θ cos2 θ − b cos3 θ,
g(θ) = −3 sin3 θ − (3a + d) sin2 θ cos θ + (3b + c) sin θ cos2 θ + a cos3 θ.

(4)

Note that f(θ) and g(θ) are homogeneous trigonometric polynomials of degree three.
We define the polynomials

F (z) = −az3 + (2b + c + 3)z2 + (3a + d)z − b,
G(z) = −3z3 − (3a + d)z2 + (3b + c)z + a,

note that f(θ) = cos3 θF (tan θ) and g(θ) = cos3 θG(tan θ).
Here first we classify all quadratic systems whose polynomial G(z)(λG(z)−F (z))

satisfies the following two properties:
(P1) it has degree six, and
(P2) for all z ∈ R the value of G(z)(λG(z) − F (z)) is either ≥ 0, or = 0, or ≤ 0.

Theorem 1. Every quadratic system (2) satisfying properties (P1) and (P2) must
be one of the following six forms of quadratic systems

ẋ = λx − y − bx2 − 2axy − a2y2/b,
ẏ = x + λy + ax2 + (a2 − b2)xy/b − ay2

(5)

(i.e. d = 0, c = (a2 − 3b2)/b and e = −a2/b in (2)), with b 6= 0;

ẋ = λx − y − cy2,
ẏ = x + λy + cxy

(6)

(i.e. a = b = d = 0 and e = c in (2)), with c 6= 0;

ẋ = λx − y + dxy + ey2,
ẏ = x + λy + cxy

(7)

(i.e. a = b = 0 in (2)), with c2 + d2 + e2 6= 0 and ∆i(λ, 0, 0, c, d, e) > 0 for i = 1, 2;

ẋ = λx − y + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + cxy − ay2

(8)

(i.e. b = 0 in (2)), where ∆i(λ, a, 0, c, d, e) > 0 for i = 1, 2,
c = −a(2a + d − e)(2a + d + e)/((2a + d)e) and (2a + d)e 6= 0;

ẋ = λx − y − bx2 + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + cxy − ay2

(9)

(i.e. 2b + c = c in (2)), where ∆i(λ, a, b, c, d, e) > 0 for i = 1, 2, and

c = −a
(

2ab + 2ae + bd + de + (b − e)
√

(2a + d)2 + 4be
)

/(2be) and be 6= 0;

ẋ = λx − y − bx2 + (2a + d)xy + ey2,
ẏ = x + λy + ax2 + cxy − ay2

(10)

(i.e. 2b + c = c in (2)), where ∆i(λ, a, b, c, d, e) > 0 for i = 1, 2, and

c = −a
(

2ab + 2ae + bd + de − (b − e)
√

(2a + d)2 + 4be
)

/(2be) and be 6= 0.

The functions ∆i for i = 1, 2 are defined in Section 2.
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Theorem 2. The six quadratic families of systems of Theorem 1 have only one equi-
librium point, the origin of coordinates. Moreover all these quadratic systems have
at most one limit cycle, and when it exists it surrounds the origen of coordinates.

Theorems 1 and 2 are proved in Section 2.

2 Proof of Theorems 1 and 2

Statement (a) of the next proposition is proved in statement (a) of Proposition
8 of Gasull and Llibre [7], and statement (b) of the next proposition is proved in
statement (b) of Theorem C also in [7].

Proposition 1. Let A(θ) = g(λg−f), where the functions f(θ) and g(θ) are defined
in (4). Then the following statements hold.

(a) If A(θ) 6= 0 and either A(θ) ≥ 0 or A(θ) ≤ 0, then system (2) has at
most one limit cycle surrounding the origin. Furthermore, it can exist only
if λsign(A(θ)) < 0.

(b) If A(θ) = 0, then system (2) has at most one limit cycle surrounding the
origin.

From Proposition 1 the next result follows immediately .

Corollary 1. If for all values of z ∈ R the polynomial G(z)(λG(z)−F (z)) is either
≥ 0, or = 0, or ≤ 0, then the differential system (2) has at most one limit cycle
surrounding the origin of coordinates.

If the polynomial G(z)(λG(z) −F (z)) is the zero polynomial, then by Corollary
1 there is at most one limit cycle of system (2) surrounding the origin. Later on
we will show that the six quadratic families of systems of Theorem 1 have only a
unique equilibrium point, the origin. So Theorems 1 and 2 will be proved when
the polynomial G(z)(λG(z) − F (z)) is the zero polynomial. So in what follows we
assume that this polynomial is distinct from zero.

By assumption (P1) the polynomial G(z)(λG(z)−F (z)) has degree six, therefore
both polynomials G(z) and λG(z) − F (z) are of degree three, so they have at least
one real root. Then such a real root must be common to the polynomials G(z) and
λG(z) − F (z), otherwise the assumption (P2) would not hold. Hence the resultant
of the polynomials G(z) and λG(z) − F (z) must be zero, i.e.

R(G,λG − F ) =
(

(4a + d)2 + (3b + c + e)2
)

(

ad(2b + c)(b + e) + be(2b + c)2+

4a4 + 4a3d + a2
(

3b2 + 2b(c + 3e) + 2ce + d2 − e2
)

)

.

Now we consider two cases.
Case 1: (4a + d)2 + (3b + c + e)2 = 0. Then d = −4a, e = −3b − c. Therefore the
roots of the polynomial G(z) are ±i and −a/(3b + c), note that 3b + c 6= 0 because
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the polynomial G(z) has degree 3 and consequently it must have three roots. The
roots of the polynomial λG(z) − F (z) are ±i and −(b + λa)/(a + λ(3b + c)), and
a + λ(3b + c) 6= 0 because the polynomial λG(z) − F (z) has degree 3.

In order that the polynomial G(z)(λG(z) − F (z)) verify that g ≥ 0 or g ≤ 0 for
all z ∈ R, we need that the real root of the polynomials G(z) and λG(z) − F (z)
coincide, i.e.

−a/(3b + c) = −(b + λa)/(a + λ(3b + c)). (11)

Then if b 6= 0 we have that c = (a2 − 3b2)/b and

G(z)(λG(z) − F (z)) =
a(λa + b)(z2 + 1)2(az + b)2

b2
.

Since the function G(z)(λG(z) − F (z)) satisfies the assumptions of Corollary 1, so
system (2) satisfying c = (a2 − 3b2)/b reduces to system (5) and has at most one
limit cycle, this limic cycle surrounds the origin. Furthermore also this system has
a unique equilibrium point, the origin, as it is easy to check.

If b = 0 then from (11) we get that a = 0, and consequently

G(z)(λG(z) − F (z)) = λc2z2(1 + z2)2.

Again the function G(z)(λG(z) − F (z)) satisfies the assumptions of Corollary 1, so
system (2) satisfying b = a = 0 reduces to system (6) and has at most one limit
cycle, and this limic cycle surrounds the origin. Furthermore also this system has a
unique equilibrium point, the origin, as it is easy to verify.

We remark that if we impose that the polynomials G(z) and λG(z) − F (z) be
one a multiple of the other, or equivalently that they have exactly the same three
roots, then we get exactly the previous two quadratic systems (5) and (6). Hence
in what follows we can assume that the polynomials G(z) and λG(z) − F (z) have
different roots. Then in order that the polynomial G(z)(λG(z) − F (z)) can satisfy
the assumption (P2) and since the polynomials G(z) and λG(z) − F (z) are cubic
polynomials by the assumption (P1), they must have in common a real root, and
the other roots cannot be the same for both polynomials, otherwise we will obtain
the quadratic systems (5) and (6).

In summary, we can restrict our attention to the polynomials G(z) and
λG(z) − F (z) having a common real root and the other two roots non-real be-
cause if one of these two polynomials has the three real roots, then it is not possible
that the polynomial G(z)(λG(z)−F (z)) satisfies the assumption (P2), i.e. the poly-
nomial G(z)(λG(z) − F (z)) would change the sign because not all the real roots of
the polynomials G(z) and (λG(z) − F (z)) would coincide. This implies that the
discriminats of the polynomials G(z) and λG(z) − F (z) must be positive, see an
easy proof of this fact in the cubic equation of Wikipedia.

The discriminants ∆i = ∆i(λ, a, b, c, d, e) for i = 1, 2 of the polynomials G(z)
and λG(z) − F (z) are respectively
∆1 = 108a4 +81a2b2 +54a2bc+9a2c2 +108a3d+54ab2d+36abcd+6ac2d+36a2d2 +
9b2d2 + 6bcd2 + c2d2 + 4ad3 + 162a2be + 108b3e + 54a2ce + 108b2ce + 36bc2e + 4c3e +
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54abde + 18acde − 27a2e2,
and
∆2 = 108a4 + 117a2b2 + 32b4 + 90a2bc + 48b3c + 9a2c2 + 24b2c2 + 4bc3 + 108a3d +
60ab2d + 42abcd + 6ac2d + 36a2d2 + 4b2d2 + 4bcd2 + c2d2 + 4ad3 + 90a2be + 48b3e +
18a2ce+48b2ce+12bc2e+42abde+12acde+4bd2e+2cd2e+9a2e2+24b2e2+12bce2 +
6ade2 +d2e2 +4be3−4ab3λ+6ab2cλ−2ac3λ+36a2bdλ+24b3dλ+16b2cdλ−2bc2dλ−
2c3dλ+18abd2λ+6acd2λ+4bd3λ+2cd3λ+12ab2eλ−12abceλ−36a2deλ−12b2deλ−
14bcdeλ−4c2deλ−18ad2eλ−2d3eλ−12abe2λ+6ace2λ−12bde2λ−2cde2λ+4ae3λ+
216a4λ2+198a2b2λ2+36b4λ2+144a2bcλ2+60b3cλ2+18a2c2λ2+37b2c2λ2+10bc3λ2+
c4λ2 +216a3dλ2 +102ab2dλ2 +54abcdλ2 +72a2d2λ2−8bcd2λ2−4c2d2λ2 +12ad3λ2 +
d4λ2+252a2beλ2+144b3eλ2+72a2ceλ2+132b2ceλ2+34bc2eλ2+2c3eλ2+120abdeλ2+
54acdeλ2 +18bd2eλ2+8cd2eλ2−18a2e2λ2+36b2e2λ2+24bce2λ2+c2e2λ2−6ade2λ2+
18ab2cλ3 +12abc2λ3 +2ac3λ3 +36a2bdλ3 +36b3dλ3 +42b2cdλ3 +16bc2dλ3 +2c3dλ3 +
6abd2λ3−6acd2λ3−2bd3λ3−2cd3λ3−36abceλ3−12ac2eλ3−36a2deλ3−36b2deλ3−

42bcdeλ3−10c2deλ3−6ad2eλ3+18ace2λ3+108a4λ4+81a2b2λ4+54a2bcλ4+9a2c2λ4+
108a3dλ4+54ab2dλ4+36abcdλ4 +6ac2dλ4+36a2d2λ4+9b2d2λ4+6bcd2λ4+c2d2λ4+
4ad3λ4+162a2beλ4+108b3eλ4+54a2ceλ4+108b2ceλ4+36bc2eλ4+4c3eλ4+54abdeλ4+
18acdeλ4 − 27a2e2λ4.
We recall that when the discriminant of a cubic polynomial is positive, then such a
polynomial has a unique real root.
Case 2:
ad(2b+c)(b+e)+be(2b+c)2+4a3(a+d)+a2

(

3b2 + 2b(c + 3e) + 2ce + d2 − e2
)

= 0.
This equation has the following seven sets of solutions

(s1) a = e = 0;

(s2) b = e = 0 and d = −2a;

(s3) c = −((2b2d + 4a2(a + d) + a(3b2 + d2))/(b(2a + d))) and e = 0;

(s4) a = b = 0;

(s5) c = −((a(2a + d − e)(2a + d + e))/((2a + d)e)) and b = 0;

(s6) c = −((2(a2 +2b2)e+2a2(b+e)+ad(b+e)+a(b−e)
√

(2a + d)2 + 4be)/(2be));

(s7) c = −((2(a2 +2b2)e+2a2(b+e)+ad(b+e)−a(b−e)
√

(2a + d)2 + 4be)/(2be)).

The polynomial G(z)(λG(z)−F (z)) has degree less than 6 for the solutions (s1),
(s2) and (s3), so we do not consider these three solutions. While for the solutions
from (s4) to (s7) this polynomial has degree 6.

Every one of the solutions from (s4) to (s7) implies that the polynomials G(z)
and λG(z)−F (z) have at least one root in common, if additionally we impose that
the discriminants of these two polynomials are positive, then these polynomials have
one real root in common and two distinct conjugate complex roots. Additionally we
shall prove that the quadratic systems satisfying some solution (sk) for k = 4, . . . , 7
have a unique equilibrium, the focus localized at the origin of coordinates, therefore
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by Corollary 1 we obtain that these four families of quadratic systems satisfying
some solution (sk) for k = 4, . . . , 7 with ∆1 > 0, ∆2 > 0, cannot have more than
one limit cycle surrounding the origin. Hence Theorems 1 and 2 will be proved.

Now we prove that the quadratic systems satisfying (sk) for k = 4, . . . , 7 have a
unique equilibrium. Indeed, since the polynomial λG(z) − F (z) has a unique real
root and two complex ones, and this real root also is the unique real root of the
polynomial G(z), it follows from systems (3) that systems (2) has only one finite
equilibrium point, the origin of coordinates. Indeed, the equilibrium points (r∗, θ∗)
of system (3) with r∗ 6= 0 must satisfy that λg(θ∗) − f(θ∗) = 0 and r∗ = −1/g(θ∗),
but if λg(θ∗)− f(θ∗) = 0 then 1/g(θ∗) = ∞. Hence the unique equilibrium point of
system (3) is the one with r = 0, i.e. the origin of coordinates.

We note that the solutions (s4), (s5), (s6) and (s7) provide the quadratic systems
(7), (8), (9) and (10), respectively.
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