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The bifurcation diagram of the configurations of

invariant lines of total multiplicity exactly three in

quadratic vector fields

Cristina Bujac, Dana Schlomiuk, Nicolae Vulpe

Abstract. We denote by QSL3 the family of quadratic differential systems possess-
ing invariant straight lines, finite and infinite, of total multiplicity exactly three. In a
sequence of papers the complete study of quadratic systems with invariant lines of to-
tal multiplicity at least four was achieved. In addition three more families of quadratic
systems possessing invariant lines of total multiplicity at least three were also studied,
among them the Lotka-Volterra family. However there were still systems in QSL3

missing from all these studies. The goals of this article are: to complete the study of
the geometric configurations of invariant lines of QSL3 by studying all the remaining
cases and to give the full classification of this family modulo their configurations of
invariant lines together with their bifurcation diagram. The family QSL3 has a total
of 81 distinct configurations of invariant lines. This classification is done in affine
invariant terms and we also present the bifurcation diagram of these configurations
in the 12-parameter space of coefficients of the systems. This diagram provides an
algorithm for deciding for any given system whether it belongs to QSL3 and in case
it does, by producing its configuration of invariant straight lines.

Mathematics subject classification: 34C23, 34A34.
Keywords and phrases: quadratic differential system, invariant line, singularity,
configuration of invariant lines, group action, polynomial invariant.

1 Introduction and the statement of the Main Theorem

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a
system (S) the integer deg(S) = max(deg(P ),deg(Q)). We call quadratic (respec-
tively cubic) differential system such a polynomial system of degree two (respectively
three). We shall sometimes use quadratic system instead of quadratic differential
system. Each such system generates a complex differential vector field when the
dependent variables range over C.

Of the three classical problems on these systems, Hilbert’s 16th problem, the
problem of Poincaré and the problem of the center, only the last one was solved
for the family QS of quadratic differential systems. Although it is the simplest
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non-linear class of polynomial systems we are still far from understanding this fam-
ily. To gain insight into this family, in recent years subfamilies of QS began to be
studied from a global viewpoint using a variety of methods, among them algebraic
and geometric or analytical, also numerical or involving substantial symbolic cal-
culations. In particular families of quadratic systems possessing invariant algebraic
curves began to be studied, the simplest ones being those possessing invariant lines.

Every system in QS possesses an invariant line, the line at infinity. This line
could be simple or multiple, in which case producing several distinct lines in pertur-
bations.

The notion of multiplicity of an invariant line of a system (1) has been introduced
in [9]. This concept was extended to the notion of multiplicity of an invariant
algebraic curve of a differential system. In the fundamental article [6] several notions
of multiplicity of an invariant algebraic curve of a polynomial system were introduced
and they were proven to be equivalent in the case of algebraic solutions which are
algebraic invariant curves defined by polynomials that are irreducible over C. If a
system has a finite number of invariant lines fi(x, y) = 0, i = 1, ..., k, of respective
multiplicities m1, ...,mk, we call total multiplicity of the invariant lines of (S), the
number M =

∑
imi +m∞ where m∞ is the multiplicity of the line at infinity. Since

in any system (1) the line at infinity is invariant we always have m∞ ≥ 1 and in
particular we have this for any system in QS.

At the beginning of this century a systematic study of non-degenerate quadratic
systems possessing invariant algebraic curves was initiated by Schlomiuk and Vulpe.
In the series of articles [9,11,13,14] the authors studied the class QSL≥4 of quadratic
systems having invariant lines, including the line at infinity, of total multiplicity at
least four. We see in [9] that the maximum number of invariant lines, including the
line at infinity, of non-degenerate quadratic systems is six.

This study was based on the notion of configuration of invariant lines of a real
polynomial differential system defined in [14]. We recall here this definition.

Definition 1. Consider a real polynomial differential system (S) endowed with a
finite number of invariant algebraic curves fi(x, y) = 0, i = 1, . . . , k, over C. We call
configuration of invariant curves of (S) the set of curves f1 = 0, . . . , fk = 0 and the
line at infinity, each endowed with its own multiplicity, together with all the real
singular points of (S) situated on these curves, each one of them endowed with its
own multiplicity.

The notion of configuration is an affine invariant which is a powerful classification
tool. This was clearly seen in the way the topological classification was obtained for
the Lotka-Volterra systems which have a total of 112 phase portraits. The geometry
of configurations acts like a guiding light to fray our way through this maze of
phase portraits. Thus we first obtained the geometric classification by splitting the
class according to their 65 distinct configurations of invariant lines that the systems
possess. Then we classified topologically each one of these 65 families.

In order to classify all the configurations of the family QSL3 we first need to say
when two configurations C1, C2 of invariant lines of two quadratic systems (S1) and
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(S2) are to be considered as distinct, respectively when two such configurations are
to be considered equivalent.

Consider two polynomial differential systems (S1) and (S2) such that each has
a finite set of singular points and a finite set of invariant lines, including the line at
infinity. Let C1, C2 be the two configurations of invariant lines of (S1) and (S2).

Definition 2. We say that two configurations C1, C2, of (S1) and (S2) formed by
invariant lines (including the line at infinity) are equivalent if and only if there is
a bijection φ between the two sets of invariant lines sending the line at infinity of
C1 to the line at infinity of C2, sending a line with coefficients in R of (S1) to a
line with coefficients in R of (S2). In addition the map preserves the multiplicities
of the invariant lines, and for each invariant line L of C1 there is a one-to-one
correspondence φL between the set of real singular points of (S1) situated on the line
L and the set of real singular points of the system (S2) situated on the line φ(L) which
preserves the multiplicities of the singular points and sends a real singular point at
infinity to a real singular point at infinity. In addition we have the following:

(i) When we list in a counterclockwise sense the real singular points at infinity
on (S1) starting from a point p on the Poincaré disk, p1 = p, ..., pl, this correspon-
dence preserves the multiplicities of the singular points and preserves or reverses the
orientation.

(ii) We consider the total curves

F :
∏

Fj(X;Y ;Z)miZm = 0; F ′ :
∏

F ′
j(X;Y ;Z)m

′
iZm′

= 0

where Fi(X;Y ;Z) = 0 (respectively F ′
i (X;Y ;Z) = 0) are the projective completions

of the lines Li (respectively L′
i) andmi, m

′
i are the multiplicities of the curves Fi = 0,

F ′
i = 0 and m, m′ are respectively the multiplicities of Z = 0 in the first and in

the second system. Then, there is a one-to-one correspondence between the real
singularities of the curves F and F ′ conserving their multiplicities as singular points
of the total curves.

After the study of the family QSL≥4 mentioned above, the next step is the study
of the subfamily QSL3 of QS which is the family of all non-degenerate quadratic
differential systems with invariant lines of total multiplicity three. The study of this
class began with work on the Lotka-Volterra systems (shortly L-V systems), a family
important for applications. (Previous literature on L-V systems systems is also
mentioned in [16,17].) This is the class of all quadratic differential systems that have
two real invariant lines intersecting at a finite point. In [16,17] the authors completed
the study of this class by giving its bifurcation diagram in the 12-dimensional space
of the coefficients of quadratic systems (1).

The family QSL3 splits into several subfamilies of QS according to the geometry
of the systems, one of them being the L-V systems. Another subfamily of QSL3

is the family of non-degenerate real quadratic systems possessing two complex in-
variant lines intersecting at a (real) finite point. The topological classification for
this family was done in [19] but without using the configurations of invariant lines.
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The bifurcation diagram in terms of invariant polynomials was done in [3]. But the
configurations of invariant lines for systems in this family and occurring in QSL3

are presented here for the first time.
In [5] one more subfamily of QSL3 was studied. More exactly, in [5] the authors

made the study of the family QSL2p of quadratic systems possessing one of the
following defining properties: two parallel invariant lines or a unique affine line that
is double, or an affine invariant line and the double line at infinity or the triple line
at infinity.

However, we still have quadratic systems in QSL3 that were not mentioned so
far. These are quadratic differential systems in QSL3 that are limit points of the
L-V systems.

Indeed such systems could be obtained from a generic L-V system using one of
the following three possibilities:

(i) Two simple invariant lines of a L-V-system from the subfamily QSL3 coa-
lesced giving a double invariant line and a multiple real singular point at infinity.

(ii) One simple invariant line of a L-V system from the subfamily QSL3 coalesced
with infinite line Z = 0 giving a double infinite invariant line with the second
invariant line remaining in the finite part of the phase plane.

(iii) Both simple invariant lines of a L-V system from the subfamily QSL3

coalesced with infinite line Z = 0 producing a triple line at infinity.

The goal of this paper is to complete the study of the configurations of invariant
lines of family QSL3 and to present all possible configurations of invariant lines
which a non-degenerate quadratic system from the class QSL3 could have. Our
main results are summed up in the following theorem:
Main Theorem. The following statements hold:

(i) The family QSL3 possesses a total of 81 distinct configurations of invariant
lines given in Figure 1.

(ii) The classification of the family QSL3 is done using algebraic invariants and
hence it is independent of the normal forms in which the systems may be
presented.

(iii) The ”bifurcation” diagram of the configurations of invariant lines for systems
in the family QSL3 is done in the twelve-dimensional parameter space R

12

and it is presented in Diagrams 1 and 2. These diagrams give us an algorithm
by determining for any given system if it belongs or not to the family QSL3

and in case it belongs to this family, it gives us the specific configuration of
invariant lines.

2 The main invariant polynomials associated to the class QSL3

We consider the class of real quadratic polynomial differential systems

ẋ = p0 + p1(x, y) + p2(x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) ≡ Q(ã, x, y)
(2)
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Figure 1. The configurations of quadratic systems in QSL3

where
p0 = a, p1(x, y) = cx+ dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex+ fy, q2(x, y) = lx2 + 2mxy + ny2
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Figure 1 (continuation). The configurations of quadratic systems in QSL3

and with max(deg(p),deg(q)) = 2. It is known that on the set QS the group
Aff (2,R) of affine transformations on the plane acts (cf. [10]). For every subgroup
G ⊆ Aff (2,R) we have an induced action of G on QS . We can identify the set QS
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Figure 1 (continuation). The configurations of quadratic systems in QSL3

of systems (2) with a subset of R
12 via the map QS −→ R

12 which associates to
each system (2) the 12–tuple ã = (a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients. We
associate to this group action polynomials in x, y and parameters which behave well
with respect to this action, the GL–comitants (GL–invariants), the T–comitants
(affine invariants) and the CT–comitants. For their definitions as well as their
detailed constructions we refer the reader to the paper [10] (see also [1]).

According to [1] (see also [4]) we apply the differential operator L = x ·L2−y ·L1
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Diagram 1: The configurations of systems in QSL with B1 = 0 and B2 6= 0

acting on R[ã, x, y] with

L1 =2a
∂

∂c
+ c

∂

∂g
+

1

2
d
∂

∂h
+ 2b

∂

∂e
+ e

∂

∂l
+

1

2
f
∂

∂m
,

L2 =2a
∂

∂d
+ d

∂

∂k
+

1

2
c
∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e
∂

∂m
,

to construct several needed invariant polynomials. More precisely using this
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Diagram 1 (continuation): The configurations of systems in QSL with B1 = 0 and
B2 6= 0

operator and the affine invariant µ0 = Res x

(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct

the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).
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Diagram 1 (continuation): The configurations of systems in QSL with B1 = 0 and
B2 6= 0

Using these invariant polynomials we define some new ones, which according to [1]
are responsible for the number and multiplicities of the finite singular points of (2):

D =
[
3
(
(µ3, µ3)

(2), µ2

)(2)
−

(
6µ0µ4 − 3µ1µ3 + µ2

2, µ4

)(4)
]
/48,

P = 12µ0µ4 − 3µ1µ3 + µ2
2,

R = 3µ2
1 − 8µ0µ2,

S =R2 − 16µ2
0P,

T = 18µ2
0(3µ

2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ2

1µ4) − PR,

U =µ2
3 − 4µ2µ4.

In what follows we also need the so-called transvectant of order k (see [7, 8]) of
two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

In order to construct the invariant polynomials for the classification of this class
of systems we first need to define some elementary bricks which help us to construct
these elements of the set.

We remark that the following polynomials in R[ã, x, y] are the simplest invari-
ant polynomials of degree one with respect to the coefficients of the differential
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Diagram 2 : The configurations of systems in QSL with B2 = 0 and B3 6= 0

systems (2) which are GL-comitants:

Ci(x, y) = ypi(x, y) − xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2.
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Diagram 2 (continuation): The configurations of systems in QSL with B2 = 0 and
B3 6= 0

Apart from these simple invariant polynomials we shall also make use of the following
nine GL-invariant polynomials:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0,D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1,D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2,D2)
(1) .
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Diagram 2 (continuation): The configurations of systems in QSL with B2 = 0 and
B3 6= 0

These are of degree two with respect to the coefficients of systems (2).

We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)

(2)/144,

B̂(ã, x, y) =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)
(1)(3D1D2

− 5T6+ 9T7) + 2(D2, T9)
(1)

(
27C1T4− 18C1D

2
1−32D1T2+32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)

[
8C0(T8 − 12T9) − 12C1(D1D2+T7) +D1(26C2D1+32T5)

+ C2(9T4 + 96T3)
]
+ 6(D2, T6)

(1)
[
32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]
+ 48D2(D2, T1)

(1)(2D2
2 − T8) + 6D1D2T4(T8 − 7D2

2 − 42T9)

− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7) − 16D1(C2, T8)
(1)(D2

1 + 4T3)

+ 12D1(C1, T8)
(2)(C1D2 − 2C2D1) + 12D1(C1, T8)

(1)(T7 + 2D1D2)

+ 96D2
2

[
D1(C1, T6t)

(1) +D2(C0, T6)
(1)

]
− 4D3

1D2(D
2
2 + 3T8 + 6T9)

− 16D1D2T3(2D
2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−252D1D2T4T9

}
/(2833),

Ê(ã, x, y) =
[
D1(2T9 − T8) − 3(C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ (ã, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1(D2, T7)
(1)

+ 8D1(D2, T5)
(1)

]
/144,
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K̂(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,

as well as the following affine invariants (which serve as bricks for constructing the
needed invariant polynomials):

A2(ã) = (C2, D̂)(3)/12, A17(ã) =
(
((D̂, D̂)(2),D2

)(1)
,D2

)(1)
/64,

A18(ã) =
(
(D̂, F̂ )(2),D2

)(1)
/16, A19(ã) =

(
(D̂, D̂

)(2)
, Ĥ

)(2)
/16,

A20(ã) =
(
(C2, D̂)(2), F̂

)(2)
/16.

Next we present here the list of invariant polynomials which are necessary for
the classification of the configurations of invariant lines for the family QSL3:

K̃(ã, x, y) =4K̂ ≡ Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
,

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
,

Ñ(ã, x, y) = K̃ − 4Ĥ,

D̃(ã, x, y) = D̂,

η(ã) = (M̃ , M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
,

θ(ã) = − (Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

B1(ã) =Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B3(ã, x, y) = (C2, D̃)(1) ≡ Jacob
(
C2, D̃

)
,

H1(ã) = −
(
(C2, C2)

(2), C2)
(1), D̃

)(3)
,

H3(ã, x, y) =(C2, D̃)(2),

H4(ã) =
(
(C2, D̃)(2), (C2,D2)

(1)
)(2)

,

H6(ã, x, y) =16N2(C2, D̃)(2) +H2
2 (C2, C2)

(2),

H7(ã) = (Ñ , C1)
(2),

H8(ã) =9
(
(C2, D̃)(2), (D̃,D2)

(1)
)(2)

+ 2
[
(C2, D̃)(3)

]2
,

H9(ã) = − [[D̃, D̃)(2), D̃,
)(1)

, D̃
)(3)

,

H10(ã) =
(
(Ñ , D̃)(2), D2

)(1)
,

H11(ã, x, y) =8Ĥ
[
(C2, D̃)(2) + 8(D̃,D2)

(1)
]
+ 3

[
(C1, 2Ĥ − Ñ)(1) − 2D1Ñ

]2
,

H13(ã, x, y) =A1A2 −A14 −A15,

H14(ã, x, y) =A2(156A5 − 20A3 − 33A4) + 4(99A1A6 − 5A22 + 42A23 − 21A24),

H15(ã) =
(
(D̃, D̃)(2), H̃

)(1)
,

H17(ã) =2A2
2 − 16A17 − 16A18 + 12A19 − 2A20,
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N1(ã, x, y) =C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(ã, x, y) =D1(C1, C2)
(2) −

(
(C2, C2)

(2), C0

)(1)
,

N3(ã, x, y) = (C2, C1)
(1) ,

N4(ã, x, y) =4 (C2, C0)
(1) − 3C1D1,

N5(ã, x, y) =
[
(D2, C1)

(1) +D1D2

]2
− 4

(
C2, C2

)(2)(
C0,D2

)(1)
,

N6(ã, x, y) =8D + C2

[
8(C0,D2)

(1) − 3(C1, C1)
(2) + 2D2

1

]
.

3 Preliminary results involving the use of polynomial invariants

The following two lemmas reveal the geometrical meaning of the invariant poly-
nomials B1, B2, B3, θ and Ñ .

Lemma 1. [9] For the existence of an invariant straight line in one (respectively 2
or 3 distinct) directions in the affine plane it is necessary that B1 = 0 (respectively
B2 = 0 or B3 = 0).

Lemma 2. [9] A necessary condition for the existence of one couple (respectively,
two couples) of parallel invariant straight lines of a system (2) corresponding to
a ∈ R

12 is the condition θ(a) = 0 (respectively, Ñ(a, x, y) = 0).

We remark that the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4) defined
earlier (see page 50) are responsible for the total multiplicity of the finite singular-
ities of quadratic systems (2). Moreover they detect whether a quadratic system is
degenerate or not as well as the coordinates of infinite singularities that result after
the coalescence of finite singularities with an infinite one. More exactly according
to [1, Lemma 5.2] we have the following lemma.

Lemma 3. Consider a quadratic system (S) with coefficients a ∈ R
12. Then:

(i) The total multiplicity of the finite singularities of this system is 4 − k if and
only if for every i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y]
and µk(a, x, y) 6= 0.

In this case the factorization µk(a, x, y) =
∏k

i=1(uix− viy) 6= 0 over C yields
the coordinates [vi : ui : 0] of points at infinity that have multiplicity greater
than one, this being the result of coalescence of finite and infinite singularities.
Moreover the number of distinct expressions uix − viy in this factorization
is less than or equal to three (the maximum number of infinite singularities
of a quadratic system), and the multiplicity of each one of the expressions
uix− viy gives us the number of the finite singularities of the system (S) that
have coalesced with the infinite singular point [vi : ui : 0].

(ii) Let the point M0(0, 0) be a singular point for the quadratic system (S). Then
the point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4) if and only
if for every i such that 0 ≤ i ≤ k − 1 we have µ4−i(a, x, y) = 0 in R[x, y] and
µ4−k(a, x, y) 6= 0.
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(iii) The system (S) is degenerate (i.e. gcd(p, q) 6= constant) if and only if
µi(a, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials η, M̃ and C2 govern the number
of real and complex infinite singularities. More precisely, according to [18] (see
also [10]) we have the next result.

Lemma 4. The number of infinite singularities (real and complex) of a quadratic
system in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ 6= 0;

(iv) 1 real if η = M̃ = 0 and C2 6= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, the quadratic systems (2), for each one of these cases, can be brought via
a linear transformation to the corresponding case of the following canonical systems
(SI) − (SV ):

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

Remark 1. In order to describe the various kinds of multiplicity for infinite singular
points we use the concepts and notations introduced in [9]. Thus we denote by
“(a, b)” the ordered couple of a, respectively b, where a (respectively b) is the max-
imum number of infinite (respectively finite) singularities which can be obtained by
perturbation of a multiple infinite singular point.

Now we define the affine comitants which are responsible for the existence of
invariant lines for a non-degenerate quadratic system (2).

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials
p(ã, x, y) and q(ã, x, y). We obtain p̂(â(ã, x0, y0), x

′, y′) = p(ã, x′ + x0, y
′ + y0),
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q̂(â(ã, x0, y0), x
′, y′) = q(ã, x′ + x0, y

′ + y0). Let us construct the following poly-
nomials

Γi(ã, x0, y0) ≡ Res x′

(
Ci

(
â(ã, x0, y0), x

′, y′
)
, C0

(
â(ã, x0, y0), x

′, y′
))
/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], i = 1, 2.

Notation 1.

Ẽi(ã, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ∈ R[ã, x, y] (i = 1, 2).

Observation 1. We note that the constructed polynomials Ẽ1(ã, x, y) and Ẽ2(ã, x, y)
are affine comitants of systems (2) and are homogeneous polynomials in the coeffi-
cients a, . . . , n and non-homogeneous in x, y and

degã Ẽ1 = 3, deg (x,y) Ẽ1 = 5, degã Ẽ2 = 4, deg (x,y) Ẽ2 = 6.

Notation 2.
Let Ei(ã,X, Y, Z) (i = 1, 2) be the homogenization of Ẽi(ã, x, y), i.e.

E1(ã,X, Y, Z) = Z5Ẽ1(ã,X/Z, Y/Z), E2(ã,X, Y, Z) = Z6Ẽ2(ã,X/Z, Y/Z)

and H(ã,X, Y, Z) = gcd
(
E1(ã,X, Y, Z), E2(ã,X, Y, Z)

)
in R[ã,X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following
lemmas (see [9]):

Lemma 5. [9] The straight line L(x, y) ≡ ux+vy+w = 0, u, v,w ∈ C, (u, v) 6= (0, 0)
is an invariant line for a quadratic system (2) if and only if the polynomial L(x, y)
is a common factor of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].

Lemma 6. 1) If L(x, y) ≡ ux+vy+w = 0, u, v,w ∈ C, (u, v) 6= (0, 0) is an invariant
straight line of multiplicity k for a quadratic system (2) then [L(x, y)]k | gcd(Ẽ1, Ẽ2)
in C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such that

Ẽi(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(E1, E2), in other
words we have Zk−1 | H(a,X, Y, Z).

In what follows the following Lemma will be useful.

Lemma 7. The non-singular invariant line at infinity for a non-degenerate quadratic
system has the multiplicity greater than or equal to two if and only if the condition
K̃ = 0 holds.
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Proof. Considering Lemma 6 (see statement 2) we deduce that the line at infinity
of a quadratic system is of multiplicity > 1 if and only if Z | gcd(E1, E2). In other
words Z is a common factor of the polynomials E1(X,Y,Z) and E2(X,Y,Z) (see
Notation 2).

Taking into account the definition of the invariant polynomials E1(X,Y,Z) and
E2(X,Y,Z) (see Notations 1 and 2) for systems (2) we calculate

E1(X,Y,Z) =
1

2
C2(X,Y )K̃(X,Y ) + φ1(X,Y )Z + φ2(X,Y )Z2 + . . .+ φ5(X,Y )Z5,

E2(X,Y,Z) =C2(X,Y )Ψ(X,Y ) + ψ1(X,Y )Z + ψ2(X,Y )Z2 + . . . + ψ6(X,Y )Z6,

where

C2(X,Y ) = − lX3 + (g − 2m)X2Y + (2h − n)XY 2 + kY 3,

K̃(X,Y ) = 4
[
(gm− hl)X2 + (gn − kl)XY + (hn − km)Y 2

]
≡ 4

[
αX2 + βXY + γY 2

]
,

Ψ(X,Y ) = (2gα + lβ)X3 +
[
(4h + 2n)α+ gβ + 4lγ

]
X2Y

+
[
2kα+ (2h+ n)β + 4mγ

]
XY 2 + (kβ + 2nγ)Y 3.

Therefore we conclude that the invariant polynomials E1(X,Y,Z) and E2(X,Y,Z)
have the common factor Z if and only if the conditions C2(X,Y )K̃(X,Y ) =
C2(X,Y )Ψ(X,Y ) = 0 hold. Since C2 = 0 leads to systems with the line at in-
finity filled up with singularities (see Lemma 4) clearly the condition C2 6= 0 has to
be satisfied.

On the other hand we observe that the condition K̃(X,Y ) = 0 implies
α = β = γ = 0 and then Ψ(X,Y ) = 0. Therefore we obtain that the condition
K̃(X,Y ) = 0 is necessary and sufficient for a quadratic system to have the invariant
line at infinity of multiplicity at least 2. This completes the proof of Lemma 7.

4 The quadratic systems belonging to the family QSL3

As it is mentioned in Introduction some of the configurations of the quadratic
systems in the family QSL3 were determined earlier in other papers. More ex-
actly in [16] the configurations Config. 3.1–Config. 3.13 are constructed. In a recent
published article [5] the family of systems possessing two parallel invariant lines is
considered and the configurations Config. 3.14–Config. 3.65 are determined.

In this section we complete the investigation of the family QSL3 and prove that
there exist 16 possible new configurations Config. 3.66–Config. 3.81.

First of all we prove some necessary conditions for a quadratic system to belong
to the family QSL3. We have the following lemma.

Lemma 8. Assume that a non-degenerate quadratic system belongs to the class
QSL3. Then for this system the conditions B1 = 0 and B3 6= 0 have to be fulfilled.

Proof. According to Lemma 1 if for a quadratic system the condition B1 6= 0 holds
then this system could not have any invariant affine line going in some direction. On



60 BUJAC C., SCHLOMIUK D., VULPE N.

the other hand if a system belongs to the class QSL3 then either there exists at least
one invariant affine line or the line at infinity is triple. However in the second case
there must exist a perturbation such that the perturbed system necessarily possesses
at least one invariant affine line and this means that for this system we must have
B1 = 0. So we deduce that this condition must be satisfied for the non-perturbed
system, too.

Therefore we obtain that for a system in QSL3 the condition B1 = 0 have to
be satisfied. In order to complete the proof of Lemma 8 we have to show that for
a system in QSL3 the condition B3 6= 0 is also necessary. We prove the following
lemma.

Lemma 9. Assume that for a non-degenerate quadratic system the condition B3 = 0
holds. Then this system belongs to the class QSL≥4. Moreover any system in this
class could have a configuration of invariant lines given in Diagram 3 if and only if
the corresponding conditions are satisfied, respectively.

Proof. Assume that for a non-degenerate quadratic system the condition B3 = 0
is fulfilled. In the articles [9] and [11] the families of quadratic systems possessing
invariant line of total multiplicity at least four are investigated and the corresponding
possible configurations of invariant lines are determined.

So considering Tables 2 and 4 from [9] as well as Table 2 from [11] it is not
too difficult to convince ourselves that the conditions given in these tables for the
corresponding configurations are equivalent to the respective conditions presented
in Diagram 3.

We observe that this diagram gives us a complete partition of the whole set
QSL{B3=0}. This completes the proof of Lemma 9 as well as the proof of Lemma 8.

4.1 Configurations of systems belonging to the subfamily

QSL3∩ QS2cIL

In paper [2] (see also [19]) the phase portraits of the family of quadratic sys-
tems possessing two complex invariant lines intersecting at a real finite point are
considered. We denote this family by QS2cIL. A result in [2] determined 20 topo-
logically distinct phase portraits. However the problem of how many configurations
of invariant lines systems in the family QS2cIL could have remains open.

Here we are interested in the configurations of the quadratic systems belonging
to the subfamily QSL3∩ QS2cIL. We prove the following theorem.

Theorem 1. An arbitrary non-degenerate quadratic system belongs to the subfamily
QSL3∩ QS2cIL if and only if the conditions η < 0, B2 = 0 and B3Ñ 6= 0 hold. More-
over this system possesses the configuration Config. 3.66 if µ0 6= 0 and Config. 3.67
if µ0 = 0.
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Diagram 3: The configurations of systems in QSL with B3 = 0

Proof. According to [2, Theorem 1] a non-degenerate quadratic system possesses
two complex invariant lines meeting at a finite real point if and only if one of the
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Diagram 3 (continuation): The configurations of systems in QSL with B3 = 0

following two sets of conditions are satisfied:

(i) η < 0, B2 = 0; (ii) C2 = 0, D > 0.
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Diagram 3 (continuation): The configurations of systems in QSL with B3 = 0

By [15] quadratic systems with C2 = 0 possess in the finite part of the phase
plane invariant lines of total multiplicity three. Therefore we obtain that a system
with C2 = 0 could not belong to the class QSL3. Moreover we deduce that for
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C2 6= 0 the conditions η < 0 and B2 = 0 are necessary and sufficient for a system to
belong to the family QS 2cIL.

Since we are interested in the determinations of the configuration of the quadratic
systems in the subclass QSL3 ∩ QS 2cIL we consider that for a non-degenerate
quadratic system the conditions η < 0 and B2 = 0 are satisfied. Thus according to
what is mentioned above we conclude that in order to complete the proof of Theorem
1 it is sufficient to prove that if for a quadratic system we have η < 0 and B2 = 0
then the condition B3Ñ 6= 0 guarantees that this system belongs to the class QSL3.
Moreover we have also to determine the possible configurations of invariant lines of
these systems.

According to [20] if a quadratic system possesses two complex invariant lines
intersecting at a real finite singular point then via an affine transformation this
system takes the following form:

dx

dt
= (αx− βy)(ax+ by + c) + k(x2 + y2) ≡ P (x, y),

dy

dt
= (βx+ αy)(ax+ by + c) ≡ Q(x, y)

(3)

where α, β, a, b, c, k are arbitrary real parameters. These systems possess the com-
plex invariant lines x± iy = 0 and we calculate

η = −4
[
(k − bβ)2 + a2β2

]2
< 0, B2 = 0, B3 = 3ac2kβ(α2 + β2)(x2 + y2)2.

According to Lemma 8 for a system (3) to belong to the class QSL3 the condition
B3 6= 0 is necessary. The question which appears is the following: which conditions
must be added in order to get the necessary and sufficient ones?

Providing the conditions η < 0 and B3 6= 0 are fulfilled for a system (3) we exam-
ine what additional conditions could increase the total multiplicity of the invariant
lines of this system.

Assume that a system (3) possesses invariant lines of total multiplicity exactly
four. In [11] the family of systems belonging to QSL4 has been investigated and
in Table 2 necessary and sufficient conditions for the realization of each one of the
possible 46 configurations of invariant lines for this class are given. Considering
Table 2 from [11] we detect that systems with the condition η < 0 (i.e. having 2
complex and one real infinite singularities) could possess only one of the following 4
configurations: Config.4.2 and Config.4.6–Config.4.8. However for all these config-
urations the condition B3 = 0 has to be satisfied and hence we get a contradiction
to Lemma 8.

Thus we conclude that a system (3) could not belong to the class QSL4.
Suppose now that a system (3) possesses invariant lines of total multiplicity at

least five. According to [9] (see Theorem 50, statement (ii)) for having invariant
lines of total multiplicity 6 the condition B3 = 0 is necessary for any quadratic
system. So we conclude that a system (3) could not belong to the class QSL6.

It remains to consider the possibility when a system (3) with η 6= 0 (i.e. η < 0)
and B3 6= 0 belongs to the class QSL5. In this case we consider Table 4 from [9] and
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we detect that subject to these conditions we could have the unique configuration
Config.5.6. However to obtain this configuration the condition Ñ = 0 must be
satisfied.

Thus we conclude that a system (3) with η < 0 and B3 6= 0 belongs to the
class QSL3 if Ñ 6= 0 and to the class QSL5 if Ñ = 0. This means that the
conditions provided by Theorem 1 for a quadratic systems to belong to the subclass
QSL3 ∩ QS 2cIL are satisfied.

Next we determine the configurations which a system (3) from the class QSL3

could possess. For this we have to determine the position of the singularities of this
system with respect to the invariant lines.

A straightforward calculation gives us the following finite singularities of systems
(3):

M1(0, 0), M2 =
(
−

cα

k + aα− bβ
,

cβ

k + aα− bβ

)
, M3,4 =

(
−

c

a± ib
,−

c

b∓ ia

)
.

Since the condition B3 6= 0 implies ackβ 6= 0 we conclude that the singular points
M2 and M3,4 could not coalesce with M1. Moreover the singular point M2 exists
if k + aα − bβ 6= 0, otherwise it goes to infinity coalescing with the real infinite
singularity.

On the other hand for systems (3) we calculate

µ0 = (a2 + b2)k(k + aα− bβ)(α2 + β2)

and hence for µ0 6= 0 these systems possess two real and two complex finite singular
points and we arrive at the configuration given by Config.3.66.

Assume now µ0 = 0. Due to the condition B3 6= 0 (i.e. ackβ 6= 0) we get
k = bβ − aα 6= 0 and hence we calculate

µ1 = c(a2 + b2)(aα− bβ)(α2 + β2)(βx+ αy).

We observe that µ1 6= 0 due to the condition ackβ(bβ − aα) 6= 0. Since µ0 = 0,
according to Lemma 3 one finite singular point went to infinity and coalesced with
the infinite real singularity N1[α,−β, 0] (see the factor of the invariant polynomial
µ1(x, y)). In this case we arrive at the configuration given by Config.3.67.

As all the cases are examined we conclude that Theorem 1 is proved.

4.2 Configurations of quadratic systems that are limit points of the

family of Lotka-Volterra systems

It turned out that a quadratic system could have invariant lines of total multiplic-
ity 3 which are not included in one of the following three classes: (i) Lotka-Volterra
systems, or (ii) systems with two parallel invariant lines, or (iii) systems with two
complex lines meeting at a finite singularity.

Indeed such kind of configurations could be obtained from an L-V system using
the following two possibilities:
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(α) Two simple invariant affine lines of an L-V system belonging to the subclass
QSL3 coalesced and we obtain a double invariant affine line and a multiple real
singular point at infinity.

(β) One (or two) simple invariant affine lines of an L-V system in QSL3 coalesced
with infinite line Z = 0 giving a double (or a triple) infinite invariant line.

Since we are in the class of L-V systems by Lemma 1 it is clear that the condition
B2 = 0 must be satisfied in both these cases. Moreover in the case (α) the condition
η = 0 has to be fulfilled, because we have a double (or triple) singular point at
infinity.

On the other hand considering Lemma 7 we conclude that in the case (β) the
condition K̃(a, x, y) = 0 is necessary.

In what follows assuming the condition B2 = 0 should be fulfilled we examine
each one of the cases we mentioned above and determine the possible configurations
of invariant lines as well as the corresponding affine invariant conditions for their
realization.

(α) In this case for a quadratic system the condition η = 0 has to be satisfied.

We examine two cases: M̃ 6= 0 and M̃ = 0.

Proof. 1. The case M̃ 6= 0. According to Lemma 4 a quadratic system could be
brought via a linear transformation to the canonical form (SIII), i.e. we have to
examine the family systems

ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2.
(4)

For these systems calculations yield:

θ = 8h2(1 − g), µ0 = gh2, C2 = x2y, Ñ = (g2 − 1)x2 + 2h(g − 1)xy + h2y2. (5)

Since C2 = x2y we conclude that these systems possess two infinite singularities:
N1[1 : 0 : 0] (simple) and N2[0 : 1 : 0] (double). We discuss two subcases: θ 6= 0 and
θ = 0.

1.1. The subcase θ 6= 0. The condition θ 6= 0 yields h(g − 1) 6= 0 and we may
consider d = e = 0 due to a translation. Moreover, since h 6= 0 we may assume
h = 1 due to the rescaling y → y/h. Thus we obtain the family of systems

ẋ = a+ cx+ gx2 + xy, ẏ = b+ fy + (g − 1)xy + y2,

for which we calculate Coefficient[B2, y
4] = −648a2. Hence the necessary condition

B2 = 0 yields a = 0 and then

B2 = −648b(b+ c2 − cf)(g − 1)2x4, H4 = 48(b + c2 − cf), θ = 8(1 − g),

B3 = −3
[
b(g − 1)2x2 − (b+ c2 − cf)y2

]
x2.

We shall consider two possibilities: H4 6= 0 and H4 = 0.
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1.1.1. The possibility H4 6= 0. In this case the condition B2 = 0 yields b = 0
and we arrive at the family of systems

ẋ = x(c+ gx+ y), ẏ = y[f + (g − 1)x+ y],

possessing the invariant lines x = 0 and y = 0. So we obtain LV -systems, i.e. no
new configurations could de detected.

1.1.2. The possibility H4 = 0. Then we have b = c(f − c) and this leads to the
family of systems

ẋ = x(c+ gx+ y), ẏ = c(f − c) + fy + (g − 1)xy + y2, (6)

possessing the invariant line x = 0 which is double because H(X ,Y,Z) = X2 (see
Notation 2). So, these systems possess invariant lines of total multiplicity at least 3.
However for these systems the condition B3 = 3c(c − f)(g − 1)2x4 6= 0 is necessary
and therefore by Lemma 1 we could not have an additional invariant line in the
direction y = 0.

Thus we deduce that in the case B3 6= 0 systems (6) possess invariant lines
of total multiplicity exactly 3. More exactly we have a double invariant affine line
x = 0, on which there are located two finite singularities: M1(0,−c) and M2(0, c−f).
The third finite singularity M3(x3, y3) of systems (6) has the coordinates

x3 = −
cg + c− fg

g
, y3 = (c− f)g.

Since for systems (6) we have µ0 = g we conclude that for µ0 6= 0 all the finite
singularities are on the plane and this means that one of the mentioned finite sin-
gularities is double. We claim that the double singularity is M1(0,−c). Indeed
after translation of the origin of coordinates to the singular point M1 we obtain the
systems

ẋ = x(gx+ y), ẏ = c(1 − g)x + (f − 2c)y + (g − 1)xy + y2 (7)

possessing a double singular point at the origin because the determinant of the linear
part equals zero. So these systems have the finite singular points

M1(0, 0), M2(0, 2c − f), M3

(
− (c+ cg − fg)/g, c + cg − fg

)

and we observe that M3 goes to infinity if g = 0. Moreover it is clear that M2

coalesces with M1 if 2c− f = 0 and M3 coalesces with M1 if c+ cg − fg = 0.
On the other hand for systems (7) calculations yield:

µ0 = g, H3 = 8(2c − f)(c+ cg − fg)x2, H13 = −288c(2c − f)2(g − 1),

B3 = 3c(c − f)(g − 1)2x4

and we observe that due to B3 6= 0 the condition H13 = 0 is equivalent to f = 2c.
So we consider two cases: µ0 6= 0 and µ0 = 0.
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1.1.2.1. The case µ0 6= 0. Then g 6= 0 and the finite singularity M3 remains in
the finite plane. So if H3 6= 0 none of the singular points could coalesced and we
arrive at the configuration Config. 3.68 (see Figure 1)

Assume now H3 = 0, i.e. (2c − f)(c + cg − fg) = 0. Then evidently we obtain
Config. 3.69 if H13 6= 0 and Config. 3.70 if H13 = 0.

We point out that all three finite singularities could not coalesced due to B3 6= 0
(i.e. c 6= 0).

1.1.2.2. The case µ0 = 0. Then g = 0 and systems (7) become

ẋ = xy, ẏ = cx+ (f − 2c)y − xy + y2

possessing the following two finite singularities: M1(0, 0) and M2(0, 2c − f). Since
for the above systems we have µ0 = µ1 = 0 and µ2 = −cy 6= 0 (otherwise we get
degenerate systems), according to Lemma 3 the singular point M3 of systems (7)
has gone to infinity and coalesced with the infinite singular point N1[1 : 0 : 0] which
becomes of multiplicity 2 of the type (1, 1).

On the other hand the finite singularity M2 could coalesce with M1 if the con-
dition f = 2c holds. For the above systems we calculate

B3 = 3c(c− f)x4 6= 0, H3 = 8c(2c − f)x2

and therefore we arrive at the configuration Config. 3.71 if H3 6= 0 and Config. 3.72
if H3 = 0.

1.2. The subcase θ = 0. Considering (5) this condition gives h(g − 1) = 0 and
since µ0 = gh2 we examine two possibilities: µ0 6= 0 and µ0 = 0.

1.2.1. The possibility µ0 6= 0. Then h 6= 0 and hence the condition θ = 0
yields g = 1. Therefore we may consider h = 1 due to the rescaling y → y/h and
d = f = 0 due to a translation. Thus we obtain the family of systems

ẋ = a+ cx+ x2 + xy, ẏ = b+ ex+ y2,

for which we have Coefficient[B2, y
4] = −648a2 and therefore the condition B2 = 0

implies a = 0. Then we calculate

B2 = −648(b+ c2)e2x4, H7 = −4e.

and clearly if e = 0 (i.e. H7 = 0) then the above systems with a = e = 0 possess
three invariant affine lines x = 0 and y2 + b = 0. Therefore we could not obtain new
configurations apart from the ones already known.

Assuming H7 6= 0 we get the conditions b = −c2 and this leads to the family of
systems

ẋ = x(c+ x+ y), ẏ = −c2 + ex+ y2,

possessing the invariant line x = 0 which is double because H(X ,Y,Z) = X2 (see
Notation 2). These systems have three finite singularities M1(0,−c), M2(0, c) and
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M3(−2c − e, c + e). We observe that the singular point M1 is double because after
the translation (x, y) → (x, y + c) we arrive at the systems

ẋ = x(x+ y), ẏ = ex− 2cy + y2, (8)

possessing a double singularity M1(0, 0) at the origin of coordinates (since the de-
terminant of linear part vanishes) and two elemental singularities M2(0, 2c) and
M3(−2c − e, 2c + e). It is clear that in the case e = −2c the singular point M3

coalesces with the double point M1 whereas for c = 0 the singularity M2 coalesces
with M1.

On the other hand for the above systems we calculate

B3 = −3e2x4, H3 = 16c(2c + e)x2, H13 = 2c2e.

and due to B3 6= 0 (i.e. e 6= 0), by Lemma 1 systems (8) could not possess invariant
lines in the direction y = 0. Therefore we deduce that in this case systems (8)
possess invariant lines of total multiplicity 3.

Thus considering the condition H7 6= 0 (i.e. e 6= 0) it is not too difficult to
determine that we get the configuration Config. 3.68 if H3 6= 0, Config. 3.69 if
H3 = 0 and H13 6= 0, and Config. 3.70 if H3 = H13 = 0.

1.2.2. The possibility µ0 = 0. Considering (5) we get h = 0 and therefore for
systems (4) we obtain Ñ = (g2 − 1)x2.

So we discuss two cases: Ñ 6= 0 and Ñ = 0.

1.2.2.1. The case Ñ 6= 0. Then g − 1 6= 0 and assuming e = f = 0 (due to a
translation) we arrive at the systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ (g − 1)xy,

for which we calculate

H7 = 4d(g2 − 1), Ñ = (g2 − 1)x2, Coefficient[B2, y
4] = −648d4g2.

We observe that for d = 0 the above systems possess two parallel invariant lines
a+ cx+ gx2 = 0 and hence no new configurations could be obtained in this case.

Since Ñ 6= 0 we obtain that the condition d = 0 is equivalent to H7 = 0 and in
what follows we assume H7 6= 0. Then the condition B2 = 0 implies g = 0 and then
we obtain

B2 = −648bcdx4, H7 = −4d, µ0 = µ1 = 0, µ2 = −cdxy

and we discuss two subcases: µ2 6= 0 and µ2 = 0.

1.2.2.1.1. The subcase µ2 6= 0. Then we have c 6= 0 and the condition B2 = 0
gives b = 0 and we obtain the family of systems

ẋ = a+ cx+ dy, ẏ = −xy, (9)
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possessing the invariant line y = 0. Moreover for these systems we calculate
H(X ,Y,Z) = Y Z and by Lemma 6 we deduce that the infinite invariant line is
double. In other words we have invariant lines of total multiplicity 3.

Since µ0 = µ1 = 0 and µ2 = −cdxy 6= 0, according to Lemma 3 we deduce that
two finite singular points have gone to infinity and coalesced with infinite singular
points N1[1 : 0 : 0] and N2[0 : 1 : 0], respectively. So at infinity we get two multiple
singularities of multiplicities (1, 1) and (2, 1) (see Remark 1), correspondingly.

On the other hand due to µ2 6= 0 (i.e. cd 6= 0) systems (9) possess two finite
singularities M1(0,−a/d) and M2(−a/c, 0) both simple (i.e. of multiplicity one).
We observe that M2 is located on the invariant line y = 0 and these singularities
coalesce if and only if a = 0.

Since this condition is captured by the invariant polynomial H9 = −576a2c2d2

we arrive at the configuration Config. 3.73 if H9 6= 0 and Config. 3.74 if H9 = 0.
1.2.2.1.2. The subcase µ2 = 0. Since d 6= 0 (due to H7 6= 0) we obtain c = 0 and

this leads to the systems

ẋ = a+ dy, ẏ = b− xy,

for which we have

B2 = 0, B3 = −3bx4, H7 = −4d 6= 0, µ0 = µ1 = µ2 = 0, µ3 = adxy2.

For these systems we calculate H(X ,Y,Z) = Z2 and by Lemma 6 we deduce that
the infinite invariant line is triple, i.e. we have invariant lines of total multiplicity 3.
It is clear that we remain in this class due to the condition B3 6= 0.

It µ3 = adxy2 6= 0 then by Lemma 3 we deduce that two finite singular points
have gone to infinity and coalesced with the infinite singularityN1[1 : 0 : 0] producing
a triple point of the multiplicity (1, 2). At the same time one finite singularity has
coalesced with N2[0 : 1 : 0] and we obtain a triple infinite singularity of multiplicity
(2, 1). As a result we obtain the configuration Config. 3.75.

Assume now µ3 = 0. Then due to H7 6= 0 (i.e. d 6= 0) we get a = 0 and hence
we arrive at the systems

ẋ = dy, ẏ = b− xy,

for which we have

B2 = 0, B3 = −3bx4 6= 0, H7 = −4d 6= 0, µ0 = µ1 = µ2 = µ3 = 0, µ4 = −bd2xy3.

We observe that µ4 = −bd2x 6= 0 (due to B3H7 6= 0) and therefore according to
Lemma 3 in the same manner as it was described above these systems possess at
infinity the singularities N1[1 : 0 : 0] and N2[0 : 1 : 0] of multiplicities (2, 1) and
(1, 3), respectively. In this case we obtain the configuration Config. 3.76.

1.2.2.2. The case Ñ = 0. In this case g2 − 1 6= 0 and since for systems (4) with
h = 0 we have K̃ = 2g(g − 1)x2 we consider two subcases: K̃ 6= 0 and K̃ = 0.

1.2.2.2.1. The subcase K̃ 6= 0. Then g 6= 1 and the condition Ñ = 0 gives g = −1.
Then we may assume in systems (4) e = f = 0 and we arrive at the systems

ẋ = a+ cx+ dy − x2, ẏ = b− 2xy,
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for which we have Coefficient[B2(a, x, y), y
4] = −648d4y4 and hence the condition

B2 = 0 implies d = 0. However in this case we obtain two parallel invariant lines
a+ cx− x2 = 0 and this class of systems is already investigated in [5].

1.2.2.2.2. The subcase K̃ = 0. Then the condition Ñ = 0 gives g = 1 and we
may assume c = 0 in systems (4) with h = 0 and g = 1. This leads to the family of
systems

ẋ = a+ dy + x2, ẏ = b+ ex+ fy,

for which we have B2 = −648d4y4. Therefore the condition B2 = 0 yields d = 0
giving two invariant affine lines x2 + a = 0. So we get two parallel invariant lines
and we conclude that in this case we also could not have new configurations.

2. The case M̃ = 0. According to Lemma 4 a quadratic system in this class
could be brought via a linear transformation to the canonical form (SIV ), i.e. we
have to examine the family of systems

ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,
(10)

for which calculations yield:

θ = 8h3, µ0 = −h3, C2 = x3.

Since C2 = x3 we conclude that these systems possess only one infinite singularity
N1[0 : 1 : 0] which is triple. We discuss two subcases: θ 6= 0 and θ = 0.

2.1. The subcase θ 6= 0. Then h 6= 0 and we may assume c = d = 0 due to a
translation. So we obtain the systems

ẋ =a+ gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,

for which we calculate Coefficient[B2, y
4] = −3888a2h4x2y2 and therefore the condi-

tion B2 = 0 implies a = 0 due to h 6= 0. In this case we obtain B2 = −648b2h4x4 = 0
which implies b = 0 and we get the systems

ẋ =x(gx+ hy), ẏ = ex+ fy − x2 + gxy + hy2. (11)

For these systems following Notation 2 we calculate H(X ,Y,Z) = X2, i.e. by
Lemma 6 the invariant line x = 0 of systems (11) has the multiplicity 2.

On the other hand due to θ 6= 0 (i.e. h 6= 0) the above systems possess the
following three finite singularities:

M1(0, 0), M2(0,−f/h), M3((eh − fg)/h, g(fg − eh)/h2).

It is clear that M1 is double because the first equation of systems (11) does not have
linear terms (nor constant one).

For systems (11) we have B2 = 0 and by Lemma 8 in order to remain in the
class QSL3 the condition B3 = −3f(fg − eh)x4 6= 0 is necessary.
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Then considering the information pointed out above about the multiplicity of
finite and infinite singularities of systems (11) we arrive at the configuration Config.
3.77.

2.2. The subcase θ = 0. This condition gives h = 0 and then for systems (10)
we have

Coefficient[B2, x
2y2] = −3888d4g2, Ñ = g2x2.

We observe that in the case Ñ 6= 0 (i.e. g 6= 0) the condition B2 = 0 implies d = 0
and then systems (10) possess two parallel invariant lines gx2+cx+a = 0. Since this
family of systems was already investigated we have to impose the condition Ñ = 0
which yields g = 0. However in this case we get B2 = −648d4x4 = 0, i.e. d = 0 and
again we conclude that no new configurations could be obtained in this case.

Thus in the case M̃ = 0 and B2 = 0 we have exactly one new configuration
Config. 3.77 and for this it is necessary θ 6= 0.

(β) It was mentioned earlier (see page 66) that in this case for a quadratic
system apart from the condition B2 = 0 the condition K̃ = 0 has to be satisfied.
According to Lemma 7 the infinite invariant line is of multiplicity at least two. This
case contains two possibilities: either Z = 0 is double and we have an additional
invariant affine line or Z = 0 is triple. Clearly in both cases we are in the class
QSL3.

In the previous case (α) when η = 0 we have examined all the possibilities when
the invariant line Z = 0 is either simple or double or triple. So we have to investigate
the cases η < 0 and η > 0 when in addition we have the multiple invariant line at
infinity.

1. The case η < 0. We prove the following lemma.

Lemma 10. If for a quadratic system the conditions η < 0 and B2 = K̃(a, x, y) = 0
hold, then this system possesses invariant lines of total multiplicity at least 4.

Proof. Assume that for a quadratic system the condition η < 0 holds. Then ac-
cording to Lemma 4 a quadratic system in this class could be brought via a linear
transformation to the canonical form (SII), i.e. we have to examine the family of
systems

ẋ =a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,

for which calculations yield:

C2 = x(x2 + y2), K̃ = 2(1 + g2 + h)x2 + 4ghxy + 2h(1 + h)y2.

Evidently the condition K̃ = 0 is equivalent to g = 0 and h = −1 and therefore
applying an additional translation which gives e = f = 0 we get the family of
systems

ẋ =a+ cx+ dy, ẏ = b− x2 − y2.
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For these systems we have

B2 = −648
[
16a2 + (c2 + d2 − 4b)2

]
x4 = 0 ⇒ a = 0, b = (c2 + d2)/4

and we arrive at the systems

ẋ =cx+ dy, ẏ = (c2 + d2)/4 − x2 − y2

which possess the double invariant line Z = 0 and two complex invariant affine lines

(c± id∓ 2ix+ 2y) = 0.

So the above systems have invariant lines of total multiplicity at least four and this
completes the proof of Lemma 10.

2. The case η > 0. By Lemma 4 a quadratic system in this class could be
brought via a linear transformation to the canonical form (SI), i.e. we have to
examine the family of systems

ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2,
(12)

for which we calculate:

C2 = xy(x− y), K̃ = 2g(g − 1)x2 + 4ghxy + 2h(h− 1)y2.

Therefore the condition K̃ = 0 implies gh = g(g − 1) = h(h− 1) = 0. Evidently we
can assume g = 0, otherwise we apply the change

(x, y, a, b, c, d, e, f, g, h) 7→ (y, x, b, a, f, e, d, c, h, g) (13)

which conserves systems (12). In this case we have either g = h = 0 or g = 0
and h = 1. We claim that the second case can be reduced to the first one via a
transformation. Indeed assuming g = h = 0 we get the family of systems

ẋ =a+ cx+ dy − xy, ẏ = b+ ex+ fy − xy, (14)

whereas for g = 0 in the case h = 1 we arrive at the systems

ẋ =a+ cx+ dy, ẏ = b+ ex+ fy − xy + y2. (15)

Then applying the linear transformation x1 = y, y1 = y − x to systems (15) we
arrive at the family of systems

ẋ1 = a′ + c′x1 + d′y1 − x1y1, ẏ1 = b′ + e′x1 + f ′y1 − x1y1

where

a′ = b, c′ = e+ f, d′ = −e, b′ = b− a, e′ = e+ f − c− d, f ′ = c− e.
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Comparing the above system with (14) we deduce that our claim is proved.
Thus g = h = 0 and for systems (14) we calculate

B2 = −648(a + cd)(b+ ef)(x− y)4 = 0.

Due to the change (13) we may assume b = −ef . Then we arrive at the systems

ẋ =a+ cx+ dy − xy, ẏ = (f − x)(y − e), (16)

which besides the double infinite invariant line Z = 0 possess the invariant affine
line y = e. We point out that for these systems we have

B3 = 3(a + cd)(x − y)2y2, H7 = −4(c+ d− e− f)

and by Lemma 8 the condition B3 6= 0 has to be satisfied. We claim that in order to
be in the class QSL3 we must force also the condition H7 6= 0 to be fulfilled. Indeed
supposing H7 = 0 we obtain f = c+ d− e and we arrive at the family of systems

ẋ = a+ cx+ dy − xy, ẏ = (c+ d− e− x)(y − e)

possessing the following two invariant affine lines:

y = e, a+ ce+ de− e2 + (c− e)(x− y) = 0,

i.e. the above systems belong to the class QSL≥4 and this completes the proof of
our claim.

Next we examine configurations of invariant lines for the family of systems (16)
in the case B3H7 6= 0. We determine that these systems possess the singular points
Mi(xi, yi) with the coordinates:

x1 = f, y1 = −
a+ cf

d− f
; x2 = −

a+ de

c− e
, y2 = e

and evidently these finite singularities exist if and only if (c−e)(d−f) 6= 0. Moreover
the singularity M2 is located on the invariant line y = e of systems (16).

On the other hand for systems (16) we calculate

µ0 = µ1 = 0, µ2 = −(c−e)(d−f)xy, H9 = −576(c−e)2(d−f)2(a+de+cf −ef)2

and hence if µ2 6= 0 we have two finite singularities M1 and M2, where M2 is located
on the invariant line y = e. Moreover we observe that in the case a+de+cf−ef = 0
the singular point M1 coalesced with M2 giving the double singularity M1,2(f, e) on
the invariant line y = e. We examine two possibilities: µ2 6= 0 and µ2 = 0.

2.1. The possibility µ2 6= 0. In this case the condition H9 = 0 is equivalent to
a + de + cf − ef = 0. Then taking into account the factorization of the invariant
polynomial µ2(x, y) by Lemma 3 we obtain that at infinity both the singular points
N1[1 : 0 : 0] and N2[0 : 1 : 0] are double of the type (1, 1). Therefore we arrive at
the configuration Config. 3.78 if H9 6= 0 and at Config. 3.79 if H9 = 0.
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2.2. The possibility µ2 = 0. This condition implies (c − e)(d − f) = 0 and since
we have

µ3 = −(c− e)(a− de+ cf + ef)x2y + (d− f)(a+ de− cf + ef)xy2

by Lemma 3 we deduce that for d = f the finite singularity M1 coalesced with
infinite singular point N1[1 : 0 : 0] which becomes of the multiplicity (1, 2). This
leads to the configuration Config. 3.80.

In the case c = e the finite singularity M2 coalesced with infinite singular point
N1[0 : 1 : 0] located at the ”end” of the invariant affine line y = e and we get the
configuration Config. 3.81.

On the other hand for systems (16) we have

H17 = 9(a+ cd)(c− e)2

and therefore in the case µ2 = 0 (i.e. (c − e)(d − f) = 0) we get d = f if H17 6= 0
(Config. 3.80 ) and we obtain c = e if H17 = 0 (Config. 3.81 ).

We point out that we could not have simultaneously d = f and c = e because
in this case we get H7 = −4(c+ d− e− f) = 0 and this contradicts our assumption
H7 6= 0.

On the other hand in the case d = f we obtain

µ3 = (e− c)(a+ cf)x2y, B3 = 3(a+ cf)(x− y)2y2, H7 = 4(e − c)

whereas for c = e we have

µ3 = (d− f)(a+ de)xy2, B3 = 3(a+ de)(x− y)2y2, H7 = −4(d− f).

We observe that in both cases the condition B3H7 6= 0 implies µ3 6= 0 and therefore
we could not have other new configurations in the case under consideration.
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