Time-Reversibility and Ivariants of Some 3-dim Systems

Tatjana Petek and Valery G. Romanovski

Abstract

We study time-reversibility and invariants of the group of transformations $x \rightarrow x, y \rightarrow \alpha y, z \rightarrow \alpha^{-1} z$ for three-dimensional polynomial systems with $0: 1:-1$ resonant singular point at the origin. An algorithm to find the Zariski closure of the set of time-reversible systems in the space of parameters is proposed. The interconnection of time-reversibility and invariants of the group mentioned above is discussed.

Mathematics subject classification: 34C14, 37C7.
Keywords and phrases: Integrability, invariants, reversibility, polynomial systems of ODEs .

Dedicated to the memory of Professor K. S. Sibirsky

1 Introduction

Let k be a field, let G be a multiplicative group of invertible $n \times n$ matrices with elements in k and, for $A \in G$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in k^{n}$, let $A \cdot \mathbf{x}$ denote the usual action of G on k^{n}. A polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is invariant under G if $f(\mathbf{x})=f(A \cdot \mathbf{x})$ for every $\mathbf{x} \in k^{n}$ and every $A \in G$. The polynomial f is also called an invariant of G.

Consider two-dimensional systems of the form

$$
\begin{align*}
& \dot{x}=x-\sum_{(p, q) \in S} a_{p q} x^{p+1} y^{q}, \\
& \dot{y}=-y+\sum_{(p, q) \in S} b_{q p} x^{q} y^{p+1}, \tag{1}
\end{align*}
$$

where the variables x and y and the coefficients of (1) are complex, and $S \subset\left(\{-1\} \cup \mathbb{N}_{0}\right) \times \mathbb{N}_{0}$ is a finite set, of which every element (p, q) satisfies $p+q \geq 1$. Let ℓ be the cardinality of the set S. Then, $\mathbb{C}^{2 \ell}$ is the parameter space of (1), which we denote by $E(a, b)$. The set of polynomials in ordered variables $a_{p_{1}, q_{1}}, \ldots, a_{p_{\ell}, q_{\ell}}, b_{q_{\ell}, p_{\ell}}, \ldots, b_{q_{1}, p_{1}}$ with coefficients in the field k will be denoted by $k[a, b]$.

[^0]After the transformation

$$
\begin{equation*}
x^{\prime}=e^{-i \varphi} x, \quad y^{\prime}=e^{i \varphi} y \tag{2}
\end{equation*}
$$

(such transformations form a one-parametric group of the parameter φ), we obtain the system

$$
\dot{x}^{\prime}=x^{\prime}-\sum_{(p, q) \in S} a(\varphi)_{p q} x^{\prime p+1} y^{\prime q}, \quad \dot{y}^{\prime}=-y^{\prime}+\sum_{(p, q) \in S} b(\varphi)_{q p} x^{\prime q} y^{\prime p+1}
$$

where the coefficients of the transformed system are

$$
\begin{equation*}
a(\varphi)_{p q}=a_{p q} e^{i\left(p_{j}-q_{j}\right) \varphi}, \quad b(\varphi)_{q p}=b_{q p} e^{-i\left(p_{j}-q_{j}\right) \varphi}, \tag{3}
\end{equation*}
$$

for $(p, q) \in S$. For any fixed φ the equations in (3) determine an invertible linear mapping U_{φ} of the space $E(a, b)$ of parameters of (1) onto itself.

The group U_{φ} of family (1) acts on $E(a, b)=\mathbb{C}^{2 \ell}$. The set of polynomial invariants of this group action has been for the first time studied by Sibirsky [12, 13]. Actually, Sibirsky considered the case of the "real" system (1), that is, the case where both equations on the right-hand side of (1) are multiplied by i and the first equation of (1) is the complex conjugate of the second one (such systems are complexifications of real systems, see e.g. [9, Chapter 3]). However, as it is shown in [8] and [9, Chapter 5], the theory for general systems (1) is similar to the theory developed by Sibirsky.

Before we proceed, we fix some notations. For any n-tuple $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, $n \geq 1$, let \hat{s} be the permutation $\hat{s}=\left(s_{n}, s_{n-1}, \ldots, s_{1}\right)$. For two n-tuples $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right), s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ we define the "dot"-product as $r \cdot s=r_{1} s_{1}+r_{2} s_{2}+\cdots+r_{n} s_{n}$. Given n-tuples r, s, let the ordered pair (r, s) denote the $2 n$-tuple generated in the obvious way. Furthermore, we will use a short form of monomial writing as $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right)}:=a_{1}^{\nu_{1}} a_{2}^{\nu_{2}} \ldots a_{n}^{\nu_{n}}=a^{\nu}$, where $a=\left(a_{1}, \ldots, a_{n}\right)$ and $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$.

Let $L_{1}, L_{2}: \mathbb{N}_{0}^{2 \ell} \rightarrow \mathbb{Z}$ be homomorphisms of the additive monoid $\mathbb{N}_{0}^{2 \ell}$ defined with respect to the ordered set S by

$$
\begin{align*}
L_{1}(\nu) & =p_{1} \nu_{1}+\cdots+p_{\ell} \nu_{\ell}+q_{\ell} \nu_{\ell+1}+\cdots+q_{1} \nu_{2 \ell} \\
& =(p, \hat{q}) \cdot \nu \\
L_{2}(\nu) & \left.=q_{1} \nu_{1}+\cdots+q_{\ell} \nu_{\ell}+p_{\ell} \nu_{\ell+1}+\cdots+p_{1} \nu_{2 \ell}\right) \tag{4}\\
& =(q, \hat{p}) \cdot \nu,
\end{align*}
$$

where $p:=\left(p_{1}, \ldots, p_{\ell}\right), q:=\left(q_{1}, \ldots, q_{\ell}\right)$ and $\nu:=\left(\nu_{1}, \ldots, \nu_{2 \ell}\right)$. Furthermore, the map

$$
\begin{equation*}
L:=L_{1}-L_{2}: \mathbb{N}_{0}^{2 \ell} \rightarrow \mathbb{Z} \tag{5}
\end{equation*}
$$

is a monoid-homomorphism as well, hence the kernel,

$$
\begin{equation*}
\widetilde{\mathcal{M}}:=\operatorname{ker} L=\{\nu: L(\nu)=0\} \tag{6}
\end{equation*}
$$

is also a monoid. Since U_{φ} changes only the coefficients of polynomials, a polynomial $f \in \mathbb{C}[a, b]$ is an invariant of the group U_{φ} if and only if each of its terms is an invariant (see Lemma 3.4 of [12]). Therefore, for the description of polynomial invariants of U_{φ}, it suffices to find the invariant monomials. By (3), for $\nu \in \mathbb{N}_{0}^{2 \ell}$, $a=\left(a_{p_{1}, q_{1}} \ldots a_{p_{\ell}, q_{\ell}}\right), b=\left(b_{q_{1}, p_{1}} \ldots a_{q_{\ell}, p_{\ell}}\right)$, we denote by $[\nu] \in \mathbb{C}[a, b]$ the monomial

$$
\begin{equation*}
[\nu]:=a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} p_{\ell}}^{\nu_{+}+1} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}}=(a, \hat{b})^{\nu} \tag{7}
\end{equation*}
$$

The image of ν under the group action U_{φ} is the monomial

$$
\begin{align*}
U_{\varphi}([\nu]) & =(a(\varphi), \widehat{b(\varphi)})^{\nu} \\
& =a(\varphi)_{p_{1} q_{1}}^{\nu_{1}} \cdots a(\varphi)_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b(\varphi)_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b(\varphi)_{q_{1} p_{1}}^{\nu_{2 \ell}} \\
& =a_{p_{1} q_{1}}^{\nu_{1}} e^{i \varphi \nu_{1}\left(p_{1}-q_{1}\right)} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} e^{i \varphi \nu_{\ell}\left(p_{\ell}-q_{\ell}\right)} b_{q_{\ell} p_{\ell}+1}^{\nu_{\ell}} e^{i \varphi \nu_{\ell+1}\left(q_{\ell}-p_{\ell}\right)} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} e^{i \varphi \nu_{2 \ell}\left(q_{1}-p_{1}\right)} \\
& =e^{i \varphi\left[\nu_{1}\left(p_{1}-q_{1}\right)+\cdots+\nu_{\ell}\left(p_{\ell}-q_{\ell}\right)+\nu_{\ell+1}\left(q_{\ell}-p_{\ell}\right)+\cdots+\nu_{2 \ell}\left(q_{1}-p_{1}\right)\right]} a_{p_{1} q_{1}}^{\nu_{1}} \cdots a_{p_{\ell} q_{\ell}}^{\nu_{\ell}} b_{q_{\ell} p_{\ell}}^{\nu_{\ell+1}} \cdots b_{q_{1} p_{1}}^{\nu_{2 \ell}} \\
& =e^{i \varphi\left(L_{1}-L_{2}\right)(\nu)}[\nu] \\
& =e^{i \varphi L(\nu)}[\nu] . \tag{8}
\end{align*}
$$

From (8) we see that the monomial $[\nu]$ defined by (7) is invariant under the group action U_{φ}, for system (1) if and only if $L(\nu)=0$, that is, if and only if $\nu \in \widetilde{\mathcal{M}}$. Since, for any $\nu \in \mathbb{N}_{0}^{2 \ell}$,

$$
\begin{align*}
L(\nu) & =(p-q, \hat{q}-\hat{p}) \cdot \nu \\
& =(q-p, \hat{p}-\hat{q}) \cdot \hat{\nu} \tag{9}\\
& =-L(\hat{\nu}),
\end{align*}
$$

we have $\nu \in \widetilde{\mathcal{M}}$ if and only if $\hat{\nu} \in \widetilde{\mathcal{M}}$, hence the monomial $[\nu]$ is invariant under the group action U_{φ} if and only if its so-called conjugate

$$
\begin{align*}
{[\hat{\nu}] } & =a_{p_{1} q_{1}}^{\nu_{2 \ell}} \cdots a_{p_{\ell \ell}}^{\nu_{\ell}+1} b_{q_{\ell} p_{\ell}}^{\nu_{\ell}} \cdots b_{q_{1} p_{1}}^{\nu_{1}} \tag{10}\\
& =(a, b)^{\hat{\nu}}
\end{align*}
$$

is also invariant.
Sibirsky found some important properties of the monoid $\widetilde{\mathcal{M}}$. One of them is the fact that the set $\{[\nu]: \nu \in \widetilde{\mathcal{M}}\}$ is closed under multiplication. From his results one can see that a basis of the monoid $\widetilde{\mathcal{M}}$ (a basis of the invariants of the group U_{φ}) can be found by sorting, since Sibirsky got a bound for the degree of basis invariants. A simple algorithm to compute generators of $\widetilde{\mathcal{M}}$ based on the Gröbner bases theory was proposed in [4].

With system (1) and the monoind $\widetilde{\mathcal{M}}$ we associate the ideal

$$
\widetilde{I}_{S}=\langle[\nu]-[\hat{\nu}]: \nu \in \widetilde{\mathcal{M}}\rangle .
$$

This ideal was called in [4] the Sibirsky ideal of system (1). It was shown by Sibirsky [12, Chapter 3] that in the "real" case if the parameters of the system belong to the
variety $\mathbf{V}\left(I_{S}\right)$, then the vector field of the system is symmetric with respect to a line passing through the origin (after reversion of time), that is, it is time-reversible, and, therefore, admits an analytic local first integral in a neighborhood of the origin. Later on the result was generalized to general systems (1) in $[7,8]$, where it was shown that for family (1) not all systems from $\mathbf{V}\left(I_{S}\right)$ are time-reversible, but $\mathbf{V}\left(I_{S}\right)$ is the Zariski closure of the set of time-reversible systems and, therefore, all systems from $\mathbf{V}\left(I_{S}\right)$ admit an analytic first integral in a neighborhood of the origin.

We recall (see e.g. [5]) that in the higher-dimensional case a system of ordinary differential equations

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathcal{X}(\mathbf{x}) \tag{11}
\end{equation*}
$$

where $\mathcal{X}(\mathbf{x})$ is a vector function defined on some domain D of \mathbb{R}^{n} or \mathbb{C}^{n}, is timereversible on D if there exists an involution $\psi: D \rightarrow D$ (the involution means that ψ is smooth and $\left.\psi \circ \psi=i d_{D}\right)$ such that

$$
D_{\psi}^{-1} \mathcal{X} \circ \psi=-\mathcal{X}
$$

It is said that a system (11) is completely integrable on D if it admits $n-1$ functionally independent analytic first integrals on D. The problem of complete integrability can be also considered as a natural generalization of the center problem for two-dimensional systems to higher dimensions, see e.g. [6,11, 14].

In this paper we study three-dimensional systems of the form

$$
\begin{align*}
\dot{x} & =\quad P_{1}(x, y, z), \\
\dot{y} & =y+P_{2}(x, y, z), \tag{12}\\
\dot{z} & =-z+P_{3}(x, y, z),
\end{align*}
$$

where $P_{j}, j \in\{1,2,3\}$, are polynomial functions on \mathbb{C}^{3} which vanish together with its first partial derivatives at the origin and present some generalizations of the above mentioned results of Sibirsky and those of $[7,8]$ to the case of system (12).

2 Time-reversibility

The following statement is easily derived from a general result of [6] (see also [10]).
Theorem 1. If under the interchange of the last two variables a system (12) is transformed to a system of the same form but with the right-hand side multiplied by -1 , then it admits two analytic local first integrals of the form

$$
\Psi_{1}(x, y, z)=x+\cdots
$$

and

$$
\Psi_{2}(x, y, z)=y z+\cdots
$$

In the other words, the statement means that if a system (12) is time-reversible with respect to the linear involution defined on \mathbb{C}^{3}

$$
\begin{equation*}
x \mapsto x, y \mapsto z, z \mapsto y, \tag{13}
\end{equation*}
$$

then it is completely integrable in a neighborhood of the origin.
Without loss of generality we can write a polynomial system (12) in the form

$$
\begin{align*}
& \dot{x}=\sum_{(P, Q, R) \in T} a_{P Q R} x^{P} y^{Q} z^{R}, \\
& \dot{y}=y-\sum_{(p, q, r) \in S} b_{p q r} x^{p} y^{q+1} z^{r}, \tag{14}\\
& \dot{z}=-z+\sum_{(p, q, r) \in S} c_{p r q} x^{p} y^{r} z^{q+1},
\end{align*}
$$

where $S \subset \mathbb{N}_{0} \times\left(\mathbb{N}_{0} \cup\{-1\}\right) \times \mathbb{N}_{0}$ is a set of ℓ triplets, all satisfying $1 \leq p+q+r \leq N$, and $T \subset \mathbb{N}_{0} \times \mathbb{N}_{0} \times \mathbb{N}_{0}$ is a set of triplets, all satisfying $2 \leq P+Q+R \leq N$, where N is the degree of (14). Note that the indexing set T is symmetric with respect to the second and third coordinates, i.e. $(P, Q, R) \in T$ if and only if $(P, R, Q) \in T$.

The correctness of the following statement can be verified by straightforward computations, see also (20).

Lemma 2. Let $\alpha \neq 0$. If a system (14) is time-reversible with respect to the involution

$$
\begin{equation*}
\psi(x, y, z)=\left(x, \alpha z, \alpha^{-1} y\right) \tag{15}
\end{equation*}
$$

then $a_{P Q Q}=0$ for every $(P, Q, Q) \in T$.
Due to the above lemma, we a priori assume that in (14)

$$
a_{P Q Q}=0 \text { for all }(P, Q, Q) \in T
$$

or, equivalently, we exclude these parameters from the parameter space. By enumeration we fix an arbitrary order in the indexing set S

$$
\begin{equation*}
S=\left\{\left(p_{1}, q_{1}, r_{1}\right), \ldots,\left(p_{\ell}, q_{\ell}, r_{\ell}\right)\right\} \tag{16}
\end{equation*}
$$

Further we split the indexing set T in a disjoint union $T=T_{1} \cup T_{2}$ with $T_{1}=\{(P, Q, R): Q>R\}$ and $T_{2}=\{(P, Q, R): Q<R\}$. Note that T_{1} and T_{2} have the property that for every $(P, Q, R) \in T_{1}$ we have $(P, R, Q) \in T_{2}$, thus both T_{1} and T_{2} have the same number of elements, say m elements. Then we fix an arbitrary order in T_{1} :

$$
\begin{equation*}
T_{1}=\left\{\left(P_{1}, Q_{1}, R_{1}\right), \ldots,\left(P_{m}, Q_{m}, R_{m}\right)\right\} . \tag{17}
\end{equation*}
$$

In a natural way, this order induces the order in the set T_{2}

$$
T_{2}=\left\{\left(P_{1}, R_{1}, Q_{1}\right), \ldots,\left(P_{m}, R_{m}, Q_{m}\right)\right\}
$$

The ring of polynomials with ordered coefficients

$$
\begin{equation*}
a_{P_{1} Q_{1} R_{1}}, \cdots a_{P_{m} Q_{m} R_{m}}, a_{P_{m} R_{m} Q_{m}}, \cdots a_{P_{1} R_{1} Q_{1}}, b_{p_{1} q_{1} r_{1}}, \cdots b_{p_{\ell} q_{\ell} r_{\ell} \ell}, c_{p_{\ell} r_{\ell} q_{\ell}}, \cdots c_{p_{1} r_{1} q_{1}} \tag{18}
\end{equation*}
$$

as indeterminates and coefficients in a field k (typically \mathbb{C} or \mathbb{Q}) will be denoted by $k[a, b, c]$. Along with the latter ring we will work also with its extension $k[a, b, c, \alpha, w]$ where α and w are variables.

Proposition 3. 1) The Zariski closure of the set of systems in family (14) which are time-reversible with respect to involution (15) is the variety $\mathbf{V}\left(\mathcal{I}_{R}\right)$ of the ideal

$$
\mathcal{I}_{R}=H \cap \mathbb{C}[a, b, c],
$$

where H is the following ideal in $\mathbb{C}[a, b, c, \alpha, w]$
$H=\left\langle a_{P Q R} \alpha^{Q}+a_{P R Q} \alpha^{R}, b_{p q r} \alpha^{q+1}-c_{p r q} \alpha^{r+1}, \alpha w-1:(P, Q, R) \in T,(p, q, r) \in S\right\rangle$.
2) If the parameters of a system (14) belong to the variety $\mathbf{V}\left(\mathcal{I}_{R}\right)$, then the system is completely integrable.

Remark 4. Notice that the above ideal H remains the same if we replace the indexing set T by only T_{1} or by T_{2}.

Proof of Prop. 3. Let \mathcal{X} be the vector field (14). Equating to zero the coefficients of the monomials of the polynomial $D_{\psi} \cdot \mathcal{X}+\mathcal{X} \circ \psi$ we obtain the system

$$
a_{P Q R}=-\alpha^{R-Q} a_{P R Q}, b_{p q r}=\alpha^{r-q} c_{p r q}, \quad(P, Q, R) \in T,(p, q, r) \in S
$$

That means, system (14) is time-reversible with respect to involution (15) if and only if there is a nonzero α such that

$$
\begin{equation*}
a_{P Q R} \alpha^{Q}+\alpha^{R} a_{P R Q}=0, \quad b_{p q r} \alpha^{q}-\alpha^{r} c_{p r q}=0, \quad(P, Q, R) \in T,(p, q, r) \in S \tag{20}
\end{equation*}
$$

or, equivalently, avoiding the possibly negative exponent $q \geq-1$

$$
a_{P Q R} \alpha^{Q}+\alpha^{R} a_{P R Q}=0, \quad b_{p q r} \alpha^{q+1}-\alpha^{r+1} c_{p r q}=0, \quad(P, Q, R) \in T, \quad(p, q, r) \in S
$$

By the Elimination theorem (see e.g. $[2,9]$) this is the case when the coefficients of (14) belong to the variety of the ideal \mathcal{I}_{R} defined by (3).
2) By the construction $\mathbf{V}\left(\mathcal{I}_{R}\right)$ is the Zariski closure of systems which are timereversible with respect to (15). We observe that if a system (14) is time-reversible with respect to (15) then, after the change of coordinates $x_{1}=x, x_{2}=\alpha^{-1} y$, $x_{3}=\alpha z$, we obtain the system which is time-reversible with respect to involution (13). By Theorem 1 the obtained system is completely integrable. Thus, $\mathbf{V}\left(\mathcal{I}_{R}\right)$ is the Zariski closure of a set of completely integrable systems. By the results of [11] the set of completely integrable systems is an algebraic set. Therefore systems from $\mathbf{V}\left(\mathcal{I}_{R}\right)$ are completely integrable.

3 Invariants

Recalling the fixed order (18) in our polynomial indeterminates, we write each monomial in the polynomial ring with these coefficients as indeterminates in the form

$$
\begin{equation*}
a_{P_{1} Q_{1} R_{1}}^{\mu_{1}} \cdots a_{P_{m} Q_{m} R_{m}}^{\mu_{n}} a_{P_{m} R_{m} Q_{m}}{ }^{\mu_{n+1}} \cdots a_{P_{1} R_{1} Q_{1}}^{\mu_{2 m}} b_{p_{1} q_{1} r_{1}}^{\nu_{1}} \cdots b_{p_{\ell} q_{\ell} r_{\ell}}^{\nu_{\ell}} c_{P_{\ell} r_{\ell} q_{\ell}}^{\nu_{\ell 1}} \cdots c_{p_{1} r_{1} q_{1}}^{\nu_{2}} . \tag{21}
\end{equation*}
$$

Introducing the notations

$$
\begin{array}{ll}
a=\left(a_{P_{1} Q_{1} R_{1}}, \ldots, a_{P_{m} Q_{m} R_{m}}\right), & b=\left(b_{p_{1} q_{1} r_{1}}, \ldots, b_{p_{\ell} q_{\ell} r_{\ell}}\right), \\
a^{\prime}=\left(a_{P_{1} R_{1} Q_{1}}, \ldots, a_{P_{m} R_{m} Q_{m}}\right), & c=\left(c_{p_{1} r_{1} q_{1}}, \ldots, c_{p_{\ell \ell} r_{\ell} q_{\ell}}\right),
\end{array}
$$

we set up the monomial (21)

$$
\begin{align*}
{[\mu ; \nu] } & =\left[\mu_{1}, \ldots, \mu_{2 m} ; \nu_{1}, \ldots, \nu_{2 \ell}\right] \tag{22}\\
& =\left(a, \widehat{a^{\prime}}\right)^{\mu}(b, \hat{c})^{\nu} .
\end{align*}
$$

In particular,

$$
\begin{equation*}
[\mu ; 0]=\left(a, \widehat{a^{\prime}}\right)^{\mu} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
[0 ; \nu]=(b, \hat{c})^{\nu} . \tag{24}
\end{equation*}
$$

With systems (14) and the fixed enumeration (17), (16) of indices $(P, Q, R) \in T_{1}$ and $(p, q, r) \in S$ we associate vectors

$$
\begin{aligned}
K & =\left(Q_{1}-R_{1}, \ldots, Q_{m}-R_{m}\right)=\left(K_{1}, \ldots, K_{m}\right), \\
\kappa & =\left(q_{1}-r_{1}, \ldots, q_{\ell}-r_{\ell}\right)=\left(\kappa_{1}, \ldots, \kappa_{\ell}\right)
\end{aligned}
$$

and the map $L: \mathbb{N}_{0}^{2 m} \times \mathbb{N}_{0}^{2 \ell} \rightarrow \mathbb{Z}$, defined by

$$
L(\mu, \nu)=(K,-\widehat{K}) \cdot \mu+(\kappa,-\hat{\kappa}) \cdot \nu, \quad \mu \in \mathbb{N}_{0}^{2 m}, \nu \in \mathbb{N}_{0}^{2 \ell}
$$

It is easy to see that L is a homomorphism of the Abelian monoid $\mathbb{N}_{0}^{2 m} \times \mathbb{N}_{0}^{2 \ell}$ into the Abelian monoid \mathbb{Z} and consequently, the kernel of L, denoted by $\mathcal{M}:=\{(\mu, \nu): L(\mu, \nu)=0\}$ is a submonoid in $\mathbb{N}_{0}^{2 m} \times \mathbb{N}_{0}^{2 \ell}$.

A simple computation gives that for every $\mu \in \mathbb{N}_{0}^{2 m}, \nu \in \mathbb{N}_{0}^{2 \ell}$

$$
L(\mu, \nu)=-L(\hat{\mu}, \hat{\nu})
$$

easily providing the following statement.
Lemma 5. $(\mu, \nu) \in \mathcal{M}$ if and only if $(\hat{\mu}, \hat{\nu}) \in \mathcal{M}$.
Let

$$
\begin{equation*}
x \rightarrow x, \quad y \rightarrow \alpha y, \quad z \rightarrow \alpha^{-1} z \tag{25}
\end{equation*}
$$

be the one-parametric group U_{α} of invertible linear transformations of the phase space of systems (14). Similarly to the two-dimensional case in Section 1, we denote
the coefficients of the new systems as $a_{P Q R}(\alpha), b_{p q r}(\alpha), c_{p r q}(\alpha)$. The straightforward computation gives

$$
\begin{align*}
a_{P Q R}(\alpha) & =\alpha^{R-Q} a_{P Q R}, \\
b_{p q r}(\alpha) & =\alpha^{r-q} b_{p q r}, \tag{26}\\
c_{p r q}(\alpha) & =\alpha^{q-r} c_{p r q},
\end{align*}
$$

for all $(P, Q, R) \in T,(p, q, r) \in S$.
Proposition 6. The monomial $[\mu ; \nu]$ is invariant under the action of group (25) if and only if $(\mu, \nu) \in \mathcal{M}$.

Proof. The action of the group (25) induces the change of coefficients of (14) according to (26). Recalling (23) and (24) and performing this substitution in [μ, ν] we obtain

$$
\begin{aligned}
U_{\alpha}([\mu ; \nu]) & =[\mu ; \nu] \alpha^{(Q-R, \hat{R}-\hat{Q}) \cdot \mu+(q-r, \hat{r}-\hat{\jmath}) \cdot \nu} \\
& =[\mu, \nu] \alpha^{(K,-\hat{K}) \cdot \mu+(\kappa,-\hat{\kappa}) \cdot \nu} \\
& =[\mu, \nu] \alpha^{L(\mu, \nu)}
\end{aligned}
$$

wherefrom the claim easily follows.
We now define a generalized version of the Sibirsky ideal. For any $\mu \in \mathbb{N}_{0}^{2 m}$ denote $|\mu|=\sum_{j=1}^{2 m} \mu_{j}$.

Definition 7. The ideal

$$
\mathcal{I}_{S}=\left\langle(-1)^{|\mu|}[\mu ; \nu]-[\hat{\mu} ; \hat{\nu}]:(\mu, \nu) \in \widetilde{\mathcal{M}}\right\rangle
$$

is called the Sibirsky ideal of systems (14).
For the proof of our main theorem, we will apply the following theorem ([1], Theorem 2.4.10).

Theorem 8. Let J be an ideal of $k\left[y_{1}, \ldots, y_{m}\right], I$ be an ideal of $k\left[x_{1}, \ldots x_{n}\right]$ and let $K=\left\langle I, y_{1}-f_{1}, \ldots, y_{m}-f_{m}\right\rangle \subseteq k\left[y_{1}, \ldots, y_{m}, x_{1}, \ldots x_{n}\right]$. Let $\phi: k\left[y_{1}, \ldots, y_{m}\right] / J \rightarrow k\left[x_{1}, \ldots x_{n}\right] / I$ be the homomorphism defined by

$$
y_{i}+J \mapsto f_{i}+I .
$$

Then $\operatorname{ker} \phi=K \cap k\left[y_{1}, \ldots, y_{m}\right](\bmod J)$. That is, if $\operatorname{ker} \phi=\left\langle g_{1}+J, \ldots, g_{p}+J\right\rangle$, then $K \cap k\left[y_{1}, \ldots, y_{m}\right]=\left\langle g_{1}, \ldots, g_{p}\right\rangle$.

The statement below is our main result and it generalizes a result obtained in [7] for the case of systems (1) to the case of systems (14).

Theorem 9. $\mathcal{I}_{R}=\mathcal{I}_{S}$.

Proof. Recall that the ideal H is defined by (19) and the ideal, which we are interested in, is $\mathcal{I}_{R}=H \cap \mathbb{C}(a, b, c)$. Let $\mathcal{I}=\langle\alpha w-1\rangle, s=\left(s_{1}, \ldots, s_{m}\right), t=\left(t_{1}, \ldots, t_{\ell}\right)$. We define a homomorphism $\phi: \mathbb{C}[a, b, c] \rightarrow \mathbb{C}[s, t, \alpha, w]_{/ \mathcal{I}}$ by

$$
\begin{aligned}
a_{P_{n} Q_{n} R_{n}} & \mapsto s_{n}+\mathcal{I}, \\
a_{P_{n} R_{n} Q_{n}} & \mapsto-\alpha^{Q_{n}-R_{n}} s_{n}+\mathcal{I}, \\
b_{p_{j} q_{j} r_{j}} & \mapsto t_{j}+\mathcal{I}, \\
c_{p_{j} r_{j} q_{j}} & \mapsto \alpha^{q_{j}-r_{j}} t_{j}+\mathcal{I}, \quad \text { if } q_{j} \geq r_{j}, \\
c_{p_{j} r_{j} q_{j}} & \mapsto w^{r_{j}-q_{j}} t_{j}+\mathcal{I}, \quad \text { if } r_{j}>q_{j}, \\
& n=1,2, \ldots, m, \quad j=1,2, \ldots, \ell .
\end{aligned}
$$

Recalling the shorthand notation $K_{n}=Q_{n}-R_{n}>0, n=1,2, \ldots, m$, and $\kappa_{j}=q_{j}-r_{j}, j=1,2, \ldots, \ell$, let

$$
\begin{array}{r}
\widetilde{H}=\left\langle\mathcal{I}, a_{P_{n} Q_{n} R_{n}}-s_{n}, a_{P_{n} R_{n} Q_{n}}-\left(-\alpha^{K_{n}} s_{n}\right), b_{p_{j} q_{j} r_{j}}-t_{j}, c_{p_{k_{j}} r_{k_{j}} q_{k_{j}}}-t_{k_{j}} \alpha^{\kappa_{k_{j}}},\right. \\
\left.c_{p_{k_{i}} r_{k_{i}} q_{k_{i}}}-w^{-\kappa_{k_{i}}} t_{k_{i}}: 1 \leq n \leq m, 1 \leq j \leq \ell, \kappa_{k_{j}} \geq 0, \kappa_{k_{i}}<0\right\rangle .
\end{array}
$$

By Theorem 8 (J is taken to be trivial), we have

$$
\operatorname{ker} \phi=\widetilde{H} \cap \mathbb{C}[a, b, c]
$$

and by Proposition $3, \mathcal{I}_{R}=H \cap \mathbb{C}[a, b, c]$.
We next show that $\widetilde{H} \cap \mathbb{C}[a, b, c]=H \cap \mathbb{C}[a, b, c] . \quad$ By elimination of $s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{\ell}$ from \widetilde{H} we get exactly H. Hence $H=\widetilde{H} \cap \mathbb{C}[a, b, c, \alpha, w]$ and

$$
\begin{aligned}
\mathcal{I}_{R} & =H \cap \mathbb{C}[a, b, c] \\
& =\widetilde{H} \cap \mathbb{C}[a, b, c, \alpha, w] \cap \mathbb{C}[a, b, c] \\
& =\widetilde{H} \cap \mathbb{C}[a, b, c] \\
& =\operatorname{ker} \phi .
\end{aligned}
$$

Next we check that $\mathcal{I}_{S} \subset \operatorname{ker} \phi$, i.e. that

$$
\phi([\hat{\mu} ; \hat{\nu}])=(-1)^{|\mu|} \phi([\mu ; \nu]), \quad(\mu ; \nu) \in \mathcal{M} .
$$

Writing in a short way, with $\mu=(\xi, \eta) \in \mathbb{N}_{0}^{m} \times \mathbb{N}_{0}^{m}, \nu=(\zeta, \theta) \in \mathbb{N}_{0}^{\ell} \times \mathbb{N}_{0}^{\ell}$, we have

$$
[\mu ; 0]=[\xi, \eta ; 0]=a^{\xi}\left(\hat{a^{\prime}}\right)^{\eta}=\prod_{j=1}^{m} a_{P_{j} Q_{j} R_{j}} \xi_{j} \prod_{n=1}^{m} a_{P_{n} R_{n} Q_{n}}^{\hat{\eta}_{n}}
$$

and

$$
[0 ; \nu]=[0 ; \zeta, \theta]=b^{\zeta} \hat{c}^{\theta}=\prod_{j=1}^{\ell} b_{p_{j} q_{j} r_{j}}{ }^{\zeta} \Pi_{n=1}^{\ell} c_{p_{n} r_{n} q_{n}} \hat{\theta}_{n} .
$$

Now, acting by ϕ on $[\mu ; 0]$, noting that $\hat{s}^{\eta}=s^{\hat{\eta}}$ gives us

$$
\begin{align*}
\phi([\mu ; 0]) & =\phi([\xi, \eta ; 0])=(-1)^{|\eta|} \alpha^{(\widehat{Q}-\widehat{R}) \cdot \eta} s^{\xi} \hat{s}^{\eta}+\mathcal{I} \\
& =(-1)^{|\eta|} \alpha^{\widehat{K} \cdot \eta} s^{\xi+\hat{\eta}}+\mathcal{I} \tag{27}
\end{align*}
$$

and

$$
\begin{aligned}
\phi([\hat{\mu} ; 0]) & =\phi([\hat{\eta}, \hat{\xi} ; 0])=(-1)^{|\xi|} \alpha^{(\widehat{Q}-\widehat{R}) \cdot \hat{\xi}} s^{\hat{\eta}} \hat{s} \hat{\xi} \\
& =(-1)^{|\xi|} \alpha^{(Q-R) \cdot \xi} s^{\xi+\hat{\eta}}+\mathcal{I} \\
& =(-1)^{|\xi|} \alpha^{K \cdot \xi_{s}} s^{\xi+\hat{\eta}}+\mathcal{I} .
\end{aligned}
$$

By choosing $[\mu ; 0]=[\xi, \eta ; 0] \in \mathcal{M}$ we know that $K \cdot \xi=\widehat{K} \cdot \eta$. Moreover, it is easy to check that

$$
\left.\phi\left((-1)^{|\mu|}[\mu ; 0]\right)=\phi([\hat{\mu} ; 0])\right)
$$

since $(-1)^{|\xi|+2|\eta|}=(-1)^{|\xi|}$. We have to be a bit careful when computing $\phi\left(c^{\theta}\right)$. Namely, $\phi\left(c_{n}^{\theta_{n}}\right)=t_{n}^{\theta_{n}} \alpha^{\kappa_{n} \theta_{n}}$ if $\kappa_{n}=q_{n}-r_{n} \geq 0$ and $\phi\left(c_{j}^{\theta_{j}}\right)=t^{j} w^{-\kappa_{j} \theta_{j}}$ if $\kappa_{j}<0$. Denote by κ_{+}the non-negative part of κ, and by κ_{-}the negative part such that $\kappa=\kappa_{+}+\kappa_{-}$and supp $\kappa_{+} \cap \operatorname{supp} \kappa_{-}=\{ \}$. Now,

$$
\begin{equation*}
\phi([0 ; \nu])=\phi([0 ; \zeta, \theta])=t^{\zeta} \hat{t}^{\theta} \alpha^{\left(\kappa_{+}\right) \cdot \hat{\theta}} w^{-\left(\kappa_{-}\right) \cdot \hat{\theta}}+\mathcal{I}=t^{\zeta+\hat{\theta}} \alpha^{\left(\kappa_{+}\right) \cdot \hat{\theta}} w^{-\left(\kappa_{-}\right) \cdot \hat{\theta}}+\mathcal{I} \tag{28}
\end{equation*}
$$

and

$$
\phi([0 ; \hat{\nu}])=\phi([0 ; \hat{\theta}, \hat{\zeta}])=t^{\hat{\theta}+\zeta} \alpha^{\left(\kappa_{+}\right) \cdot \zeta} w^{-\left(\kappa_{-}\right) \cdot \zeta}+\mathcal{I} .
$$

We next show that $\alpha^{\left(\kappa_{+}\right) \cdot \hat{\theta}} w^{-\left(\kappa_{-}\right) \cdot \hat{\theta}}-\alpha^{\left(\kappa_{+}\right) \cdot \zeta} w^{-\left(\kappa_{-}\right) \cdot \zeta} \in \mathcal{I}$ as soon as $(0 ; \zeta, \theta) \in \mathcal{M}$. Denote $u_{1}=\kappa_{+} \cdot \hat{\theta}, u_{2}=-\kappa_{-} \cdot \hat{\theta}, v_{1}=\kappa_{+} \cdot \zeta, v_{2}=-\kappa_{-} \cdot \zeta$. The requirement $(0 ; \zeta, \theta) \in \mathcal{M}$ tells us that $v_{1}-u_{1}=v_{2}-u_{2}=: d$. Assuming that $d \geq 0$ we obtain

$$
\begin{aligned}
\alpha^{\left(\kappa_{+}\right) \cdot \hat{\theta}} w^{-\left(\kappa_{-}\right) \cdot \hat{\theta}}-\alpha^{\left(\kappa_{+}\right) \cdot \zeta} w^{-\left(\kappa_{-}\right) \cdot \zeta} & =\alpha^{u_{1}} w^{u_{2}}-\alpha^{v_{1}} w^{v_{2}} \\
& =\alpha^{u_{1}} w^{u_{2}}\left(1-\alpha^{d} w^{d}\right) \\
& =\alpha^{u_{1}} w^{u_{2}} f(\alpha, w)(1-\alpha w)
\end{aligned}
$$

where $f(\alpha, w)$ is a polynomial. We proceed very similarly when $d<0$. Therefore, $\phi([0 ; \nu])=\phi([0 ; \hat{\nu}])$.

To complete this step of the proof, i.e. to show that all generating binomials of \mathcal{I}_{S} are in the kernel of ϕ, let $(\mu, \nu) \in \mathcal{M}$. Then, as ϕ is a ring homomorphism,

$$
\begin{aligned}
\phi\left((-1)^{|\mu|}[\mu ; \nu]\right) & =\phi\left((-1)^{|\mu|}[\mu ; 0]\right) \phi([0 ; \nu]) \\
& =\phi([\hat{\mu} ; 0]) \phi([0 ; \hat{\nu}]) \\
& =\phi([\hat{\mu} ; \hat{\nu}]) .
\end{aligned}
$$

It remains to check that ker $\phi \subset I_{S}$. A reduced Gröbner basis G of $\mathbb{C}[a, b, c] \cap \widetilde{H}$ can be found by computing a reduced Gröbner basis of \widetilde{H} using an elimination ordering with $\{a, b, c\}<\{w, \alpha, s, t\}$, and then intersecting it with $\mathbb{C}[a, b, c]$. Since \widetilde{H}
is binomial, any reduced Gröbner basis G of \widetilde{H} also consists of binomials. This means that $\mathcal{I}_{R}=\widetilde{H} \cap \mathbb{Q}[a, b, c]=\operatorname{ker} \phi$ is a binomial ideal. Assume that for some $(\xi, \eta ; \zeta, \theta)$, $(\gamma, \delta ; \varepsilon, \varphi) \in \mathbb{N}^{2 m} \times \mathbb{N}^{2 \ell}, u \in \mathbb{C}$, the equality $\phi(u[\xi, \eta ; \zeta, \theta]-[\gamma, \delta ; \varepsilon, \varphi])=0$ holds. Without loosing any generality, we assume that $[\xi, \eta ; \zeta, \theta]$ and $[\gamma, \delta ; \varepsilon, \varphi]$ do not have nontrivial common factors. This implies that $\xi_{j} \gamma_{j}=\eta_{j} \delta_{j}=0, j=1,2, \ldots, m$, and $\zeta_{i} \varepsilon_{i}=\theta_{i} \delta_{i}=0, i=1,2, \ldots, \ell$. Suppose

$$
\phi(u[\xi, \eta ; \zeta, \theta])=\phi([\gamma, \delta ; \varepsilon, \varphi]) .
$$

We will show that $[\gamma, \delta ; \varepsilon, \varphi]=[\hat{\eta}, \hat{\xi} ; \hat{\theta}, \hat{\zeta}]$ and $u=(-1)^{|\xi|+|\eta|}$. From (27) and (28) one derives that
$f:=u(-1)^{|\eta|+|\delta|} s^{\xi+\hat{\eta}_{t}} t^{\zeta+\hat{\theta}} \alpha^{\hat{K} \cdot \eta+\left(\kappa_{+}\right) \cdot \hat{\theta}} w^{-\left(\kappa_{-}\right) \cdot \hat{\theta}}-s^{\gamma+\hat{\delta}} t^{\varepsilon+\hat{\varphi}} \alpha^{\hat{K} \cdot \delta+\left(\kappa_{+}\right) \cdot \hat{\varphi}} w^{-\left(\kappa_{-}\right) \cdot \hat{\varphi}} \in\langle\alpha w-1\rangle$.
Computing the value of f at $w=\alpha^{-1}$ we must have 0 . But this implies the equality of (possibly rational) monomials

$$
\begin{equation*}
s^{\xi+\hat{\eta}} t^{\zeta+\hat{\theta}} \alpha^{\hat{K} \cdot \eta+\left(\kappa_{+}+\kappa_{-}\right) \cdot \hat{\theta}}=s^{\gamma+\hat{\delta}} t^{\varepsilon+\hat{\varphi}} \alpha^{\hat{K} \cdot \delta+\left(\kappa_{+}+\kappa_{-}\right) \cdot \hat{\varphi}} \tag{29}
\end{equation*}
$$

and additionally,

$$
\begin{equation*}
u(-1)^{|\eta|+|\delta|}=1 . \tag{30}
\end{equation*}
$$

Comparing the powers at s, t, α in (29) gives

$$
\begin{align*}
\xi+\hat{\eta} & =\gamma+\hat{\delta} \tag{31}\\
\zeta+\hat{\theta} & =\varepsilon+\hat{\varphi} \tag{32}\\
\widehat{K} \cdot \eta+\kappa \cdot \hat{\theta} & =\widehat{K} \cdot \delta+\kappa \cdot \hat{\varphi} . \tag{33}
\end{align*}
$$

We will firstly prove and then immediately apply the following technical lemma.
Lemma 10. Let $\xi, \eta, \gamma, \delta \in \mathbb{N}_{0}$ be non-negative integers. Assume that

$$
\begin{align*}
\xi+\eta & =\gamma+\delta \tag{34}\\
\xi \gamma & =0 \tag{35}\\
\eta \delta & =0 . \tag{36}
\end{align*}
$$

Then $(\gamma, \delta)=(\eta, \xi)$.
Proof. Let us firstly assume that $\gamma>\eta$. Then $\gamma \neq 0$ and by (35), $\xi=0$. Apply (34) to get a contradiction, since δ is not negative. Similarly, if $\eta>\gamma$ we have $\eta \neq 0$ and thus by (36) one obtains $\delta=0$. This contradicts the non-negativity of ξ. It follows that $\gamma=\eta$ and consequently from (34), $\delta=\xi$ as claimed.

Let us continue with the proof of Theorem 9. From (31) we observe that $\xi_{j}+\hat{\eta}_{j}=\gamma_{j}+\hat{\delta}_{j}$ and by our assumption on coprimeness, $\xi_{j} \gamma_{j}=\hat{\eta}_{j} \hat{\delta}_{j}=0$ for all $j=1,2, \ldots, m$. Applying Lemma 10 we obtain $\gamma_{j}=\hat{\eta}_{j}$ and $\hat{\delta}_{j}=\xi_{j}, j=1, \ldots, m$
and in turn, $\gamma=\hat{\eta}$ and $\delta=\hat{\xi}$, i.e. $(\gamma, \delta)=(\hat{\eta}, \hat{\xi})$. In a very similar manner we get $(\varepsilon, \varphi)=(\hat{\theta}, \hat{\zeta})$ from (32).

It remains to see that both $[\xi, \eta ; \zeta, \theta]$ and $[\gamma, \delta ; \varepsilon, \varphi]$ must be in \mathcal{M}. By Lemma 5 and inserting $(\gamma, \delta, \varepsilon, \varphi)=(\hat{\eta}, \hat{\xi}, \hat{\theta}, \hat{\zeta})$ into (33) we confirm the claim.

Finally we easily get $u=(-1)^{|\xi|+|\eta|}$ from (30) since $|\delta|=|\hat{\xi}|=|\xi|$.
A generating set or basis \mathcal{N} of \mathcal{M} is minimal if, for each $\nu \in \mathcal{N}, \mathcal{N} \backslash\{\nu\}$ is not a generating set. A minimal generating set is called a Hilbert basis of \mathcal{M}.

Theorem 11. Let G be the reduced Gröbner basis of \mathcal{I}_{S} with respect to a chosen term order. Then the following holds.

1. Every element of G has the form $(-1)^{|\mu|}[\mu ; \nu]-[\hat{\mu} ; \hat{\nu}]$, where $(\mu, \nu) \in \mathcal{M}$ and [$\mu ; \nu]$ and $[\hat{\mu} ; \hat{\nu}]$ have no common factors.
2. The set

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{N}=\left\{(\mu, \nu),(\hat{\mu}, \hat{\nu}):(-1)^{|\mu|}[\mu ; \nu]-[\hat{\mu} ; \hat{\nu}] \in G\right\} \\
\\
\qquad\left\{\left(0, e_{j}\right)+\left(0, e_{2 \ell-j+1}\right): j=1, \ldots, \ell \text { and } \pm\left(\left[0 ; e_{j}\right]-\left[0 ; e_{2 \ell-j+1}\right]\right) \notin G\right\}, \\
\text { where } e_{j}
\end{array}=\left(0, \ldots, 0,{ }_{1}^{j}, 0, \ldots, 0\right) \in \mathbb{Q}^{2 \ell}, \text { is a Hilbert basis of } \mathcal{M} .
\end{aligned}
$$

The proof of the theorem is similar to the proof of Theorem 5.2.5 in [9].

Acknowledgements

The first author is supported by the Slovenian Research Agency (core research program P1-0288) and the second author is supported by the Slovenian Research Agency (core research program P1-0306). We also thank the anonymous referee for valuable comments which helped to improve the paper.

References

[1] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate Studies in Mathematics, Vol. 3. Providence, RI: American Mathematical Society, 1994.
[2] D. Cox, J. Little, D. O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Forth edition. Undergraduate Texts in Mathematics. Springer, Cham, 2015. xvi+646 pp.
[3] Z. Hu, M. Han, and V. G. Romanovski. Local integrability of a family of three-dimensional quadratic systems. Physica D: Nonlinear Phenomena 265 (2013), 78-86.
[4] A. S. Jarrah, R. Laubenbacher, and V. Romanovski. The Sibirsky component of the center variety of polynomial differential systems. Computer algebra and computer analysis (Berlin, 2001). J. Symbolic Comput. 35 (2003), 577-589.
[5] J. S. W. Lamb and J. A. G. Roberts. Time-reversal symmetry in dynamical systems: a survey. Time-reversal symmetry in dynamical systems (Coventry, 1996). Phys. D 112 (1998), 1-39.
[6] J. Llibre, C. Pantazi, and S. Walcher. First integrals of local analytic differential systems. Bull. Sci. Math., 136 (2012), 342-359.
[7] V. G. Romanovski. Time-Reversibility in 2-Dim Systems. Open Systems \& Information Dynamics, 15(1) (2008), 1-12.
[8] V. G. Romanovski and D. S. Shafer. Time-reversibility in two-dimensional polynomial systems. In: Trends in Mathematics, Differential Equations with Symbolic Computations (D. Wang and Z. Zheng, Eds.), 67-84. Basel: Birkhauser Verlag, 2005.
[9] V. G. Romanovski and D. S. Shafer. The Center and Cyclicity Problems: A Computational Algebra Approach. Boston: Birkhäuser, 2009.
[10] V. G. Romanovski, D. S. Shafer. Complete integrability and time-reversibility of some 3-dim systems. Applied Mathematics Letters, 51 (2016), 27-33.
[11] V. G. Romanovski, Y. Xia, X. Zhang. Varieties of local integrability of analytic differential systems and their applications. J. Differential Equations 257 (2014), 3079-3101.
[12] K. S. Sibirsky. Algebraic Invariants of Differential Equations and Matrices. Kishinev: Shtiintsa (in Russian), 1976.
[13] K. S. Sibirsky. Introduction to the Algebraic Theory of Invariants of Differential Equations (Kishinev: Shtiintsa), 1982, (in Russian, English transl.: Manchester University Press, 1988).
[14] X. Zhang. Analytic normalization of analytic integrable systems and the embedding flows. J. Differential Equations 244 (2008), 1080-1092.

Tatjana Petek
Received December 9, 2022
Faculty of Electrical Engineering and Computer Science,
University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
E-mail: tatjana.petek@um.si
Valery G. Romanovski
Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
Center for Applied Mathematics and Theoretical Physics, Mladinska 3, SI-2000 Maribor, Slovenia
Faculty of Natural Science and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
E-mail: valerij.romanovskij@um.si

[^0]: (C) Tatjana Petek and Valery G. Romanovski, 2023

 DOI: https://doi.org/10.56415/basm.y2023.i1.p16

